Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
Add more filters

Publication year range
1.
New Phytol ; 242(3): 960-974, 2024 May.
Article in English | MEDLINE | ID: mdl-38402527

ABSTRACT

The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed 13C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The 13C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The 13C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). 13C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, 13C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.


Subject(s)
Pinus , Resilience, Psychological , Ecosystem , Rhizosphere , Drought Resistance , Soil , Forests , Carbon/metabolism , Trees/physiology , Droughts , Fatty Acids/metabolism , Phospholipids/metabolism , Pinus/metabolism , Soil Microbiology
2.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271585

ABSTRACT

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Subject(s)
Carbon , Rainforest , Carbon/metabolism , Ecosystem , Droughts , Water/metabolism , Trees/metabolism , Carbohydrates , Plant Leaves/metabolism
3.
Glob Chang Biol ; 30(7): e17420, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39044411

ABSTRACT

Tropical ecosystems face escalating global change. These shifts can disrupt tropical forests' carbon (C) balance and impact root dynamics. Since roots perform essential functions such as resource acquisition and tissue protection, root responses can inform about the strategies and vulnerabilities of ecosystems facing present and future global changes. However, root trait dynamics are poorly understood, especially in tropical ecosystems. We analyzed existing research on tropical root responses to key global change drivers: warming, drought, flooding, cyclones, nitrogen (N) deposition, elevated (e) CO2, and fires. Based on tree species- and community-level literature, we obtained 266 root trait observations from 93 studies across 24 tropical countries. We found differences in the proportion of root responsiveness to global change among different global change drivers but not among root categories. In particular, we observed that tropical root systems responded to warming and eCO2 by increasing root biomass in species-scale studies. Drought increased the root: shoot ratio with no change in root biomass, indicating a decline in aboveground biomass. Despite N deposition being the most studied global change driver, it had some of the most variable effects on root characteristics, with few predictable responses. Episodic disturbances such as cyclones, fires, and flooding consistently resulted in a change in root trait expressions, with cyclones and fires increasing root production, potentially due to shifts in plant community and nutrient inputs, while flooding changed plant regulatory metabolisms due to low oxygen conditions. The data available to date clearly show that tropical forest root characteristics and dynamics are responding to global change, although in ways that are not always predictable. This synthesis indicates the need for replicated studies across root characteristics at species and community scales under different global change factors.


Subject(s)
Climate Change , Droughts , Plant Roots , Tropical Climate , Plant Roots/growth & development , Plant Roots/metabolism , Trees/growth & development , Biomass , Nitrogen/metabolism , Forests , Floods , Fires
4.
Glob Chang Biol ; 30(1): e17016, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921358

ABSTRACT

Carbon allocation has been fundamental for long-lived trees to survive cold stress at their upper elevation range limit. Although carbon allocation between non-structural carbohydrate (NSC) storage and structural growth is well-documented, it still remains unclear how ongoing climate warming influences these processes, particularly whether these two processes will shift in parallel or respond divergently to warming. Using a combination of an in situ downward-transplant warming experiment and an ex situ chamber warming treatment, we investigated how subalpine fir trees at their upper elevation limit coordinated carbon allocation priority among different sinks (e.g., NSC storage and structural growth) at whole-tree level in response to elevated temperature. We found that transplanted individuals from the upper elevation limit to lower elevations generally induced an increase in specific leaf area, but there was no detected evidence of warming effect on leaf-level saturated photosynthetic rates. Additionally, our results challenged the expectation that climate warming will accelerate structural carbon accumulation while maintaining NSC constant. Instead, individuals favored allocating available carbon to NSC storage over structural growth after 1 year of warming, despite the amplification in total biomass encouraged by both in situ and ex situ experimental warming. Unexpectedly, continued warming drove a regime shift in carbon allocation priority, which was manifested in the increase of NSC storage in synchrony to structural growth enhancement. These findings imply that climate warming would release trees at their cold edge from C-conservative allocation strategy of storage over structural growth. Thus, understanding the strategical regulation of the carbon allocation priority and the distinctive function of carbon sink components is of great implication for predicting tree fate in the future climate warming.


Subject(s)
Abies , Trees , Humans , Climate , Photosynthesis , Carbon
5.
Glob Chang Biol ; 30(5): e17287, 2024 May.
Article in English | MEDLINE | ID: mdl-38695768

ABSTRACT

While droughts predominantly induce immediate reductions in plant carbon uptake, they can also exert long-lasting effects on carbon fluxes through associated changes in leaf area, soil carbon, etc. Among other mechanisms, shifts in carbon allocation due to water stress can contribute to the legacy effects of drought on carbon fluxes. However, the magnitude and impact of these allocation shifts on carbon fluxes and pools remain poorly understood. Using data from a wet tropical flux tower site in French Guiana, we demonstrate that drought-induced carbon allocation shifts can be reliably inferred by assimilating Net Biosphere Exchange (NBE) and other observations within the CARbon DAta MOdel fraMework. This model-data fusion system allows inference of optimized carbon and water cycle parameters and states from multiple observational data streams. We then examined how these inferred shifts affected the duration and magnitude of drought's impact on NBE during and after the extreme event. Compared to a static allocation scheme analogous to those typically implemented in land surface models, dynamic allocation reduced average carbon uptake during drought recovery by a factor of 2.8. Additionally, the dynamic model extended the average recovery time by 5 months. The inferred allocation shifts influenced the post-drought period by altering foliage and fine root pools, which in turn modulated gross primary productivity and heterotrophic respiration for up to a decade. These changes can create a bust-boom cycle where carbon uptake is enhanced some years after a drought, compared to what would have occurred under drought-free conditions. Overall, allocation shifts accounted for 65% [45%-75%] of drought legacy effects in modeled NBE. In summary, drought-induced carbon allocation shifts can play a substantial role in the enduring influence of drought on cumulative land-atmosphere CO2 exchanges and should be accounted for in ecosystem models.


Subject(s)
Carbon Cycle , Droughts , Tropical Climate , French Guiana , Forests , Carbon/metabolism , Models, Theoretical
6.
Glob Chang Biol ; 30(2): e17172, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343030

ABSTRACT

Tree species differ in their carbon (C) allocation strategies during environmental change. Disentangling species-specific strategies and contribution to the C balance of mixed forests requires observations at the individual tree level. We measured a complete set of C pools and fluxes at the tree level in five tree species, conifers and broadleaves, co-existing in a mature evergreen mixed Mediterranean forest. Our study period included a drought year followed by an above-average wet year, offering an opportunity to test the effect of water availability on tree C allocation. We found that in comparison to the wet year, C uptake was lower in the dry year, C use was the same, and allocation to belowground sinks was higher. Among the five major C sinks, respiration was the largest (ca. 60%), while root exudation (ca. 10%) and reproduction (ca. 2%) were those that increased the most in the dry year. Most trees relied on stored starch for maintaining a stable soluble sugars balance, but no significant differences were detected in aboveground storage between dry and wet years. The detailed tree-level analysis of nonstructural carbohydrates and δ13 C dynamics suggest interspecific differences in C allocation among fluxes and tissues, specifically in response to the varying water availability. Overall, our findings shed light on mixed forest physiological responses to drought, an increasing phenomenon under the ongoing climate change.


Subject(s)
Carbon , Trees , Trees/physiology , Forests , Species Specificity , Water
7.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389667

ABSTRACT

Climate change is expected to pose a global threat to forest health by intensifying extreme events like drought and insect attacks. Carbon allocation is a fundamental process that determines the adaptive responses of long-lived late-maturing organisms like trees to such stresses. However, our mechanistic understanding of how trees coordinate and set allocation priorities among different sinks (e.g., growth and storage) under severe source limitation remains limited. Using flux measurements, isotopic tracing, targeted metabolomics, and transcriptomics, we investigated how limitation of source supply influences sink activity, particularly growth and carbon storage, and their relative regulation in Norway spruce (Picea abies) clones. During photosynthetic deprivation, absolute rates of respiration, growth, and allocation to storage all decline. When trees approach neutral carbon balance, i.e., daytime net carbon gain equals nighttime carbon loss, genes encoding major enzymes of metabolic pathways remain relatively unaffected. However, under negative carbon balance, photosynthesis and growth are down-regulated while sucrose and starch biosynthesis pathways are up-regulated, indicating that trees prioritize carbon allocation to storage over growth. Moreover, trees under negative carbon balance actively increase the turnover rate of starch, lipids, and amino acids, most likely to support respiration and mitigate stress. Our study provides molecular evidence that trees faced with severe photosynthetic limitation strategically regulate storage allocation and consumption at the expense of growth. Understanding such allocation strategies is crucial for predicting how trees may respond to extreme events involving steep declines in photosynthesis, like severe drought, or defoliation by heat waves, late frost, or insect attack.


Subject(s)
Carbon/metabolism , Picea/growth & development , Picea/metabolism , Stress, Physiological , Photosynthesis/physiology , Plant Physiological Phenomena , Plant Transpiration
8.
J Environ Manage ; 351: 119862, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142599

ABSTRACT

Continuous nitrogen (N) loading alters plant growth and subsequently has the potential to impact soil organic carbon (SOC) accumulation in salt marshes. However, the knowledge gap of photosynthesized carbon (C) allocation in plant-soil-microbial systems hampers the quantification of C fluxes and the clarification of the mechanisms controlling the C budget under N loading in salt marsh ecosystems. To address this, we conducted an N fertilization field observation combined with a 5 h 13C-pulse labeling experiment in a salt marsh dominated by Suaeda. salsa (S. salsa) in the Yellow River Delta (YRD), China. N fertilization increased net 13C assimilation of S. Salsa by 277.97%, which was primarily allocated to aboveground biomass and SOC. However, N fertilization had little effect on 13C allocation to belowground biomass. Correlation analysis showed that 13C incorporation in soil was significantly and linearly correlated with 13C incorporation in shoots rather than in roots both in a 0 N (0 g N m-2 yr-1) and +N (20 g N m-2 yr-1) group. The results suggested that SOC increase under N fertilization was mainly due to an increased C assimilation rate and more efficient downward transfer of photosynthesized C. In addition, N fertilization strongly improved the 13C amounts in the chloroform-labile SOC component by 295.26%. However, the absolute increment of newly fix 13C mainly existed in the form of residual SOC, which had more tendency for burial in the soil. Thus, N fertilization enhanced SOC accumulation although C loss increased via belowground respiration. These results have important implications for predicting the carbon budget under further human-induced N loading.


Subject(s)
Carbon , Nitrogen , Humans , Carbon/metabolism , Nitrogen/analysis , Wetlands , Ecosystem , Soil , Fertilization
9.
World J Microbiol Biotechnol ; 40(3): 82, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285311

ABSTRACT

Dunaliella salina is a favourable source of high lipid feedstock for biofuel and medicinal chemicals. Low biomass output from microalgae is a significant barrier to industrial-scale commercialisation. The current study aimed to determine how photosynthetic efficiency, carbon fixation, macromolecular synthesis, accumulation of neutral lipids, and antioxidative defence (ROS scavenging enzyme activities) of D. salina cells were affected by different light intensities (LI) (50, 100, 200, and 400 µmol m-2 s-1). The cells when exposed to strong light (400 µmol m-2 s-1) led to reduction in chlorophyll a but the carotenoid content increased by 19% in comparison to the control (LI 100). The amount of carbohydrate changed significantly under high light and in spite of stress inflicted on the cells by high irradiation, a considerable increase in activity of carbonic anhydrase and fixation rate of CO2 were recorded, thus, preserving the biomass content. The high light exposed biomass when subjected to nitrogen-deficient medium led to increase in lipid content (59.92% of the dry cell weight). However, neutral lipid made up 78.26% of the total lipid while other lipids like phospholipid and glycolipid content decreased, showing that the lipid was redistributed in these cells under nitrogen deprivation, making the organism more appropriate for biodiesel/jet fuel use. Although D. salina cells had a relatively longer generation time (3.5 d) than other microalgal cells, an economic analysis concluded that the amount of carotenoid they produced and the quality of their lipids made them more suited for commercialization.


Subject(s)
Biofuels , Microalgae , Chlorophyll A , Carbon , Carotenoids , Glycolipids , Nitrogen
10.
Ecol Lett ; 26(5): 816-826, 2023 May.
Article in English | MEDLINE | ID: mdl-36958943

ABSTRACT

Global greening, characterized by an increase in leaf area index (LAI), implies an increase in foliar carbon (C). Whether this increase in foliar C under climate change is due to higher photosynthesis or to higher allocation of C to leaves remains unknown. Here, we explored the trends in foliar C accumulation and allocation during leaf green-up from 2000 to 2017 using satellite-derived LAI and solar-induced chlorophyll fluorescence (SIF) across the Northern Hemisphere. The accumulation of foliar C accelerated in the early green-up period due to both increased photosynthesis and higher foliar C allocation driven by climate change. In the late stage of green-up, however, we detected decreasing trends in foliar C accumulation and foliar C allocation. Such stage-dependent trends in the accumulation and allocation of foliar C are not represented in current terrestrial biosphere models. Our results highlight that a better representation of C allocation should be incorporated into models.


Subject(s)
Carbon , Climate Change , Photosynthesis , Plant Leaves , Ecosystem
11.
New Phytol ; 240(2): 515-528, 2023 10.
Article in English | MEDLINE | ID: mdl-37532958

ABSTRACT

Plant roots are the main supplier of carbon (C) to the soil, the largest terrestrial C reservoir. Soil pore structure drives root growth, yet how it affects belowground C inputs remains a critical knowledge gap. By combining X-ray computed tomography with 14 C plant labelling, we identified root-soil contact as a previously unrecognised influence on belowground plant C allocations and on the fate of plant-derived C in the soil. Greater contact with the surrounding soil, when the growing root encounters a pore structure dominated by small (< 40 µm Ø) pores, results in strong rhizodeposition but in areas of high microbial activity. The root system of Rudbeckia hirta revealed high plasticity and thus maintained high root-soil contact. This led to greater C inputs across a wide range of soil pore structures. The root-soil contact Panicum virgatum, a promising bioenergy feedstock crop, was sensitive to the encountered structure. Pore structure built by a polyculture, for example, restored prairie, can be particularly effective in promoting lateral root growth and thus root-soil contact and associated C benefits. The findings suggest that the interaction of pore structure with roots is an important, previously unrecognised, stimulus of soil C gains.


Subject(s)
Panicum , Soil , Soil/chemistry , Carbon/analysis , Plant Roots/chemistry , Tomography, X-Ray Computed
12.
New Phytol ; 238(6): 2313-2328, 2023 06.
Article in English | MEDLINE | ID: mdl-36856334

ABSTRACT

Spatiotemporal patterns of phenology may be affected by mosaics of environmental and genetic variation. Environmental drivers may have temporally lagged impacts, but patterns and mechanisms remain poorly known. We combine multiple genomic, remotely sensed, and physically modeled datasets to determine the spatiotemporal patterns and drivers of canopy phenology in quaking aspen, a widespread clonal dioecious tree species with diploid and triploid cytotypes. We show that over 391 km2 of southwestern Colorado: greenup date, greendown date, and growing season length vary by weeks and differ across sexes, cytotypes, and genotypes; phenology has high phenotypic plasticity and heritabilities of 31-61% (interquartile range); and snowmelt date, soil moisture, and air temperature predict phenology, at temporal lags of up to 3 yr. Our study shows that lagged environmental effects are needed to explain phenological variation and that the effect of cytotype on phenology is obscured by its correlation with topography. Phenological patterns are consistent with responses to multiyear accumulation of carbon deficit or hydraulic damage.


Subject(s)
Populus , Populus/genetics , Climate , Seasons , Trees/genetics , Carbon , Temperature , Climate Change
13.
New Phytol ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697631

ABSTRACT

Tree growth in boreal forests is driven by ectomycorrhizal fungal mobilisation of organic nitrogen and mineral nutrients in soils with discrete organic and mineral horizons. However, there are no studies of how ectomycorrhizal mineral weathering and organic nitrogen mobilisation processes are integrated across the soil profile. We studied effects of organic matter (OM) availability on ectomycorrhizal functioning by altering the proportions of natural organic and mineral soil in reconstructed podzol profiles containing Pinus sylvestris plants, using 13 CO2 pulse labelling, patterns of naturally occurring stable isotopes (26 Mg and 15 N) and high-throughput DNA sequencing of fungal amplicons. Reduction in OM resulted in nitrogen limitation of plant growth and decreased allocation of photosynthetically derived carbon and mycelial growth in mineral horizons. Fractionation patterns of 26 Mg indicated that magnesium mobilisation and uptake occurred primarily in the deeper mineral horizon and was driven by carbon allocation to ectomycorrhizal mycelium. In this horizon, relative abundance of ectomycorrhizal fungi, carbon allocation and base cation mobilisation all increased with increased OM availability. Allocation of carbon through ectomycorrhizal fungi integrates organic nitrogen mobilisation and mineral weathering across soil horizons, improving the efficiency of plant nutrient acquisition. Our findings have fundamental implications for sustainable forest management and belowground carbon sequestration.

14.
Plant Cell Environ ; 46(3): 962-974, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36562125

ABSTRACT

Rhizodeposition is the export of organic compounds from plant roots to the soil. Carbon allocation towards rhizodeposition has to be balanced with allocation for other physiological functions, which depend on both newly assimilated and stored nonstructural carbohydrate (NSC). To test whether the exudation of primary metabolites scales with plant NSC status, we studied diurnal dynamics of NSC and amino acid (AA) pools and fluxes within the plant and the rhizosphere. These diurnal dynamics were measured in the field and under hydroponic-controlled conditions. Further, C-limiting treatments offered further insight into the regulation of rhizodeposition. The exudation of primary metabolites fluctuated diurnally. The diurnal dynamics of soluble sugars (SS) and AA concentrations in tissues coincided with exudate pool fluctuations in the rhizosphere. SS and AA pools in the rhizosphere increased with NSC and AA pools in the roots. C starvation treatments offset the balance of exudates: AA exudate content in the rhizosphere significantly decreased while SS exudate content remained stable. Our results suggest that rhizodeposition is to some extent controlled by plant C:N status. We propose that SS exudation is less controlled than AA exudation because N assimilation depends on controlled C supply while SS exudation relies to a greater extent on passive diffusion mechanisms.


Subject(s)
Carbon , Nitrogen Compounds , Carbon/metabolism , Nitrogen Compounds/analysis , Nitrogen Compounds/metabolism , Pisum sativum/metabolism , Rhizosphere , Plants/metabolism , Amino Acids/metabolism , Plant Roots/metabolism , Soil/chemistry
15.
J Exp Bot ; 74(1): 472-488, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36272111

ABSTRACT

Understanding species-specific trait responses under future global change scenarios is of importance for conservation efforts and to make informed decisions within management projects. The combined and single effects of seawater acidification and warmer average temperature were investigated by means of the trait responses of Cymodocea serrulata, a tropical seagrass, under experimental conditions. After a 35 d exposure period, biochemical, morphological, and photo-physiological trait responses were measured. Overall, biochemical traits mildly responded under the individual exposure to high temperature and increasing pCO2 values. The response of C. serrulata was limited to a decrease in %C and an increase in the sucrose content in the rhizome under the high temperature treatment, 32 °C. This suggests that this temperature was lower than the maximum tolerance limit for this species. Increasing pCO2 levels increased %C in the rhizome, and also showed a significant increase in leaf δ13C values. The effects of all treatments were sublethal; however, small changes in their traits could affect the ecosystem services they provide. In particular, changes in tissue carbon concentrations may affect carbon storage capacity, one key ecosystem service. The simultaneous study of different types of trait responses contributes to establish a holistic framework of seagrass ecosystem health under climate change.


Subject(s)
Alismatales , Seawater , Seawater/chemistry , Ecosystem , Alismatales/physiology , Hot Temperature , Temperature , Carbon , Carbon Dioxide , Hydrogen-Ion Concentration
16.
J Exp Bot ; 74(17): 5072-5087, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37352139

ABSTRACT

The size-related xylem adjustments required to maintain a constant leaf-specific sapwood conductance (KLEAF) with increasing height (H) are still under discussion. Alternative hypotheses are that: (i) the conduit hydraulic diameter (Dh) at any position in the stem and/or (ii) the number of sapwood rings at stem base (NSWr) increase with H. In addition, (iii) reduced stem elongation (ΔH) increases the tip-to-base conductance through inner xylem rings, thus possibly the NSWr contributing to KLEAF. A detailed stem analysis showed that Dh increased with the distance from the ring apex (DCA) in all rings of a Picea abies and a Fagus sylvatica tree. Net of DCA effect, Dh did not increase with H. Using sapwood traits from a global dataset, NSWr increased with H, decreased with ΔH, and the mean sapwood ring width (SWrw) increased with ΔH. A numerical model based on anatomical patterns predicted the effects of H and ΔH on the conductance of inner xylem rings. Our results suggest that the sapwood/heartwood transition depends on both H and ΔH, and is set when the carbon allocation to maintenance respiration of living cells in inner sapwood rings produces a lower gain in total conductance than investing the same carbon in new vascular conduits.


Subject(s)
Trees , Xylem , Plant Leaves , Water
17.
Glob Chang Biol ; 29(11): 3147-3158, 2023 06.
Article in English | MEDLINE | ID: mdl-36883758

ABSTRACT

Canopy greening, which is associated with significant canopy structure changes, is the most notable signal of ecosystem changes in response to anthropogenic climate change. However, our knowledge of the changing pattern of canopy development and senescence, and its endogenous and climatic drivers is still limited. Here, we used the Normalized Difference Vegetation Index (NDVI) to quantify the changes in the speed of canopy development and senescence over the Tibetan Plateau (TP) during 2000-2018, and used a solar-induced chlorophyll fluorescence dataset as a proxy for photosynthesis, in combination with climate datasets to decipher the endogenous and climatic drivers of the interannual variation in canopy changes. We found that the canopy development during the early green-up stage (April-May) is accelerating at a rate of 0.45-0.8 × 10-3  month-1  year-1 . However, this accelerating canopy development was largely offset by a decelerating canopy development during June and July (-0.61 to -0.51 × 10-3  month-1  year-1 ), leading to the peak NDVI over the TP increasing at a rate of only one fifth of that in northern temperate regions, and less than one tenth of that in the Arctic and boreal regions. During the green-down period, we observed a significant accelerating canopy senescence during October. Photosynthesis was found to be the dominant driver for canopy changes over the TP. Increasing photosynthesis stimulates canopy development during the early green-up stage. However, slower canopy development and accelerated senescence was found with larger photosynthesis in late growth stages. This negative relationship between photosynthesis and canopy development is probably linked to the source-sink balance of plants and shifts in the allocation regime. These results suggest a sink limitation for plant growth over the TP. The impact of canopy greening on the carbon cycle may be more complicated than the source-oriented paradigm used in current ecosystem models.


Subject(s)
Ecosystem , Photosynthesis , Tibet , Seasons , Photosynthesis/physiology , Plants
18.
Glob Chang Biol ; 29(18): 5276-5291, 2023 09.
Article in English | MEDLINE | ID: mdl-37427494

ABSTRACT

Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. On a 10-year geothermal warming gradient in Iceland, we studied the effects of soil warming and N addition on CO2 fluxes and the fate of recently photosynthesized C through CO2 flux measurements and a 13 CO2 pulse-labeling experiment. Under warming, ecosystem respiration exceeded maximum gross primary productivity, causing increased net CO2 emissions. N addition treatments revealed that, surprisingly, the plants in the warmed soil were N limited, which constrained primary productivity and decreased recently assimilated C in shoots and roots. In soil, microbes were increasingly C limited under warming and increased microbial uptake of recent C. Soil respiration was increased by warming and was fueled by increased belowground inputs and turnover of recently photosynthesized C. Our findings suggest that a decade of warming seemed to have induced a N limitation in plants and a C limitation by soil microbes. This caused a decrease in net ecosystem CO2 uptake and accelerated the respiratory release of photosynthesized C, which decreased the C sequestration potential of the grassland. Our study highlights the importance of belowground C allocation and C-N interactions in the C dynamics of subarctic ecosystems in a warmer world.


Subject(s)
Carbon , Ecosystem , Grassland , Carbon Dioxide , Nitrogen , Plants , Soil
19.
Ecol Appl ; 33(5): e2861, 2023 07.
Article in English | MEDLINE | ID: mdl-37092906

ABSTRACT

Mowing, as a common grassland utilization strategy, affects nutrient status in soil by plant biomass removal. Phosphorus (P) cycle plays an important role in determining grassland productivity. However, few studies have addressed the impacts of mowing on P cycling in grassland ecosystems. Here, we investigated the effects of various mowing regimes on soil P fractions and P accumulation in plants and litters. We specifically explored the mechanisms by which mowing regulates ecosystem P cycling by linking aboveground community with soil properties. Our results showed that mowing increased soil dissolvable P concentrations, which probably met the demand for P absorption and utilization by plants, thus contributing to an increased P accumulation by plants. Mowing promoted grassland P cycling by a reciprocal relationship between plants and microbes. Short-term mowing enhanced P cycling mainly through increased root exudation-evoked the extracellular enzyme activity of microbes rather than the alternations in microbial biomass and community composition. Long-term mowing increased P cycling mainly by promoting carbon allocation to roots, thereby leading to greater microbial metabolic activity. Although mowing-stimulation of organic P mineralization lasted for 15 consecutive years, mowing did not result in soil P depletion. These results demonstrate that P removal by mowing will not necessarily lead to soil P limitation. Our findings would advance the knowledge on soil P dynamic under mowing and contribute to resource-efficient grassland management.


Subject(s)
Gardens , Phosphorus , Soil , Biomass , Carbon , Ecosystem , Grassland , Nitrogen/metabolism , Plants , Poaceae
20.
Proc Natl Acad Sci U S A ; 117(11): 6223-6230, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32123097

ABSTRACT

All multicellular organisms keep a balance between sink and source activities by controlling nutrient transport at strategic positions. In most plants, photosynthetically produced sucrose is the predominant carbon and energy source, whose transport from leaves to carbon sink organs depends on sucrose transporters. In the model plant Arabidopsis thaliana, transport of sucrose into the phloem vascular tissue by SUCROSE TRANSPORTER 2 (SUC2) sets the rate of carbon export from source leaves, just like the SUC2 homologs of most crop plants. Despite their importance, little is known about the proteins that regulate these sucrose transporters. Here, identification and characterization of SUC2-interaction partners revealed that SUC2 activity is regulated via its protein turnover rate and phosphorylation state. UBIQUITIN-CONJUGATING ENZYME 34 (UBC34) was found to trigger turnover of SUC2 in a light-dependent manner. The E2 enzyme UBC34 could ubiquitinate SUC2 in vitro, a function generally associated with E3 ubiquitin ligases. ubc34 mutants showed increased phloem loading, as well as increased biomass and yield. In contrast, mutants of another SUC2-interaction partner, WALL-ASSOCIATED KINASE LIKE 8 (WAKL8), showed decreased phloem loading and growth. An in vivo assay based on a fluorescent sucrose analog confirmed that SUC2 phosphorylation by WAKL8 can increase transport activity. Both proteins are required for the up-regulation of phloem loading in response to increased light intensity. The molecular mechanism of SUC2 regulation elucidated here provides promising targets for the biotechnological enhancement of source strength.


Subject(s)
Arabidopsis/physiology , Carbon Sequestration , Carbon/metabolism , Membrane Transport Proteins/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mutation , Phloem/metabolism , Phosphorylation/physiology , Plants, Genetically Modified , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL