Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 554
Filter
Add more filters

Publication year range
1.
Antimicrob Agents Chemother ; 68(1): e0069523, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38084954

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CREs) are described by the Centers for Disease Control as an urgent threat, and there is a critical need for new therapeutic agents able to treat infections caused by these pathogens. Herein, we describe the microbiological profile, the mechanism f action, and the in vitro safety as well as the pharmacokinetic (PK)/PD profile of SMT-738, a small molecule belonging to a new chemical class. SMT-738 is active against Enterobacterales [including multi-drug-resistant Escherichia coli with 90% of isolates having a minimum inhibitory concentration (MIC90) of 1 µg/mL and Klebsiella pneumoniae 2 µg/mL] and inactive against a broad panel of Gram-negative and Gram-positive pathogens. SMT-738 displays rapid bactericidal activity (2-4 h) and has a low propensity for resistance development (less than ~10-9). Characterization of resistant mutants following exposure to SMT-738 identified mutations within the lipoprotein transport complex (LolCDE), a clinically unexploited and essential bacterial molecular target in Gram-negative bacteria. SMT-738 has a promising in vitro toxicology profile. Furthermore, PK studies demonstrated that when dosed intravenously, SMT-738 maintained exposure levels across infection sites (bloodstream/urinary tract/lung). Proof-of-concept studies across multiple murine in vivo infection models (bloodstream/pneumonia/urinary tract) demonstrated that SMT-738 significantly reduced the bacterial burden compared to baseline and vehicle control. SMT-738 represents a promising novel drug candidate being developed to address clinically challenging serious life-threatening infections caused by highly resistant Enterobacteriaceae including CRE.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae Infections , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae/genetics , Gram-Negative Bacteria , Klebsiella pneumoniae/genetics , Lipoproteins , Microbial Sensitivity Tests , Enterobacteriaceae Infections/drug therapy
2.
BMC Microbiol ; 24(1): 216, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890647

ABSTRACT

OBJECTIVE: This study aims to conduct an in-depth genomic analysis of a carbapenem-resistant Proteus mirabilis strain to uncover the distribution and mechanisms of its resistance genes. METHODS: The research primarily utilized whole-genome sequencing to analyze the genome of the Proteus mirabilis strain. Additionally, antibiotic susceptibility tests were conducted to evaluate the strain's sensitivity to various antibiotics, and related case information was collected to analyze the clinical distribution characteristics of the resistant strain. RESULTS: Study on bacterial strain WF3430 from a tetanus and pneumonia patient reveals resistance to multiple antibiotics due to extensive use. Whole-genome sequencing exposes a 4,045,480 bp chromosome carrying 29 antibiotic resistance genes. Two multidrug-resistant (MDR) gene regions, resembling Tn6577 and Tn6589, were identified (MDR Region 1: 64.83 Kb, MDR Region 2: 85.64 Kbp). These regions, consist of integrative and conjugative elements (ICE) structures, highlight the intricate multidrug resistance in clinical settings. CONCLUSION: This study found that a CR-PMI strain exhibits a unique mechanism for acquiring antimicrobial resistance genes, such as blaNDM-1, located on the chromosome instead of plasmids. According to the results, there is increasing complexity in the mechanisms of horizontal transmission of resistance, necessitating a comprehensive understanding and implementation of targeted control measures in both hospital and community settings.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Proteus Infections , Proteus mirabilis , Whole Genome Sequencing , beta-Lactamases , Proteus mirabilis/genetics , Proteus mirabilis/drug effects , Proteus mirabilis/enzymology , Proteus mirabilis/isolation & purification , beta-Lactamases/genetics , Humans , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Proteus Infections/microbiology , Bacterial Proteins/genetics , Chromosomes, Bacterial/genetics , Genome, Bacterial/genetics , Carbapenems/pharmacology
3.
Microb Pathog ; : 106728, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906492

ABSTRACT

OBJECTIVES: Severe infection caused by Carbapenem-resistant Enterobacteriaceae (CRE) is a challenge for clinical anti-infective therapy, and clinical intervention to improve control of CRE is of great significance. The study aims to determine the molecular epidemiology and risk factors of CRE infections to provide evidence for effective control of nosocomial infection in patients with CRE. METHODS: A total of 192 non-repetitive CRE strains were collected from January 2020 to December 2021 in Northwest China. To explore the risk factors of CRE infection by univariate and Logistic regression analysis, 1:1 case-control study was used to select Carbapenem sensitive Enterobacteriaceae (CSE) infection patients at the same period as the control group. RESULTS: Among the 192 CRE strains, the most common isolates included Klebsiella pneumoniae (Kpn) and Enterobacter cloacae (Ecl). The CRE strain showed the lowest rate of resistance to amikacin at 58.3. 185 CRE strains carried carbapenemase resistance genes of concern in this study. KPC-2 (n=94) was the most common carbapenemase, followed by NDM-1 (n=69), NDM-5 (n=22) and IMP-4 (n=5). OXA-48 and VIM were not detected. And KPC-2 was the most common in all strains. Logistic regression analysis implicated days of invasive ventilator-assisted ventilation (OR=1.452; 95 % CI 1.250~1.686), antibiotic combination therapy (OR=2.149; 95 % CI 1.128~4.094), hypoalbuminemia (OR=6.137; 95 % CI 3.161~11.913), history of immunosuppressant use (OR=25.815; 95 % CI 6.821~97.706) and days of hospitalization (OR=1.020; 95 % CI 1.006~1.035) as independent risk factors associated with CRE infection. Age (OR=0.963; 95% CI 0.943~0.984) and history of hormone use (OR=0.119; 95 % CI 0.028~0.504) were protective factors for CRE infection (P < 0.05). CONCLUSIONS: The resistance of commonly used antibiotics in clinical is severe, and CRE strains mainly carry KPC-2 and NDM-1. Multiple risk factors for CRE infection and their control can effectively prevent the spread of CRE.

4.
Int Microbiol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517580

ABSTRACT

Phage therapy has recently been revitalized in the West with many successful applications against multi-drug-resistant bacterial infections. However, the lack of geographically diverse bacteriophage (phage) genomes has constrained our understanding of phage diversity and its genetics underpinning host specificity, lytic capability, and phage-bacteria co-evolution. This study aims to locally isolate virulent phages against uropathogenic Escherichia coli (E. coli) and study its phenotypic and genomic features. Three obligately virulent Escherichia phages (øEc_Makalu_001, øEc_Makalu_002, and øEc_Makalu_003) that could infect uropathogenic E. coli were isolated and characterized. All three phages belonged to Krischvirus genus. One-step growth curve showed that the latent period of the phages ranged from 15 to 20 min, the outbreak period ~ 50 min, and the burst size ranged between 74 and 127 PFU/bacterium. Moreover, the phages could tolerate a pH range of 6 to 9 and a temperature range of 25-37 °C for up to 180 min without significant loss of phage viability. All phages showed a broad host spectrum and could lyse up to 30% of the 35 tested E. coli isolates. Genomes of all phages were approximately ~ 163 kb with a gene density of 1.73 gene/kbp and an average gene length of ~ 951 bp. The coding density in all phages was approximately 95%. Putative lysin, holin, endolysin, and spanin genes were found in the genomes of all three phages. All phages were strictly virulent with functional lysis modules and lacked any known virulence or toxin genes and antimicrobial resistance genes. Pre-clinical experimental and genomic analysis suggest these phages may be suitable candidates for therapeutic applications.

5.
Infection ; 52(1): 19-28, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37878197

ABSTRACT

OBJECTIVE: Carbapenem-resistant Enterobacteriaceae (CRE) pose a significant threat to human health and have emerged as a major public health concern. We aimed to compare the efficacy and the safety of ceftazidime-avibactam (CAZ-AVI) and polymyxin in the treatment of CRE infections. METHODS: A systematic review and meta-analysis was performed by searching the databases of EMBASE, PubMed, and the Cochrane Library. Published studies on the use of CAZ-AVI and polymyxin in the treatment of CRE infections were collected from the inception of the database until March 2023. Two investigators independently screened the literature according to the inclusion and exclusion criteria, evaluated the methodological quality of the included studies and extracted the data. The meta-analysis was performed using RevMan 5.4 software. RESULTS: Ten articles with 833 patients were included (CAZ-AVI 325 patients vs Polymyxin 508 patients). Compared with the patients who received polymyxin-based therapy, the patients who received CAZ-AVI therapy had significantly lower 30-days mortality (RR = 0.49; 95% CI 0.01-2.34; I2 = 22%; P < 0.00001), higher clinical cure rate (RR = 2.70; 95% CI 1.67-4.38; I2 = 40%; P < 0.00001), and higher microbial clearance rate (RR = 2.70; 95% CI 2.09-3.49; I2 = 0%; P < 0.00001). However, there was no statistically difference in the incidence of acute kidney injury between patients who received CAZ-AVI and polymyxin therapy (RR = 1.38; 95% CI 0.69-2.77; I2 = 22%; P = 0.36). In addition, among patients with CRE bloodstream infection, those who received CAZ-AVI therapy had significantly lower mortality than those who received polymyxin therapy (RR = 0.44; 95% CI 0.27-0.69, I2 = 26%, P < 0.00004). CONCLUSIONS: Compared to polymyxin, CAZ-AVI demonstrated superior clinical efficacy in the treatment of CRE infections, suggesting that CAZ-AVI may be a superior option for CRE infections.


Subject(s)
Azabicyclo Compounds , Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Humans , Anti-Bacterial Agents/therapeutic use , Polymyxins/therapeutic use , Enterobacteriaceae Infections/drug therapy , Microbial Sensitivity Tests , Ceftazidime/therapeutic use , Drug Combinations
6.
Anal Bioanal Chem ; 416(10): 2465-2478, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38383664

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) is a major pathogen that poses a serious threat to human health. Unfortunately, currently, there are no effective measures to curb its rapid development. To address this, an in-depth study on the surface-enhanced Raman spectroscopy (SERS) of 22 strains of 7 categories of CRE using a gold silver composite SERS substrate was conducted. The residual networks with an attention mechanism to classify the SERS spectrum from three perspectives (pathogenic bacteria type, enzyme-producing subtype, and sensitive antibiotic type) were performed. The results show that the SERS spectrum measured by the composite SERS substrate was repeatable and consistent. The SERS spectrum of CRE showed varying degrees of species differences, and the strain difference in the SERS spectrum of CRE was closely related to the type of enzyme-producing subtype. The introduced attention mechanism improved the classification accuracy of the residual network (ResNet) model. The accuracy of CRE classification for different strains and enzyme-producing subtypes reached 94.0% and 96.13%, respectively. The accuracy of CRE classification by pathogen sensitive antibiotic combination reached 93.9%. This study is significant for guiding antibiotic use in CRE infection, as the sensitive antibiotic used in treatment can be predicted directly by measuring CRE spectra. Our study demonstrates the potential of combining SERS with deep learning algorithms to identify CRE without culture labels and classify its sensitive antibiotics. This approach provides a new idea for rapid and accurate clinical detection of CRE and has important significance for alleviating the rapid development of resistance to CRE.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Deep Learning , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Silver/chemistry , Spectrum Analysis, Raman/methods
7.
Acta Microbiol Immunol Hung ; 71(1): 61-68, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38381147

ABSTRACT

Carbapenem resistant Enterobacteriaceae (CRE) are major human pathogens because, these cause high number of difficult-to-treat infections. Allogeneic hematopoietic stem cell transplant (AHSCT) recipients are highly exposed to these type of bacteria. The aim of our study was to investigate prevalence of CRE colonization in AHSCT patients and to determine genes encoding carbapenem resistance. A retrospective study conducted between January 2015 and December 2019, involved 55 patients colonized with CRE strains. We determined the rate of antibiotic resistance according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the carbapenem resistance genes by PCR assays for genes encoding most frequent ß-lactamases namely, blaGES, blaKPC, blaIMI, blaNDM, blaVIM, blaIMP and blaOXA-48. Eighty-one episodes of CRE colonization were recorded in 55 patients, mainly suffering from acute leukaemia (30%) and aplastic anemia (26%). History of hospitalization was noted in 80 episodes. Prior antibiotic treatment, severe neutropenia and corticosteroid therapy were respectively found in 94%, 76% and 58% of cases. Among the 55 patients, six patients (11%) developed a CRE infection. The CRE responsible for colonization were carbapenemase producers in 90% of cases. They belonged mostly to Klebsiella pneumoniae (61/81) and Escherichia coli species (10/81). Antibiotic resistance rates were 100% for ertapenem, 53% for imipenem, 42% for amikacin, 88% for ciprofloxacin and 27% for fosfomycin. Molecular study showed that blaOXA-48 gene was the most frequent (60.5%), followed by blaNDM (58%). Thirty-five (43%) strains were co-producers of carbapenemases. In our study, we report a high rate of CRE intestinal colonization in AHSCT recipients of our center.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Hematopoietic Stem Cell Transplantation , Humans , Carbapenem-Resistant Enterobacteriaceae/genetics , Retrospective Studies , Microbial Sensitivity Tests , Bacterial Proteins/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae/genetics , Carbapenems , Hematopoietic Stem Cell Transplantation/adverse effects , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology
8.
New Microbiol ; 46(4): 340-347, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38252044

ABSTRACT

Gram-negative bacteria are increasingly recognized as the sauce of severe infections. In recent years, epidemiological data has indicated that the drug resistance rate of Gram-negative bacteria has significantly increased. We analyzed the epidemiological surveillance data of gram-negative bacteria in Shaoxing City in 2021 by retrospectively collecting drug susceptibility data of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Burkholderia cepacian from thirteen tertiary hospitals. A total of 24,142 strains were collected from thirteen hospitals. The isolation rates of E. coli, K. pneumoniae, P. aeruginosa, A. baumannii, P. mirabilis, E. cloacae, and B. cepacian were 29.25%, 18.83%, 11.03%, 8.43%, 3.80%, 3.12%, and 0.75%, respectively. Among them, 2.86% were carbapenem-resistant E. coli, 12.98% were CRKP, 31.27% were CRPA, and 34.77% were CRAB. Carbapenem-resistant Enterobacterales were more sensitive to ceftazidime-avibactam and polymyxin. The drug resistance rates of P. aeruginosa and A. baumannii to polymyxin were 0 and 1.3%, but the resistance rates to ceftazidime-avibactam were 10.5% and 26.0%, respectively. Based on results from epidemiological data, CRKP had a high isolation rate and non-fermenting bacteria had a high resistance rate to ceftazidime-avibactam. All hospitals should strengthen monitoring and enact continuous intervention to reduce the generation and spread of drug-resistant bacteria.


Subject(s)
Escherichia coli , Gram-Negative Bacteria , Humans , Retrospective Studies , Tertiary Care Centers , Carbapenems , Polymyxins
9.
Int J Mol Sci ; 25(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39273526

ABSTRACT

Antimicrobial resistance is increasingly concerning, causing millions of deaths and a high cost burden. Given that carbapenemase-producing Enterobacterales are particularly concerning due to their ability to develop structural modifications and produce antibiotic-degrading enzymes, leading to high resistance levels, we sought to summarize the available data on the efficacy and safety regarding the combination of meropenem-vaborbactam (MV) versus the best available therapy (BAT). Articles related to our objective were searched in the PubMed and Scopus databases inception to July 2024. To assess the quality of the studies, we used the Cochrane risk-of-bias tool, RoB2. The outcomes were pooled as a risk ratio (RR) and a 95% confidence interval (95%CI). A total of four published studies were involved: one retrospective cohort study and three phase 3 trials, including 432 patients treated with MV and 426 patients treated with BAT (mono/combination therapy with polymyxins, carbapenems, aminoglycosides, colistin, and tigecycline; or ceftazidime-avibactam; or piperacillin-tazobactam). No significant difference in the clinical response rate was observed between MV and the comparators at the TOC (RR = 1.29, 95%CI [0.92, 1.80], p = 0.14) and EOT (RR = 1.66, 95%CI [0.58, 4.76], p = 0.34) visits. MV was associated with a similar microbiological response as the comparators at TOC (RR = 1.63, 95%CI [0.85, 3.11], p = 0.14) and EOT assessment (RR = 1.16, 95%CI [0.88, 1.54], p = 0.14). In the pooled analysis of the four studies, 28-day all-cause mortality was lower for MV than the control groups (RR = 0.47, 95%CI [0.24, 0.92], p = 0.03). MV was associated with a similar risk of adverse events (AEs) as comparators (RR = 0.79, 95%CI [0.53, 1.17], p = 0.23). Additionally, MV was associated with fewer renal-related AEs than the comparators (RR = 0.32, 95%CI [0.15, 0.66], p = 0.002). MV was associated with a similar risk of treatment discontinuation due to AEs (RR = 0.76, 95%CI [0.38, 1.49], p = 0.42) or drug-related AEs (RR = 0.56, 95%CI [0.28, 1.10], p = 0.09) as the comparators. In conclusion, MV presents a promising therapeutic option for treating CRE infections, demonstrating similar clinical and microbiological responses as other comparators, with potential advantages in mortality outcomes and renal-related AEs.


Subject(s)
Anti-Bacterial Agents , Boronic Acids , Carbapenem-Resistant Enterobacteriaceae , Drug Combinations , Enterobacteriaceae Infections , Meropenem , Humans , Carbapenem-Resistant Enterobacteriaceae/drug effects , Meropenem/therapeutic use , Meropenem/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/adverse effects , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Boronic Acids/therapeutic use , Treatment Outcome , Carbapenems/therapeutic use , Carbapenems/pharmacology , Heterocyclic Compounds, 1-Ring
10.
Indian J Crit Care Med ; 28(5): 513-514, 2024 May.
Article in English | MEDLINE | ID: mdl-38738202

ABSTRACT

How to cite this article: Salotagi S, Kannan A, Jindal A. Eternal Hunt: Unravelling the Challenge of CRE, the Quest for Perfection Continues! Indian J Crit Care Med 2024;28(5):513-514.

11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 737-747, 2024 May 28.
Article in English, Zh | MEDLINE | ID: mdl-39174888

ABSTRACT

OBJECTIVES: The emergence of polymyxin-resistant Klebsiella pneumoniae (KPN) in clinical settings necessitates an analysis of its antibiotic resistance characteristics, epidemiological features, and risk factors for its development. This study aims to provide insights for the prevention and control of polymyxin-resistant KPN infections. METHODS: Thirty clinical isolates of polymyxin-resistant KPN were collected from the Third Xiangya Hospital of Central South University. Their antibiotic resistance profiles were analyzed. The presence of carbapenemase KPC, OXA-48, VIM, IMP, and NDM was detected using colloidal gold immunochromatography. Hypervirulent KPN was initially screened using the string test. Biofilm formation capacity was assessed using crystal violet staining. Combination drug susceptibility tests (polymyxin B with meropenem, tigecycline, cefoperazone/sulbactam) were conducted using the checkerboard method. Polymyxin-related resistance genes were detected by PCR. Multi-locus sequence typing (MLST) was performed for genotyping and phylogenetic tree construction. The study also involved collecting data from carbapenem-resistant (CR)-KPN polymyxin-resistant strains (23 strains, experimental group) and CR-KPN polymyxin-sensitive strains (57 strains, control group) to analyze potential risk factors for polymyxin-resistant KPN infection through univariate analysis and multivariate Logistic regression. The induction of resistance by continuous exposure to polymyxin B and colistin E was also tested. RESULTS: Among the 30 polymyxin-resistant KPN isolates, 28 were CR-KPN, all producing KPC enzyme. Four isolates were positive in the string test. Most isolates showed strong biofilm formation capabilities. Combination therapy showed additive or synergistic effects. All isolates carried the pmrA and phoP genes, while no mcr-1 or mcr-2 genes were detected. MLST results indicated that ST11 was the predominant type. The phylogenetic tree suggested that polymyxin-resistant KPN had not caused a hospital outbreak in the institution. The use of two or more different classes of antibiotics and the use of polymyxin were identified as independent risk factors for the development of polymyxin-resistant strains. Continuous use of polymyxin induced drug resistance. CONCLUSIONS: Polymyxin-resistant KPN is resistant to nearly all commonly used antibiotics, making polymyxin-based combination therapy a viable option. No plasmid-mediated polymyxin-resistant KPN has been isolated in the hospital. Polymyxin can induce resistance in KPN, highlighting the need for rational antibiotic use in clinical settings to delay the emergence of resistance.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Polymyxins , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Anti-Bacterial Agents/pharmacology , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Polymyxins/pharmacology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Multilocus Sequence Typing , Drug Resistance, Multiple, Bacterial/genetics , Polymyxin B/pharmacology , Drug Resistance, Bacterial , Biofilms/drug effects , Risk Factors , Carbapenems/pharmacology
12.
Infection ; 51(4): 1161-1164, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36595211

ABSTRACT

Metallo-ß-lactamases (MBL) are a threat to public health, since they dramatically limit the use of ß-lactams. We report the isolation of a multidrug-resistant Hafnia paralvei strain from urine and a rectal swab of a female patient after allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome. Antimicrobial susceptibility testing yielded resistance to trimethoprim/sulfamethoxazole, colistin, fosfomycin and all ß-lactams, except cefiderocol. Whole genome sequencing revealed the presence of plasmid-encoded NDM-1 and VIM-1 carbapenemases. This finding highlights the importance of epidemiological surveillance and new therapeutic options for MBL.


Subject(s)
Anti-Bacterial Agents , Hematopoietic Stem Cell Transplantation , Humans , Female , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases/genetics , beta-Lactams , Microbial Sensitivity Tests
13.
BMC Infect Dis ; 23(1): 298, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147576

ABSTRACT

The epidemiological characteristics of New Delhi Metallo-ß-Lactamase-Producing (NDM) Enterobacteriaceae were analyzed to provide theoretical support for clarifying the distribution characteristics of carbapenem-resistant Enterobacteriaceae (CRE) in the hospital environment and early identification of susceptible patients. From January 2017 to December 2021,42 strains of NDM-producing Enterobacteriaceae were gathered from the Fourth Hospital of Hebei Medical University, primarily Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae. The micro broth dilution method combined with the Kirby-Bauer method was used to determine the minimal inhibitory concentrations (MICs) of antibiotics. The carbapenem phenotype was detected by the modified carbapenem inactivation method (mCIM) and EDTA carbapenem inactivation method (eCIM). Carbapenem genotypes were detected by colloidal gold immunochromatography and real-time fluorescence PCR. The results of antimicrobial susceptibility testing showed that all NDM-producing Enterobacteriaceae were multiple antibiotic resistant, but the sensitivity rate to amikacin was high. Invasive surgery prior to culture, the use of excessive amounts of different antibiotics, the use of glucocorticoids, and ICU hospitalization were clinical characteristics of NDM-producing Enterobacteriaceae infection. Molecular typing of NDM-producing Escherichia coli and Klebsiella pneumoniae was carried out by Multilocus Sequence Typing (MLST), and the phylogenetic trees were constructed. Eight sequence types (STs) and two NDM variants were detected in 11 strains of Klebsiella pneumoniae, primarily ST17, and NDM-1. A total of 8 STs and 4 NDM variants were detected in 16 strains of Escherichia coli, mainly ST410, ST167, and NDM-5. For high-risk patients who have CRE infection, CRE screening should be done as soon as feasible to adopt prompt and efficient intervention measures to prevent outbreaks in the hospital.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Humans , Enterobacteriaceae/genetics , Multilocus Sequence Typing , Phylogeny , Universities , beta-Lactamases/genetics , Enterobacteriaceae Infections/epidemiology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Carbapenems/pharmacology , Microbial Sensitivity Tests , Hospitals
14.
Ann Pharmacother ; 57(7): 803-812, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36268974

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are difficult to treat and can cause significant morbidity and mortality, however most data reflect carbapenemase-producing infections. OBJECTIVE: Our objective was to evaluate clinical outcomes of non-carbapenemase-producing CRE (nCP-CRE) compared with carbapenem-susceptible Enterobacterales (CSE) infections. METHODS: This was a retrospective, multicenter, observational study (January 1, 2018 to December 31, 2020). The primary outcome was clinical success at 30 days with secondary outcomes, including clinical success at 90 days, clinical success based on treatment for nCP-CRE, persistent bacteremia, intensive care unit (ICU) admission, length of stay, and rate of Clostridioides difficile or multidrug resistant infections. RESULTS: The final analysis included 211 patients: 142 (67%) with CSE and 69 (33%) with nCP-CRE infections. Prior carbapenem exposure was more common with nCP-CRE (15% vs 4%, P = 0.01). Clinical success at 30 days was similar between groups (77% vs 74%, P = 0.73). There were no differences in secondary outcomes. There was an overall low use of carbapenems (empiric 6%, definitive 7%). Most nCP-CRE infections were treated with a monotherapy carbapenem-sparing regimen (empiric 88%, definitive 90%). Limitations include the retrospective design and the high rate of urinary infections. CONCLUSION AND RELEVANCE: Our study found no difference in clinical outcomes between nCP-CRE and CSE infections. Application of this study with future studies would help in determining optimal regimens for these infections.


Subject(s)
Bacteremia , Enterobacteriaceae Infections , Humans , Carbapenems/pharmacology , Carbapenems/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Retrospective Studies , Enterobacteriaceae Infections/drug therapy , Bacteremia/drug therapy , beta-Lactamases
15.
Ann Clin Microbiol Antimicrob ; 22(1): 66, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537568

ABSTRACT

BACKGROUND: Rectal colonisation with carbapenem-resistant Gram-negative bacilli (CR-GNB) may cause CR-GNB infection in children with haematological malignancies (HMs) haematological. To date, information on its epidemiology is limited. This study aimed to assess the the risk factors for rectal colonisation with CR-GNB in children with HMs. METHODS: A case-control study in a tertiary children's hospital in Hangzhou City, was conducted between July 2019, and September 2021. Based on the hospitalisation date, children in the CR-GNB colonisation group and control groups were matched at a ratio of 1:2. Conditional logistic regression models were used to compute the adjusted odds ratios (aORs) and 95% confidence intervals (CIs) of the risk factors for CR-GNB rectal colonisation in children with HMs. RESULTS: A total of 85 non-duplicated CR-GNB isolates were collected from rectal swab samples of 69 children with HMs. The 30-day mortality rates were 5.8% in the CR-GNB colonisation group and 0% in the control group (P = 0.020).colonisation In the conditional logistic regression model, the aORs were 6.84 (95% CI 1.86-25.20) for acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL), 4.16 (95% CI 1.17-14.84) for prior concomitant infections within the last 1 month, 2.33 (95% CI 1.16-4.69) for prior carbapenems usage within the last 1 month and 7.46 (95% CI 1.81-30.67) for prior hematopoietic stem-cell transplantation (HSCT). CONCLUSION: AML/ALL, prior concomitant infections within the last 1 month, prior carbapenems usage within the last 1 month, and prior HSCT are associated with an increased risk of rectal colonisation with CR-GNB in children with HMs.


Subject(s)
Cross Infection , Gram-Negative Bacterial Infections , Leukemia, Myeloid, Acute , Humans , Child , Carbapenems/pharmacology , Carbapenems/therapeutic use , Case-Control Studies , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/epidemiology , Cross Infection/drug therapy , Gram-Negative Bacteria , Tertiary Care Centers , Risk Factors , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/drug therapy , Anti-Bacterial Agents/therapeutic use
16.
Ann Clin Microbiol Antimicrob ; 22(1): 41, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202758

ABSTRACT

PURPOSE: Bloodstream infection (BSI) caused by Carbapenem-Resistant Enterobacteriaceae (CRE) are associated with poor outcomes in hematological patients. The aim of this study was to identify risk factors for mortality and evaluate the value of epidemiological feature of carbapenemases in guiding antimicrobial treatment options. METHODS: Hematological patients with monomicrobial CRE BSI between January 2012 and April 2021 were included. The primary outcome was all-cause mortality 30 days after BSI onset. RESULTS: A total of 94 patients were documented in the study period. Escherichia coli was the most common Enterobacteriaceae, followed by Klebsiella pneumoniae. 66 CRE strains were tested for carbapenemase genes, and 81.8% (54/66) were positive, including NDM (36/54), KPC (16/54), IMP (1/54). Besides, one E. coli isolate was found to express both NDM and OXA-48-like genes. Overall, 28 patients received an antimicrobial treatment containing ceftazidime-avibactam (CAZ-AVI), of which 21 cases were combined with aztreonam. The remaining 66 patients were treated with other active antibiotics (OAAs). The 30-day mortality rate was 28.7% (27/94) for all patients, and was only 7.1% ((2/28) for patients treated with CAZ-AVI. In multivariate analysis, the presence of septic shock at BSI onset (OR 10.526, 95% CI 1.376-76.923) and pulmonary infection (OR 6.289, 95% CI 1.351-29.412) were independently risk factors for 30-day mortality. Comparing different antimicrobial regimens, CAZ-AVI showed a significant survive benefit than OAAs (OR 0.068, 95% CI 0.007-0.651). CONCLUSION: CAZ-AVI-containing regimen is superior to OAAs for CRE BSI. As the predominance of blaNDM in our center, we recommend the combination with aztreonam when choose CAZ-AVI.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Sepsis , Humans , Aztreonam , Escherichia coli/genetics , Ceftazidime , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae/genetics , Enterobacteriaceae Infections/drug therapy , Drug Combinations , Sepsis/drug therapy , Risk Factors , Microbial Sensitivity Tests
17.
Ann Clin Microbiol Antimicrob ; 22(1): 10, 2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36710337

ABSTRACT

BACKGROUND: Carbapenem resistant Enterobacteriaceae (CRE) colonization is a risk factor for CRE infection. CRE infection results in an increase in mortality in patients with cirrhosis. However, minimal data regarding the prevalence and the risk factors of CRE colonization in patients with liver disease yet without liver transplantation are available. The present study aimed to investigate the prevalence, risk factors and molecular epidemiology characteristics of CRE fecal carriage among patients with liver disease. METHODS: Stool specimens from 574 adult inpatients with liver disease were collected from December 2020 to April 2021. CRE were screened using selective chromogenic agar medium and identified by the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Antimicrobial susceptibility was determined using the broth microdilution method. Carbapenemase genes were characterized by polymerase chain reaction (PCR) and DNA sequencing. Multilocus sequence typing (MLST) was performed for Carbapenem Resistant Klebsiella pneumoniae (CR-KPN) isolates and Carbapenem Resistant Escherichia Coli (CR-ECO) isolates. RESULTS: The total number of stool specimens (732) were collected from 574 patients with liver disease. 43 non-duplicated CRE strains were isolated from 39 patients with a carriage rate of 6.79% (39/574). The carriage rate was 15.60% (17/109) in patients with acute-on-chronic liver failure (ACLF). Multivariate analysis indicated that ACLF (P = 0.018), the history of pulmonary infection within past 3 months (P = 0.001) and the use of third generation cephalosporin/ß-lactamases inhibitor within past 3 months (P = 0.000) were independent risk factors of CRE colonization in patients with liver disease. Klebsiella Pnuemoniae (KPN) (51.28%) and Escherichia coli (ECO) (30.77%) were main strains in these patients. All CRE strains showed high resistance to most antimicrobials except for polymyxin B and tigecycline. Most (83.72%, 36/43) of the CRE carried carbapenemase genes. blaKPC-2 was the major carbapenemase gene. The molecular epidemiology of KPN were dominated by ST11, while the STs of ECO were scattered. CONCLUSIONS: The present study revealed that CRE fecal carriage rates were higher in patients with ACLF than in patients without liver failure. ACLF, the history of pulmonary infection within past 3 months and the use of third generation cephalosporin/ß-lactamases inhibitor within past 3 months were independent risk factors of CRE colonization in patients with liver disease. Regular CRE screening for hospitalized patients with liver disease should be conducted to limit the spread of CRE strain.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Liver Diseases , Adult , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , Carbapenems/pharmacology , Molecular Epidemiology , Multilocus Sequence Typing , beta-Lactamases/genetics , Escherichia coli , Klebsiella pneumoniae , Risk Factors , Cephalosporins
18.
J Nanobiotechnology ; 21(1): 409, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932843

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacteriaceae (CRE) present substantial challenges to clinical intervention, necessitating the formulation of novel antimicrobial strategies to counteract them. Nanomaterials offer a distinctive avenue for eradicating bacteria by employing mechanisms divergent from traditional antibiotic resistance pathways and exhibiting reduced susceptibility to drug resistance development. Non-caloric artificial sweeteners, commonly utilized in the food sector, such as saccharin, sucralose, acesulfame, and aspartame, possess structures amenable to nanomaterial formation. In this investigation, we synthesized gold nanoparticles decorated with non-caloric artificial sweeteners and evaluated their antimicrobial efficacy against clinical CRE strains. RESULTS: Among these, gold nanoparticles decorated with aspartame (ASP_Au NPs) exhibited the most potent antimicrobial effect, displaying minimum inhibitory concentrations ranging from 4 to 16 µg/mL. As a result, ASP_Au NPs were chosen for further experimentation. Elucidation of the antimicrobial mechanism unveiled that ASP_Au NPs substantially elevated bacterial reactive oxygen species (ROS) levels, which dissipated upon ROS scavenger treatment, indicating ROS accumulation within bacteria as the fundamental antimicrobial modality. Furthermore, findings from membrane permeability assessments suggested that ASP_Au NPs may represent a secondary antimicrobial modality via enhancing inner membrane permeability. In addition, experiments involving crystal violet and confocal live/dead staining demonstrated effective suppression of bacterial biofilm formation by ASP_Au NPs. Moreover, ASP_Au NPs demonstrated notable efficacy in the treatment of Galleria mellonella bacterial infection and acute abdominal infection in mice, concurrently mitigating the organism's inflammatory response. Crucially, evaluation of in vivo safety and biocompatibility established that ASP_Au NPs exhibited negligible toxicity at bactericidal concentrations. CONCLUSIONS: Our results demonstrated that ASP_Au NPs exhibit promise as innovative antimicrobial agents against clinical CRE.


Subject(s)
Anti-Infective Agents , Carbapenem-Resistant Enterobacteriaceae , Metal Nanoparticles , Animals , Mice , Gold/chemistry , Metal Nanoparticles/chemistry , Sweetening Agents , Aspartame , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Bacteria , Microbial Sensitivity Tests
19.
Proc Natl Acad Sci U S A ; 117(47): 29839-29850, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33168749

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are multidrug-resistant pathogens for which new treatments are desperately needed. Carbapenemases and other types of antibiotic resistance genes are carried almost exclusively on large, low-copy-number plasmids (pCRE). Accordingly, small molecules that efficiently evict pCRE plasmids should restore much-needed treatment options. We therefore designed a high-throughput screen to identify such compounds. A synthetic plasmid was constructed containing the plasmid replication machinery from a representative Escherichia coli CRE isolate as well as a fluorescent reporter gene to easily monitor plasmid maintenance. The synthetic plasmid was then introduced into an E. coli K12 tolC host. We used this screening strain to test a library of over 12,000 known bioactive agents for molecules that selectively reduce plasmid levels relative to effects on bacterial growth. From 366 screen hits we further validated the antiplasmid activity of kasugamycin, an aminoglycoside; CGS 15943, a nucleoside analog; and Ro 90-7501, a bibenzimidazole. All three compounds exhibited significant antiplasmid activity including up to complete suppression of plasmid replication and/or plasmid eviction in multiple orthogonal readouts and potentiated activity of the carbapenem, meropenem, against a strain carrying the large, pCRE plasmid from which we constructed the synthetic screening plasmid. Additionally, we found kasugamycin and CGS 15943 blocked plasmid replication, respectively, by inhibiting expression or function of the plasmid replication initiation protein, RepE. In summary, we validated our approach to identify compounds that alter plasmid maintenance, confer resensitization to antimicrobials, and have specific mechanisms of action.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , DNA Replication/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Enterobacteriaceae Infections/drug therapy , High-Throughput Screening Assays/methods , Amines/pharmacology , Amines/therapeutic use , Aminoglycosides/pharmacology , Aminoglycosides/therapeutic use , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Carbapenem-Resistant Enterobacteriaceae/genetics , Drug Resistance, Multiple, Bacterial/genetics , Drug Synergism , Drug Therapy, Combination , Enterobacteriaceae Infections/microbiology , Escherichia coli/genetics , Meropenem/pharmacology , Meropenem/therapeutic use , Microbial Sensitivity Tests , Mutagenesis, Site-Directed , Plasmids/genetics , Quinazolines/pharmacology , Quinazolines/therapeutic use , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Repressor Proteins/metabolism , Triazoles/pharmacology , Triazoles/therapeutic use , beta-Lactamases/genetics
20.
Acta Microbiol Immunol Hung ; 70(2): 142-146, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37204917

ABSTRACT

Many studies report an increase in antimicrobial resistance of Gram - negative bacteria during the COVID-19 pandemic. Our aim was to evaluate the epidemiological relationship between carbapenem-resistant (CR) Enterobacteriaceae isolates from patients in COVID-19 wards and to investigate the main mechanisms of carbapenem resistance in these isolates during the period April 2020-July 2021. A total of 45 isolates were studied: Klebsiella pneumoniae (n = 37), Klebsiella oxytoca (n = 2), Enterobacter cloacae complex (n = 4) and Escherichia coli (n = 2). Multiplex PCR was used for detection of genes encoding carbapenemases from different classes (blaKPC, blaIMP, blaVIM, blaNDM, blaOXA-48). For epidemiological typing and analysis, ERIC PCR was performed. Two clinical isolates of E. cloacae, previously identified as representatives of two dominant hospital clones from the period 2014-2017, were included in the study for comparison. In the CR K. pneumoniae group, 23 (62.2%) carried blaKPC, 13 (35.1%) blaNDM, 10 (27.0%) blaVIM, and 9 (24.3%) were positive for both blaKPC and blaVIM. The blaKPC was identified also in the two isolates of K. oxytoca and blaVIM in all E. cloacae complex isolates. The two CR isolates of E. coli possessed blaKPC and blaOXA-48 genes. Epidemiological typing identified 18 ERIC profiles among K. pneumoniae, some presented as clusters of identical and/or closely related isolates. The carbapenem resistance in the studied collection of isolates is mediated mainly by blaKPC. During the COVID-19 pandemic intrahospital dissemination of CR K. pneumoniae, producing carbapenemases of different molecular classes, as well as continuing circulation of dominant hospital clones of multidrug-resistant E. cloacae complex was documented.


Subject(s)
COVID-19 , Carbapenem-Resistant Enterobacteriaceae , Humans , Carbapenem-Resistant Enterobacteriaceae/genetics , Molecular Epidemiology , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Bulgaria , Pandemics , Microbial Sensitivity Tests , COVID-19/epidemiology , Klebsiella pneumoniae/genetics , Hospitals, University , Gram-Negative Bacteria/genetics , Carbapenems/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL