Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.566
Filter
Add more filters

Publication year range
1.
Cell ; 187(18): 5048-5063.e25, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39106863

ABSTRACT

It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.


Subject(s)
Actomyosin , RNA, Messenger , RNA-Binding Proteins , Signal Transduction , rhoA GTP-Binding Protein , Humans , Actomyosin/metabolism , Cytoplasm/metabolism , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , rhoA GTP-Binding Protein/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism
2.
Cell ; 177(4): 910-924.e22, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982595

ABSTRACT

The assembly of organized colonies is the earliest manifestation in the derivation or induction of pluripotency in vitro. However, the necessity and origin of this assemblance is unknown. Here, we identify human pluripotent founder cells (hPFCs) that initiate, as well as preserve and establish, pluripotent stem cell (PSC) cultures. PFCs are marked by N-cadherin expression (NCAD+) and reside exclusively at the colony boundary of primate PSCs. As demonstrated by functional analysis, hPFCs harbor the clonogenic capacity of PSC cultures and emerge prior to commitment events or phenotypes associated with pluripotent reprogramming. Comparative single-cell analysis with pre- and post-implantation primate embryos revealed hPFCs share hallmark properties with primitive endoderm (PrE) and can be regulated by non-canonical Wnt signaling. Uniquely informed by primate embryo organization in vivo, our study defines a subset of founder cells critical to the establishment pluripotent state.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Cell Differentiation , Cell Lineage , Embryonic Development , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Single-Cell Analysis , Wnt Signaling Pathway
3.
Immunity ; 56(4): 753-767.e8, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37001519

ABSTRACT

Intracellular sensing of lipopolysaccharide (LPS) by murine caspase-11 or human caspase-4 initiates a protease cascade, termed the non-canonical inflammasome, that results in gasdermin D (GSDMD) processing and subsequent NLRP3 inflammasome activation. In an effort aimed at identifying additional sensors for intracellular LPS by biochemical screening, we identified the nuclear orphan receptor Nur77 as an LPS-binding protein in macrophage lysates. Nr4a1-/- macrophages exhibited impaired activation of the NLRP3 inflammasome, but not caspase-11, in response to LPS. Biochemical mapping revealed that Nur77 bound LPS directly through a domain in its C terminus. Yeast two-hybrid assays identified NLRP3 as a binding partner for Nur77. The association between Nur77 and NLRP3 required the presence of LPS and dsDNA. The source of dsDNA was the mitochondria, requiring the formation of gasdermin-D pores. In vivo, Nur77 deficiency ameliorated host response to endotoxins. Thus, Nur77 functions as an intracellular LPS sensor, binding mitochondrial DNA and LPS to activate the non-canonical NLRP3 inflammasome.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Nuclear Receptor Subfamily 4, Group A, Member 1 , Animals , Humans , Mice , Caspase 1/metabolism , Caspases/metabolism , Gasdermins , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
4.
Mol Cell ; 84(2): 261-276.e18, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38176414

ABSTRACT

A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Protein Biosynthesis , Medulloblastoma/genetics , Open Reading Frames/genetics , Cell Survival/genetics , Cerebellar Neoplasms/genetics
5.
Mol Cell ; 84(15): 2966-2983.e9, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39089251

ABSTRACT

Defects in organellar acidification indicate compromised or infected compartments. Recruitment of the autophagy-related ATG16L1 complex to pathologically neutralized organelles targets ubiquitin-like ATG8 molecules to perturbed membranes. How this process is coupled to proton gradient disruption is unclear. Here, we reveal that the V1H subunit of the vacuolar ATPase (V-ATPase) proton pump binds directly to ATG16L1. The V1H/ATG16L1 interaction only occurs within fully assembled V-ATPases, allowing ATG16L1 recruitment to be coupled to increased V-ATPase assembly following organelle neutralization. Cells lacking V1H fail to target ATG8s during influenza infection or after activation of the immune receptor stimulator of interferon genes (STING). We identify a loop within V1H that mediates ATG16L1 binding. A neuronal V1H isoform lacks this loop and is associated with attenuated ATG8 targeting in response to ionophores in primary murine and human iPSC-derived neurons. Thus, V1H controls ATG16L1 recruitment following proton gradient dissipation, suggesting that the V-ATPase acts as a cell-intrinsic damage sensor.


Subject(s)
Autophagy-Related Proteins , Vacuolar Proton-Translocating ATPases , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Humans , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Animals , Mice , Protein Binding , Neurons/metabolism , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Protein 8 Family/genetics , Autophagy , HEK293 Cells , Induced Pluripotent Stem Cells/metabolism , Influenza, Human/virology , Influenza, Human/metabolism , Influenza, Human/genetics , Mice, Inbred C57BL , Signal Transduction , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice, Knockout
6.
Mol Cell ; 84(7): 1191-1205.e7, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38458202

ABSTRACT

Polycomb repressive complex 1 (PRC1) is a key transcriptional regulator in development via modulating chromatin structure and catalyzing histone H2A ubiquitination at Lys119 (H2AK119ub1). H2AK119ub1 is one of the most abundant histone modifications in mammalian cells. However, the function of H2AK119ub1 in polycomb-mediated gene silencing remains debated. In this study, we reveal that H2AK119ub1 has two distinct roles in gene expression, through differentially modulating chromatin compaction mediated by canonical PRC1 and the linker histone H1. Interestingly, we find that H2AK119ub1 plays a positive role in transcription through interfering with the binding of canonical PRC1 to nucleosomes and therefore counteracting chromatin condensation. Conversely, we demonstrate that H2AK119ub1 facilitates H1-dependent chromatin condensation and enhances the silencing of developmental genes in mouse embryonic stem cells, suggesting that H1 may be one of several possible pathways for H2AK119ub1 in repressing transcription. These results provide insights and molecular mechanisms by which H2AK119ub1 differentially fine-tunes developmental gene expression.


Subject(s)
Chromatin , Polycomb Repressive Complex 1 , Animals , Mice , Chromatin/genetics , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Nucleosomes/genetics , Ubiquitination , Gene Expression , Mammals/metabolism
7.
Cell ; 167(2): 382-396.e17, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27693356

ABSTRACT

The inflammasome is an intracellular signaling complex, which on recognition of pathogens and physiological aberration, drives activation of caspase-1, pyroptosis, and the release of the pro-inflammatory cytokines IL-1ß and IL-18. Bacterial ligands must secure entry into the cytoplasm to activate inflammasomes; however, the mechanisms by which concealed ligands are liberated in the cytoplasm have remained unclear. Here, we showed that the interferon-inducible protein IRGB10 is essential for activation of the DNA-sensing AIM2 inflammasome by Francisella novicida and contributed to the activation of the LPS-sensing caspase-11 and NLRP3 inflammasome by Gram-negative bacteria. IRGB10 directly targeted cytoplasmic bacteria through a mechanism requiring guanylate-binding proteins. Localization of IRGB10 to the bacterial cell membrane compromised bacterial structural integrity and mediated cytosolic release of ligands for recognition by inflammasome sensors. Overall, our results reveal IRGB10 as part of a conserved signaling hub at the interface between cell-autonomous immunity and innate immune sensing pathways.


Subject(s)
DNA-Binding Proteins/metabolism , Francisella/immunology , GTP Phosphohydrolases/metabolism , Gram-Negative Bacterial Infections/immunology , Host-Pathogen Interactions/immunology , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , B-Lymphocytes/immunology , Caspases/metabolism , Caspases, Initiator , Cytosol/immunology , Cytosol/microbiology , GTP Phosphohydrolases/genetics , Gram-Negative Bacterial Infections/microbiology , Immunity, Cellular , Immunity, Innate , Inflammasomes/metabolism , Ligands , Mice , Mice, Mutant Strains , Myeloid Cells/immunology , T-Lymphocytes/immunology
8.
Mol Cell ; 83(11): 1810-1826.e8, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37267903

ABSTRACT

Microprocessor (MP), DROSHA-DGCR8, processes primary miRNA transcripts (pri-miRNAs) to initiate miRNA biogenesis. The canonical cleavage mechanism of MP has been extensively investigated and comprehensively validated for two decades. However, this canonical mechanism cannot account for the processing of certain pri-miRNAs in animals. In this study, by conducting high-throughput pri-miRNA cleavage assays for approximately 260,000 pri-miRNA sequences, we discovered and comprehensively characterized a noncanonical cleavage mechanism of MP. This noncanonical mechanism does not need several RNA and protein elements essential for the canonical mechanism; instead, it utilizes previously unrecognized DROSHA dsRNA recognition sites (DRESs). Interestingly, the noncanonical mechanism is conserved across animals and plays a particularly significant role in C. elegans. Our established noncanonical mechanism elucidates MP cleavage in numerous RNA substrates unaccounted for by the canonical mechanism in animals. This study suggests a broader substrate repertoire of animal MPs and an expanded regulatory landscape for miRNA biogenesis.


Subject(s)
MicroRNAs , Animals , MicroRNAs/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism , RNA, Double-Stranded , RNA Processing, Post-Transcriptional
9.
Mol Cell ; 83(22): 3953-3971, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37802077

ABSTRACT

tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.


Subject(s)
Amino Acyl-tRNA Synthetases , RNA, Transfer , RNA, Transfer/metabolism , Anticodon , Amino Acyl-tRNA Synthetases/metabolism , Ribosomes/metabolism , RNA, Messenger/genetics
10.
Mol Cell ; 83(12): 1970-1982.e6, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37327775

ABSTRACT

Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA sequences. Two use their POUS domains while the other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Our analysis of previous genomic data and determination of the ESRRB-nucleosome-OCT4 structure confirmed the generality of these structural features. Moreover, biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Thus, our study suggests a mechanism of how OCT4 can target the nucleosome and open closed chromatin.


Subject(s)
Chromatin , Nucleosomes , Octamer Transcription Factor-3 , RNA-Binding Proteins , Humans , Base Sequence , Cellular Reprogramming , Chromatin/genetics , DNA/metabolism , Nucleosomes/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism
11.
Immunity ; 54(3): 454-467.e6, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33561388

ABSTRACT

Heparin, a mammalian polysaccharide, is a widely used anticoagulant medicine to treat thrombotic disorders. It is also known to improve outcomes in sepsis, a leading cause of mortality resulted from infection-induced immune dysfunction. Whereas it is relatively clear how heparin exerts its anticoagulant effect, the immunomodulatory mechanisms enabled by heparin remain enigmatic. Here, we show that heparin prevented caspase-11-dependent immune responses and lethality in sepsis independent of its anticoagulant properties. Heparin or a chemically modified form of heparin without anticoagulant function inhibited the alarmin HMGB1-lipopolysaccharide (LPS) interaction and prevented the macrophage glycocalyx degradation by heparanase. These events blocked the cytosolic delivery of LPS in macrophages and the activation of caspase-11, a cytosolic LPS receptor that mediates lethality in sepsis. Survival was higher in septic patients treated with heparin than those without heparin treatment. The identification of this previously unrecognized heparin function establishes a link between innate immune responses and coagulation.


Subject(s)
Anticoagulants/therapeutic use , Caspases/metabolism , Heparin/therapeutic use , Macrophages/immunology , Sepsis/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Caspases/genetics , Cell Line , Female , Glucuronidase/genetics , Glucuronidase/metabolism , Glycocalyx/metabolism , HMGB1 Protein/metabolism , Humans , Immunomodulation , Lipopolysaccharides/metabolism , Male , Mice , Mice, Knockout , Middle Aged , Sepsis/mortality , Survival Analysis , Young Adult
12.
Immunity ; 54(4): 737-752.e10, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33740418

ABSTRACT

Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.


Subject(s)
Epitopes/genetics , Histocompatibility Antigens Class I/genetics , Leukemia, Myeloid, Acute/genetics , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cell Line , Epigenesis, Genetic/genetics , Epigenesis, Genetic/immunology , Epitopes/immunology , Histocompatibility Antigens Class I/immunology , Humans , Immunotherapy/methods , Leukemia, Myeloid, Acute/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Mutation/genetics , Mutation/immunology , Neoplastic Stem Cells/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Cytotoxic/immunology
13.
Mol Cell ; 82(4): 833-851.e11, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35180428

ABSTRACT

HOTTIP lncRNA is highly expressed in acute myeloid leukemia (AML) driven by MLL rearrangements or NPM1 mutations to mediate HOXA topologically associated domain (TAD) formation and drive aberrant transcription. However, the mechanism through which HOTTIP accesses CCCTC-binding factor (CTCF) chromatin boundaries and regulates CTCF-mediated genome topology remains unknown. Here, we show that HOTTIP directly interacts with and regulates a fraction of CTCF-binding sites (CBSs) in the AML genome by recruiting CTCF/cohesin complex and R-loop-associated regulators to form R-loops. HOTTIP-mediated R-loops reinforce the CTCF boundary and facilitate formation of TADs to drive gene transcription. Either deleting CBS or targeting RNase H to eliminate R-loops in the boundary CBS of ß-catenin TAD impaired CTCF boundary activity, inhibited promoter/enhancer interactions, reduced ß-catenin target expression, and mitigated leukemogenesis in xenograft mouse models with aberrant HOTTIP expression. Thus, HOTTIP-mediated R-loop formation directly reinforces CTCF chromatin boundary activity and TAD integrity to drive oncogene transcription and leukemia development.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Leukemia, Myeloid, Acute/metabolism , R-Loop Structures , RNA, Long Noncoding/metabolism , beta Catenin/metabolism , Animals , CCCTC-Binding Factor/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice, Transgenic , RNA, Long Noncoding/genetics , Structure-Activity Relationship , Transcription, Genetic , Transcriptional Activation , beta Catenin/genetics , Cohesins
14.
Mol Cell ; 81(9): 2031-2040.e8, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33909989

ABSTRACT

Autophagy is a fundamental catabolic process that uses a unique post-translational modification, the conjugation of ATG8 protein to phosphatidylethanolamine (PE). ATG8 lipidation also occurs during non-canonical autophagy, a parallel pathway involving conjugation of ATG8 to single membranes (CASM) at endolysosomal compartments, with key functions in immunity, vision, and neurobiology. It is widely assumed that CASM involves the same conjugation of ATG8 to PE, but this has not been formally tested. Here, we discover that all ATG8s can also undergo alternative lipidation to phosphatidylserine (PS) during CASM, induced pharmacologically, by LC3-associated phagocytosis or influenza A virus infection, in mammalian cells. Importantly, ATG8-PS and ATG8-PE adducts are differentially delipidated by the ATG4 family and bear different cellular dynamics, indicating significant molecular distinctions. These results provide important insights into autophagy signaling, revealing an alternative form of the hallmark ATG8 lipidation event. Furthermore, ATG8-PS provides a specific "molecular signature" for the non-canonical autophagy pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagosomes/metabolism , Autophagy-Related Protein 8 Family/metabolism , Autophagy , Microtubule-Associated Proteins/metabolism , Phosphatidylserines/metabolism , Protein Processing, Post-Translational , Adaptor Proteins, Signal Transducing/genetics , Animals , Autophagosomes/drug effects , Autophagosomes/genetics , Autophagosomes/pathology , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Female , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Influenza A virus/pathogenicity , Macrolides/pharmacology , Male , Mice , Microtubule-Associated Proteins/genetics , Monensin/pharmacology , Phagocytosis , Phosphatidylethanolamines/metabolism , RAW 264.7 Cells , Signal Transduction
15.
Mol Cell ; 81(10): 2246-2260.e12, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33861991

ABSTRACT

Exitron splicing (EIS) creates a cryptic intron (called an exitron) within a protein-coding exon to increase proteome diversity. EIS is poorly characterized, but emerging evidence suggests a role for EIS in cancer. Through a systematic investigation of EIS across 33 cancers from 9,599 tumor transcriptomes, we discovered that EIS affected 63% of human coding genes and that 95% of those events were tumor specific. Notably, we observed a mutually exclusive pattern between EIS and somatic mutations in their affected genes. Functionally, we discovered that EIS altered known and novel cancer driver genes for causing gain- or loss-of-function, which promotes tumor progression. Importantly, we identified EIS-derived neoepitopes that bind to major histocompatibility complex (MHC) class I or II. Analysis of clinical data from a clear cell renal cell carcinoma cohort revealed an association between EIS-derived neoantigen load and checkpoint inhibitor response. Our findings establish the importance of considering EIS alterations when nominating cancer driver events and neoantigens.


Subject(s)
Epitopes/genetics , Exons/genetics , Gene Expression Profiling , Introns/genetics , Neoplasms/genetics , Oncogenes , RNA Splicing/genetics , Amino Acid Sequence , Cell Line , Cohort Studies , Humans , Mutation/genetics
16.
Immunity ; 51(6): 983-996.e6, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31836429

ABSTRACT

Excessive activation of the coagulation system leads to life-threatening disseminated intravascular coagulation (DIC). Here, we examined the mechanisms underlying the activation of coagulation by lipopolysaccharide (LPS), the major cell-wall component of Gram-negative bacteria. We found that caspase-11, a cytosolic LPS receptor, activated the coagulation cascade. Caspase-11 enhanced the activation of tissue factor (TF), an initiator of coagulation, through triggering the formation of gasdermin D (GSDMD) pores and subsequent phosphatidylserine exposure, in a manner independent of cell death. GSDMD pores mediated calcium influx, which induced phosphatidylserine exposure through transmembrane protein 16F, a calcium-dependent phospholipid scramblase. Deletion of Casp11, ablation of Gsdmd, or neutralization of phosphatidylserine or TF prevented LPS-induced DIC. In septic patients, plasma concentrations of interleukin (IL)-1α and IL-1ß, biomarkers of GSDMD activation, correlated with phosphatidylserine exposure in peripheral leukocytes and DIC scores. Our findings mechanistically link immune recognition of LPS to coagulation, with implications for the treatment of DIC.


Subject(s)
Caspases, Initiator/metabolism , Disseminated Intravascular Coagulation/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/metabolism , Phosphate-Binding Proteins/metabolism , Phosphatidylserines/metabolism , Thromboplastin/metabolism , Animals , Blood Coagulation/physiology , Caspases, Initiator/genetics , Cell Line, Tumor , Endotoxemia/pathology , Enzyme Activation , HT29 Cells , HeLa Cells , Humans , Interleukin-1alpha/blood , Interleukin-1beta/blood , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins/genetics , Pyroptosis/physiology , Signal Transduction/physiology
17.
Mol Cell ; 78(2): 317-328.e6, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32191872

ABSTRACT

MicroRNAs (miRNAs) are sequentially processed by two RNase III enzymes, Drosha and Dicer. miR-451 is the only known miRNA whose processing bypasses Dicer and instead relies on the slicer activity of Argonaute-2 (Ago2). miR-451 is highly conserved in vertebrates and regulates erythrocyte maturation, where it becomes the most abundant miRNA. However, the basis for the non-canonical biogenesis of miR-451 is unclear. Here, we show that Ago2 is less efficient than Dicer in processing pre-miRNAs, but this deficit is overcome when miR-144 represses Dicer in a negative-feedback loop during erythropoiesis. Loss of miR-144-mediated Dicer repression in zebrafish embryos and human cells leads to increased canonical miRNA production and impaired miR-451 maturation. Overexpression of Ago2 rescues some of the defects of miR-451 processing. Thus, the evolution of Ago2-dependent processing allows miR-451 to circumvent the global repression of canonical miRNAs elicited, in part, by the miR-144 targeting of Dicer during erythropoiesis.


Subject(s)
Argonaute Proteins/genetics , Erythropoiesis/genetics , MicroRNAs/genetics , Animals , DEAD-box RNA Helicases/genetics , Gene Expression Regulation, Developmental/genetics , Humans , RNA Interference , Ribonuclease III/genetics , Zebrafish/genetics , Zebrafish/growth & development
18.
Am J Hum Genet ; 111(10): 2164-2175, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39226898

ABSTRACT

Variants that alter gene splicing are estimated to comprise up to a third of all disease-causing variants, yet they are hard to predict from DNA sequencing data alone. To overcome this, many groups are incorporating RNA-based analyses, which are resource intensive, particularly for diagnostic laboratories. There are thousands of functionally validated variants that induce mis-splicing; however, this information is not consolidated, and they are under-represented in ClinVar, which presents a barrier to variant interpretation and can result in duplication of validation efforts. To address this issue, we developed SpliceVarDB, an online database consolidating over 50,000 variants assayed for their effects on splicing in over 8,000 human genes. We evaluated over 500 published data sources and established a spliceogenicity scale to standardize, harmonize, and consolidate variant validation data generated by a range of experimental protocols. According to the strength of their supporting evidence, variants were classified as "splice-altering" (∼25%), "not splice-altering" (∼25%), and "low-frequency splice-altering" (∼50%), which correspond to weak or indeterminate evidence of spliceogenicity. Importantly, 55% of the splice-altering variants in SpliceVarDB are outside the canonical splice sites (5.6% are deep intronic). These variants can support the variant curation diagnostic pathway and can be used to provide the high-quality data necessary to develop more accurate in silico splicing predictors. The variants are accessible through an online platform, SpliceVarDB, with additional features for visualization, variant information, in silico predictions, and validation metrics. SpliceVarDB is a very large collection of splice-altering variants and is available at https://splicevardb.org.


Subject(s)
Databases, Genetic , RNA Splicing , Humans , RNA Splicing/genetics , Genetic Variation , Alternative Splicing/genetics , Software
19.
Development ; 151(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38814743

ABSTRACT

Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.


Subject(s)
Mesoderm , Morphogenesis , Osteoblasts , Skull , Wnt Proteins , Animals , Osteoblasts/metabolism , Osteoblasts/cytology , Skull/embryology , Mice , Mesoderm/cytology , Mesoderm/metabolism , Wnt Proteins/metabolism , Wnt Proteins/genetics , Cell Polarity , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Cell Movement , Cell Proliferation
20.
Immunity ; 49(3): 490-503.e4, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30170810

ABSTRACT

The NF-κB pathway plays a crucial role in supporting tumor initiation, progression, and radioresistance of tumor cells. However, the role of the NF-κB pathway in radiation-induced anti-tumor host immunity remains unclear. Here we demonstrated that inhibiting the canonical NF-κB pathway dampened the therapeutic effect of ionizing radiation (IR), whereas non-canonical NF-κB deficiency promoted IR-induced anti-tumor immunity. Mechanistic studies revealed that non-canonical NF-κB signaling in dendritic cells (DCs) was activated by the STING sensor-dependent DNA-sensing pathway. By suppressing recruitment of the transcription factor RelA onto the Ifnb promoter, activation of the non-canonical NF-κB pathway resulted in decreased type I IFN expression. Administration of a specific inhibitor of the non-canonical NF-κB pathway enhanced the anti-tumor effect of IR in murine models. These findings reveal the potentially interactive roles for canonical and non-canonical NF-κB pathways in IR-induced STING-IFN production and provide an alternative strategy to improve cancer radiotherapy.


Subject(s)
Colonic Neoplasms/radiotherapy , Dendritic Cells/immunology , Melanoma/radiotherapy , NF-kappa B/metabolism , Neoplasms, Experimental/radiotherapy , Radiotherapy/methods , Receptors, Pattern Recognition/metabolism , Animals , Colonic Neoplasms/immunology , DNA/immunology , Disease Models, Animal , Humans , Immunity, Cellular , Melanoma/immunology , Melanoma, Experimental , Membrane Proteins/metabolism , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Radiation Tolerance , Radiation, Ionizing , Signal Transduction , Transcription Factor RelA/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL