Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Physiol Rev ; 103(3): 2271-2319, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36731030

ABSTRACT

The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.


Subject(s)
Myocardium , Myocytes, Cardiac , Humans , Myocytes, Cardiac/physiology , Myocardium/metabolism , Gap Junctions/metabolism , Arrhythmias, Cardiac
2.
Proc Natl Acad Sci U S A ; 120(3): e2214700120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626562

ABSTRACT

KCNH2 encodes hERG1, the voltage-gated potassium channel that conducts the rapid delayed rectifier potassium current (IKr) in human cardiac tissue. hERG1 is one of the first channels expressed during early cardiac development, and its dysfunction is associated with intrauterine fetal death, sudden infant death syndrome, cardiac arrhythmia, and sudden cardiac death. Here, we identified a hERG1 polypeptide (hERG1NP) that is targeted to the nuclei of immature cardiac cells, including human stem cell-derived cardiomyocytes (hiPSC-CMs) and neonatal rat cardiomyocytes. The nuclear hERG1NP immunofluorescent signal is diminished in matured hiPSC-CMs and absent from adult rat cardiomyocytes. Antibodies targeting distinct hERG1 channel epitopes demonstrated that the hERG1NP signal maps to the hERG1 distal C-terminal domain. KCNH2 deletion using CRISPR simultaneously abolished IKr and the hERG1NP signal in hiPSC-CMs. We then identified a putative nuclear localization sequence (NLS) within the distal hERG1 C-terminus, 883-RQRKRKLSFR-892. Interestingly, the distal C-terminal domain was targeted almost exclusively to the nuclei when overexpressed HEK293 cells. Conversely, deleting the NLS from the distal peptide abolished nuclear targeting. Similarly, blocking α or ß1 karyopherin activity diminished nuclear targeting. Finally, overexpressing the putative hERG1NP peptide in the nuclei of HEK cells significantly reduced hERG1a current density, compared to cells expressing the NLS-deficient hERG1NP or GFP. These data identify a developmentally regulated polypeptide encoded by KCNH2, hERG1NP, whose presence in the nucleus indirectly modulates hERG1 current magnitude and kinetics.


Subject(s)
ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels , Myocytes, Cardiac , Animals , Humans , Rats , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , HEK293 Cells , Myocytes, Cardiac/metabolism , Peptides/metabolism
3.
J Physiol ; 602(8): 1669-1680, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457313

ABSTRACT

Restoring ischaemic myocardial tissue perfusion is crucial for minimizing infarct size. Acute mechanical left ventricular (LV) support has been suggested to improve infarct tissue perfusion. However, its regulatory mechanism remains unclear. We investigated the physiological mechanisms in six Yorkshire pigs, which were subjected to 90-min balloon occlusion of the left anterior descending artery. During the acute reperfusion phase, LV support using an Impella heart pump was initiated. LV pressure, coronary flow and pressure of the infarct artery were simultaneously recorded to evaluate the impact of LV support on coronary physiology. Coronary wave intensity was calculated to understand the forces regulating coronary flow. Significant increases in coronary flow velocity and its area under the curve were found after mechanical LV support. Among the coronary flow-regulating factors, coronary pressure was increased mainly during the late diastolic phase with less pulsatility. Meanwhile, LV pressure was reduced throughout diastole resulting in significant and consistent elevation of coronary driving pressure. Interestingly, the duration of diastole was prolonged with LV support. In the wave intensity analysis, the duration between backward suction and pushing waves was extended, indicating that earlier myocardial relaxation and delayed contraction contributed to the extension of diastole. In conclusion, mechanical LV support increases infarct coronary flow by extending diastole and augmenting coronary driving pressure. These changes were mainly driven by reduced LV diastolic pressure, indicating that the key regulator of coronary flow under mechanical LV support is downstream of the coronary artery, rather than upstream. Our study highlights the importance of LV diastolic pressure in infarct coronary flow regulation. KEY POINTS: Restoring ischaemic myocardial tissue perfusion is crucial for minimizing infarct size. Although mechanical left ventricular (LV) support has been suggested to improve infarct coronary flow, its specific mechanism remains to be clarified. LV support reduced LV pressure, and elevated coronary pressure during the late diastolic phase, resulting in high coronary driving pressure. This study demonstrated for the first time that mechanical LV support extends diastolic phase, leading to increased infarct coronary flow. Future studies should evaluate the correlation between improved infarct coronary flow and resulting infarct size.


Subject(s)
Myocardial Infarction , Ventricular Function, Left , Animals , Swine , Diastole/physiology , Ventricular Function, Left/physiology , Blood Pressure , Coronary Vessels , Coronary Circulation/physiology
4.
J Physiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778747

ABSTRACT

This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.

5.
J Neurochem ; 168(4): 414-427, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37017608

ABSTRACT

The α7 nicotinic receptors (NR) have been confirmed in the heart but their role in cardiac functions has been contradictory. To address these contradictory findings, we analyzed cardiac functions in α7 NR knockout mice (α7-/-) in vivo and ex vivo in isolated hearts. A standard limb leads electrocardiogram was used, and the pressure curves were recorded in vivo, in Arteria carotis and in the left ventricle, or ex vivo, in the left ventricle of the spontaneously beating isolated hearts perfused following Langedorff's method. Experiments were performed under basic conditions, hypercholinergic conditions, and adrenergic stress. The relative expression levels of α and ß NR subunits, muscarinic receptors, ß1 adrenergic receptors, and acetylcholine life cycle markers were determined using RT-qPCR. Our results revealed a prolonged QT interval in α7-/- mice. All in vivo hemodynamic parameters were preserved under all studied conditions. The only difference in ex vivo heart rate between genotypes was the loss of bradycardia in prolonged incubation of isoproterenol-pretreated hearts with high doses of acetylcholine. In contrast, left ventricular systolic pressure was lower under basal conditions and showed a significantly higher increase during adrenergic stimulation. No changes in mRNA expression were observed. In conclusion, α7 NR has no major effect on heart rate, except when stressed hearts are exposed to a prolonged hypercholinergic state, suggesting a role in acetylcholine spillover control. In the absence of extracardiac regulatory mechanisms, left ventricular systolic impairment is revealed.


Subject(s)
Hemodynamics , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mice , Acetylcholine/metabolism , Adrenergic Agents , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Hemodynamics/genetics , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Myocardium/metabolism
6.
Am J Physiol Heart Circ Physiol ; 327(1): H191-H220, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38758127

ABSTRACT

Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.


Subject(s)
Cardiovascular Physiological Phenomena , Postpartum Period , Pregnancy , Humans , Female , Animals , Pregnancy Complications, Cardiovascular/physiopathology , Cardiovascular System/physiopathology , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/diagnosis
7.
Pacing Clin Electrophysiol ; 47(3): 383-391, 2024 03.
Article in English | MEDLINE | ID: mdl-38348921

ABSTRACT

OBJECTIVE: The presence of cannon A waves, the so called "frog sign", has traditionally been considered diagnostic of atrioventricular nodal re-entrant tachycardia (AVNRT). Nevertheless, it has never been systematically evaluated. The aim of this study is to assess the independent diagnostic utility of cannon A waves in the differential diagnosis of supraventricular tachycardias (SVTs). METHODS: We prospectively included 100 patients who underwent an electrophysiology (EP) study for SVT. The right jugular venous pulse was recorded during the study. In 61 patients, invasive central venous pressure (CVP) was registered as well. CVP increase is thought to be related with the timing between atria and ventricle depolarization; two groups were prespecified, the short VA interval tachycardias (including typical AVNRT and atrioventricular reciprocating tachycardia (AVRT) mediated by a septal accessory pathway) and the long VA interval tachycardias (including atypical AVNRT and AVRT mediated by a left free wall accessory pathway). RESULTS: The relationship between cannon A waves and AVNRT did not reach the statistical significance (OR: 3.01; p = .058); On the other hand, it was clearly associated with the final diagnosis of a short VA interval tachycardia (OR: 10.21; p < .001). CVP increase showed an inversely proportional relationship with the VA interval during tachycardia (b = -.020; p < .001). CVP increase was larger in cases of AVNRT (4.0 mmHg vs. 1.2 mmHg; p < .001) and short VA interval tachycardias (3.9 mmHg vs. 1.2 mmHg; p < .001). CONCLUSION: The presence of cannon A waves is associated with the final diagnosis of short VA interval tachycardias.


Subject(s)
Tachycardia, Atrioventricular Nodal Reentry , Tachycardia, Paroxysmal , Tachycardia, Supraventricular , Tachycardia, Ventricular , Humans , Tachycardia, Supraventricular/diagnosis , Tachycardia, Atrioventricular Nodal Reentry/diagnosis , Bundle of His , Tachycardia, Ventricular/diagnosis , Heart Atria , Diagnosis, Differential , Electrocardiography
8.
Echocardiography ; 41(2): e15764, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345414

ABSTRACT

BACKGROUND: Previous case studies have reported reversal of acute renal failure after pericardiocentesis in pericardial effusion. This study examines the effects of pericardiocentesis on preprocedural low cardiac output and acute renal dysfunction in patients with pericardial effusion. METHODS: This is a retrospective study of 95 patients undergoing pericardiocentesis between 2015 and 2020. Pre- and post-procedure transthoracic echocardiograms (TTE) were reviewed for evidence of cardiac tamponade, resolution of pericardial effusion, and for estimation of right atrial (RA) pressure and cardiac output. Laboratory values were compared at presentation and post-procedure. Patients on active renal replacement therapy were excluded. RESULTS: Ninety-five patients were included for analysis (mean age 62.2 ± 17.8 years, 58% male). There was a significant increase in glomerular filtration rate pre- and post-procedure. Fifty-six patients (58.9%) had an improvement in glomerular filtration rate after pericardiocentesis (termed "responders"), and these patients had a lower pre-procedure glomerular filtration rate than "non-responders." There was a significant improvement in estimated cardiac output and right atrial pressure for patients in both groups. Patients who had an improvement in renal function had significantly lower pre-procedural diastolic blood pressure and mean arterial pressure. CONCLUSIONS: Pericardial drainage may improve effusion-mediated acute renal dysfunction by reducing right atrial pressure and thus systemic venous congestion, and by increasing forward stroke volume and perfusion pressure.


Subject(s)
Cardiac Tamponade , Kidney Diseases , Pericardial Effusion , Humans , Male , Adult , Middle Aged , Aged , Aged, 80 and over , Female , Pericardiocentesis , Pericardial Effusion/diagnostic imaging , Pericardial Effusion/surgery , Retrospective Studies , Cardiac Tamponade/surgery , Hemodynamics , Kidney/diagnostic imaging
9.
Dev Dyn ; 252(10): 1247-1268, 2023 10.
Article in English | MEDLINE | ID: mdl-37002896

ABSTRACT

High resolution assessment of cardiac functional parameters is crucial in translational animal research. The chick embryo is a historically well-used in vivo model for cardiovascular research due to its many practical advantages, and the conserved form and function of the chick and human cardiogenesis programs. This review aims to provide an overview of several different technical approaches for chick embryo cardiac assessment. Doppler echocardiography, optical coherence tomography, micromagnetic resonance imaging, microparticle image velocimetry, real-time pressure monitoring, and associated issues with the techniques will be discussed. Alongside this discussion, we also highlight recent advances in cardiac function measurements in chick embryos.


Subject(s)
Cardiovascular Physiological Phenomena , Heart , Animals , Chick Embryo , Humans , Blood Flow Velocity/physiology , Heart/physiology , Tomography, Optical Coherence/methods , Hemodynamics
10.
Pflugers Arch ; 475(12): 1463-1477, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863976

ABSTRACT

Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.


Subject(s)
Myocytes, Cardiac , Optogenetics , Humans , Optogenetics/methods , Channelrhodopsins/genetics , Myocytes, Cardiac/metabolism , Anions/metabolism , Cations
11.
Echocardiography ; 40(3): 161-173, 2023 03.
Article in English | MEDLINE | ID: mdl-36610038

ABSTRACT

To date, the ventricular myocardial band is the anatomical-functional model that best explains cardiac mechanics during systolic-diastolic phenomena in the cardiac cycle. The implications of the model fundamentally affect the anatomical interpretation of the ventricular myocardium, giving meaning to the direction that muscle fibers take, turning them into an object of study with potential clinical, imaging, and surgical applications. Re-interpreting the anatomy of the ventricular muscle justifies changes in the physiological interpretation, from its functional focus as a fiber unraveling the mechanical phenomena carried out during systole and diastole. We identify the functioning of the heart from the electrical and hemodynamic point of view, but it is necessary to delve into the mechanics that originate the hemodynamic changes observed flowmetrically, and that manifested during the pathology. In this review, the mechanical phenomena that the myocardium performs in each phase of the cardiac cycle are broken down in detail, emphasizing the physical displacements that each of the muscle segments presents, as well as a vision of their alteration and in which pathologies they are mainly identified. Visually, an anatomical correlation to the echocardiogram is provided, pointing out the direction of the segmental myocardial displacement by the strain velocity vector technique.


Subject(s)
Heart , Myocardial Contraction , Humans , Myocardial Contraction/physiology , Heart/physiology , Myocardium/pathology , Heart Ventricles , Diastole/physiology , Ventricular Function, Left/physiology
12.
Curr Cardiol Rep ; 25(6): 535-542, 2023 06.
Article in English | MEDLINE | ID: mdl-37115434

ABSTRACT

PURPOSE OF REVIEW: Imaging plays a crucial role in the therapy of ventricular tachycardia (VT). We offer an overview of the different methods and provide information on their use in a clinical setting. RECENT FINDINGS: The use of imaging in VT has progressed recently. Intracardiac echography facilitates catheter navigation and the targeting of moving intracardiac structures. Integration of pre-procedural CT or MRI allows for targeting the VT substrate, with major expected impact on VT ablation efficacy and efficiency. Advances in computational modeling may further enhance the performance of imaging, giving access to pre-operative simulation of VT. These advances in non-invasive diagnosis are increasingly being coupled with non-invasive approaches for therapy delivery. This review highlights the latest research on the use of imaging in VT procedures. Image-based strategies are progressively shifting from using images as an adjunct tool to electrophysiological techniques, to an integration of imaging as a central element of the treatment strategy.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Humans , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/surgery , Arrhythmias, Cardiac , Heart , Heart Rate , Catheter Ablation/methods , Treatment Outcome
13.
Adv Physiol Educ ; 47(1): 82-92, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36476116

ABSTRACT

The current student body will, by and large, seek online resources to supplement their learning. However, resources that are freely available online vary in accuracy and quality, and the vast majority rely on passive learning. Therefore, there is a need for interactive physiology teaching resources that facilitate application of knowledge, that can be accessed by students in their own time. The aim of this study was to design a digital escape room on the topic of cardiac arrhythmias and to evaluate this resource as a consolidation exercise to support learning and enjoyment of physiology. The digital escape room was designed as a series of interactive puzzles and created with a website page builder on a freely accessible WordPress site. To facilitate engagement, the escape room incorporated a countdown timer. Second-year medical students were invited to play the digital escape room remotely as a group exercise after delivery of the relevant teaching. Evaluation of the resource took place quantitatively with Google Analytics and Tag Manager software and qualitatively with a questionnaire (Microsoft Forms). Quantitative evaluation suggested that the puzzles were created across a range of difficulties but that most groups were able to complete the exercise and remained engaged throughout. Student feedback suggests that the format of the resource was rated positively, and most participants felt that the game helped to consolidate and apply their knowledge of cardiovascular physiology. Future studies will focus on examining whether the cardiovascular-themed digital escape room improves knowledge attainment among students studying physiology in higher education.NEW & NOTEWORTHY This article describes the design and development of a new, freely accessible cardiovascular-themed digital escape room. This web-based resource promotes active learning by facilitating problem-solving and application of physiology knowledge while working against a clock.


Subject(s)
Problem-Based Learning , Students, Medical , Humans , Educational Measurement , Surveys and Questionnaires , Cardiovascular Physiological Phenomena
14.
Clin Anat ; 36(3): 542-549, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36695446

ABSTRACT

Difficulties in achieving knowledge about physiology and anatomy of the beating heart highlight the challenges with more traditional pedagogical methods. Recent research regarding anatomy education has mainly focused on digital three-dimensional models. However, these pedagogical improvements may not be entirely applicable to cardiac anatomy and physiology due to the multidimensional complexity with moving anatomy and complex blood flow. The aim of this study was therefore to evaluate whether high quality time-resolved anatomical images combined with realistic blood flow simulations improve the understanding of cardiac structures and function. Three time-resolved datasets were acquired using time-resolved computed tomography and blood flow was computed using Computational Fluid Dynamics. The anatomical and blood flow information was combined and interactively visualized using volume rendering on an advanced stereo projection system. The setup was tested in interactive lectures for medical students. Ninety-seven students participated. Summative assessment of examinations showed significantly improved mean score (18.1 ± 4.5 vs 20.3 ± 4.9, p = 0.002). This improvement was driven by knowledge regarding myocardial hypertrophy and pressure-velocity differences over a stenotic valve. Additionally, a supplementary formative assessment showed significantly more agreeing answers than disagreeing answers (p < 0.001) when the participants subjectively evaluated the contribution of the visualizations to their education and knowledge. In conclusion, the use of simultaneous visualization of time-resolved anatomy data and simulated blood flow improved medical students' results, with a particular effect on understanding of cardiac physiology and these simulations may be useful educational tools for teaching complex anatomical and physiological concepts.


Subject(s)
Anatomy , Education, Medical, Undergraduate , Physiology , Students, Medical , Humans , Education, Medical, Undergraduate/methods , Educational Measurement , Tomography, X-Ray Computed , Hemodynamics , Anatomy/education , Curriculum , Physiology/education
15.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628941

ABSTRACT

BACKGROUND: Troponin-I interacting kinase encoded by the TNNI3K gene is expressed in nuclei and Z-discs of cardiomyocytes. Mutations in TNNI3K were identified in patients with cardiac conduction diseases, arrhythmias, and cardiomyopathy. METHODS: We performed cardiac gene expression, whole genome sequencing (WGS), and cardiac function analysis in 40 strains of BXD recombinant inbred mice derived from C57BL/6J (B6) and DBA/2J (D2) strains. Expression quantitative trait loci (eQTLs) mapping and gene enrichment analysis was performed, followed by validation of candidate Tnni3k-regulatory genes. RESULTS: WGS identified compound splicing and missense T659I Tnni3k variants in the D2 parent and some BXD strains (D allele) and these strains had significantly lower Tnni3k expression than those carrying wild-type Tnni3k (B allele). Expression levels of Tnni3k significantly correlated with multiple cardiac (heart rate, wall thickness, PR duration, and T amplitude) and metabolic (glucose levels and insulin resistance) phenotypes in BXDs. A significant cis-eQTL on chromosome 3 was identified for the regulation of Tnni3k expression. Furthermore, Tnni3k-correlated genes were primarily involved in cardiac and glucose metabolism-related functions and pathways. Genes Nodal, Gnas, Nfkb1, Bmpr2, Bmp7, Smad7, Acvr1b, Acvr2b, Chrd, Tgfb3, Irs1, and Ppp1cb were differentially expressed between the B and D alleles. CONCLUSIONS: Compound splicing and T659I Tnni3k variants reduce cardiac Tnni3k expression and Tnni3k levels are associated with cardiac and glucose metabolism-related phenotypes.


Subject(s)
Carbohydrate Metabolism , Myocytes, Cardiac , Animals , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Glucose , Protein Serine-Threonine Kinases
16.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175451

ABSTRACT

Adipose tissue and its diverse cell types constitute one of the largest endocrine organs. With multiple depot locations, adipose tissue plays an important regulatory role through paracrine and endocrine communication, particularly through the secretion of a wide range of bioactive molecules, such as nucleic acids, proteins, lipids or adipocytokines. Over the past several years, research has uncovered a myriad of interorgan communication signals mediated by small lipid-derived nanovesicles known as extracellular vesicles (EVs), in which secreted bioactive molecules are stably transported as cargo molecules and delivered to adjacent cells or remote organs. EVs constitute an essential part of the human adipose secretome, and there is a growing body of evidence showing the crucial implications of adipose-derived EVs in the regulation of heart function and its adaptative capacity. The adipose tissue modifications and dysfunction observed in obesity and aging tremendously affect the adipose-EV secretome, with important consequences for the myocardium. The present review presents a comprehensive analysis of the findings in this novel area of research, reports the key roles played by adipose-derived EVs in interorgan cross-talk with the heart and discusses their implications in physiological and pathological conditions affecting adipose tissue and/or the heart (pressure overload, ischemia, diabetic cardiomyopathy, etc.).


Subject(s)
Exosomes , Extracellular Vesicles , Humans , Exosomes/metabolism , Extracellular Vesicles/metabolism , Adipose Tissue/metabolism , Cell Communication/physiology , Adipokines/metabolism , Obesity/metabolism
17.
J Physiol ; 600(3): 483-507, 2022 02.
Article in English | MEDLINE | ID: mdl-34761809

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in monolayers interact mechanically via cell-cell and cell-substrate adhesion. Spatiotemporal features of contraction were analysed in hiPSC-CM monolayers (1) attached to glass or plastic (Young's modulus (E) >1 GPa), (2) detached (substrate-free) and (3) attached to a flexible collagen hydrogel (E = 22 kPa). The effects of isoprenaline on contraction were compared between rigid and flexible substrates. To clarify the underlying mechanisms, further gene expression and computational studies were performed. HiPSC-CM monolayers exhibited multiphasic contractile profiles on rigid surfaces in contrast to hydrogels, substrate-free cultures or single cells where only simple twitch-like time-courses were observed. Isoprenaline did not change the contraction profile on either surface, but its lusitropic and chronotropic effects were greater in hydrogel compared with glass. There was no significant difference between stiff and flexible substrates in regard to expression of the stress-activated genes NPPA and NPPB. A computational model of cell clusters demonstrated similar complex contractile interactions on stiff substrates as a consequence of cell-to-cell functional heterogeneity. Rigid biomaterial surfaces give rise to unphysiological, multiphasic contractions in hiPSC-CM monolayers. Flexible substrates are necessary for normal twitch-like contractility kinetics and interpretation of inotropic interventions. KEY POINTS: Spatiotemporal contractility analysis of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers seeded on conventional, rigid surfaces (glass or plastic) revealed the presence of multiphasic contraction patterns across the monolayer with a high variability, despite action potentials recorded in the same areas being identical. These multiphasic patterns are not present in single cells, in detached monolayers or in monolayers seeded on soft substrates such as a hydrogel, where only 'twitch'-like transients are observed. HiPSC-CM monolayers that display a high percentage of regions with multiphasic contraction have significantly increased contractile duration and a decreased lusotropic drug response. There is no indication that the multiphasic contraction patterns are associated with significant activation of the stress-activated NPPA or NPPB signalling pathways. A computational model of cell clusters supports the biological findings that the rigid surface and the differential cell-substrate adhesion underly multiphasic contractile behaviour of hiPSC-CMs.


Subject(s)
Induced Pluripotent Stem Cells , Action Potentials , Cell Adhesion , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/physiology , Myocardial Contraction , Myocytes, Cardiac/metabolism
18.
J Physiol ; 600(13): 3113-3126, 2022 07.
Article in English | MEDLINE | ID: mdl-35524982

ABSTRACT

We recently documented the first microelectrode recordings from the cervical vagus nerve in awake humans. Here we aimed to quantify cardiac and respiratory modulation of vagal activity to assess the feasibility of targeting axons supplying the heart and airways. Multi-unit activity was recorded from 43 sites in 19 healthy participants in the left (n = 10) and right (n = 9) vagus nerves with ECG, continuous non-invasive blood pressure and respiration. Cross-correlation histograms were constructed between axonal spikes and the R-waves or the peaks of inspiration. The latencies for the peak in cardiac modulation showed a bimodal distribution: while the majority of sites (72%) had peak latencies that preceded the R-wave by up to 550 ms (mean ± SD, -300 ± 178 ms), 12 sites had latencies of up to 250 ms following the R-wave (64 ± 87 ms). Interestingly, the majority of sites with negative latencies (68%) were found in the left nerve whereas most of those with positive latencies (75%) were found in the right. Conversely, on average the peak of respiratory modulation straddled the peak of inspiration. Sites showing respiratory modulation were more prevalent and showed stronger modulation than those with cardiac modulation: calculated for sites with modulation indices ≥15%, the median cardiac and respiratory modulation indices were 23.4% (n = 17) and 44.5% (n = 35), respectively. We conclude that, despite the fact that much of the vagus nerve supplies the gut, cardiac and respiratory modulation of vagal nerve activity can be identified through invasive recordings in awake humans. KEY POINTS: Intraneural recordings from the cervical vagus were obtained in awake humans via tungsten microelectrodes inserted into the nerve through ultrasound guidance. Cross-correlation analysis of multi-unit vagal activity revealed cardiac and respiratory modulation, from which the amplitude and latency of the peaks could be computed. The magnitude of the cardiac modulation (23%) was weaker than that of the respiratory modulation (45%). The latencies for the peak in cardiac modulation showed a bimodal distribution: the majority of sites (72%) had peak latencies that preceded the R-wave, while the remainder had latencies that followed the R-wave. The majority of sites with negative latencies (68%) were found in the left nerve whereas most of those with positive latencies (75%) were found in the right. On average the peak of respiratory modulation coincided with the peak of inspiration.


Subject(s)
Heart , Vagus Nerve , Axons , Blood Pressure , Heart/physiology , Humans , Respiration , Vagus Nerve/physiology
19.
Exp Physiol ; 107(5): 405-409, 2022 05.
Article in English | MEDLINE | ID: mdl-35218678

ABSTRACT

NEW FINDINGS: What is the topic of this review? Studies using cardiovascular magnetic resonance imaging and echocardiography to investigate cardiac alterations at rest and during exercise-induced physiological stress in adults born preterm. What advances does it highlight? People born preterm have a greater long-term cardiovascular risk, which may be explained in part by their cardiac structural and functional alterations. They have potentially adverse alterations in left and right ventricular structure and function that worsens with blood pressure elevation; an impaired myocardial functional reserve; and an increase in diffuse myocardial fibrosis that may drive their lower diastolic function. ABSTRACT: Preterm birth accounts for more than 10% of births worldwide and associates with a long-term increase in cardiovascular disease risk. The period around preterm birth is a rapid and critical phase of cardiovascular development, which might explain why changes in multiple components of the cardiovascular system have been observed in individuals born preterm. These alterations include reduced microvascular density, increased macrovascular stiffness, and higher systolic and diastolic blood pressure. Cardiac alterations have been observed in people born preterm as early as neonatal life and infancy, with potentially adverse changes in both left and right ventricular structure and function extending into adulthood. Indeed, studies using cardiovascular magnetic resonance imaging and echocardiography have demonstrated that preterm-born individuals have structural cardiac changes and functional impairments. Furthermore, myocardial tissue characterization by cardiovascular magnetic resonance imaging has demonstrated an increase in left ventricular diffuse myocardial fibrosis in young adults born preterm, and under acute physiological stress, their myocardial functional reserve assessed by echocardiography is reduced. The preterm heart is also more susceptible to chronic systolic blood pressure elevation, with a significantly greater increase in left ventricular mass as systolic blood pressure rises observed in preterm-born compared to term-born young adults. Given these known, potentially adverse acute and chronic cardiac adaptations in the preterm-born population, primary prevention strategies are needed to reduce long-term cardiovascular disease risk in this subgroup of the population.


Subject(s)
Cardiomyopathies , Cardiovascular Diseases , Premature Birth , Adult , Female , Fibrosis , Heart , Heart Ventricles , Humans , Infant, Newborn , Pregnancy , Young Adult
20.
Am J Physiol Heart Circ Physiol ; 321(6): H1005-H1013, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34623183

ABSTRACT

Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluorescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncoupling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac electrophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical mapping results. In this "Getting It Right" perspective, we briefly review the literature regarding the use of blebbistatin in cardiac optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping studies of cardiac tissue.


Subject(s)
Action Potentials/drug effects , Biomedical Research , Excitation Contraction Coupling/drug effects , Heart Rate/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Voltage-Sensitive Dye Imaging , Animals , Artifacts , Cells, Cultured , Humans , Myocytes, Cardiac/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL