Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.284
Filter
Add more filters

Publication year range
1.
Cell ; 186(14): 3049-3061.e15, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37311454

ABSTRACT

Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.


Subject(s)
Actins , Actomyosin , Actins/metabolism , Actomyosin/metabolism , Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cell Movement/physiology
2.
Cell ; 180(3): 427-439.e12, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004461

ABSTRACT

Cell polarity is fundamental for tissue morphogenesis in multicellular organisms. Plants and animals evolved multicellularity independently, and it is unknown whether their polarity systems are derived from a single-celled ancestor. Planar polarity in animals is conferred by Wnt signaling, an ancient signaling pathway transduced by Dishevelled, which assembles signalosomes by dynamic head-to-tail DIX domain polymerization. In contrast, polarity-determining pathways in plants are elusive. We recently discovered Arabidopsis SOSEKI proteins, which exhibit polar localization throughout development. Here, we identify SOSEKI as ancient polar proteins across land plants. Concentration-dependent polymerization via a bona fide DIX domain allows these to recruit ANGUSTIFOLIA to polar sites, similar to the polymerization-dependent recruitment of signaling effectors by Dishevelled. Cross-kingdom domain swaps reveal functional equivalence of animal and plant DIX domains. We trace DIX domains to unicellular eukaryotes and thus show that DIX-dependent polymerization is an ancient mechanism conserved between kingdoms and central to polarity proteins.


Subject(s)
Arabidopsis/chemistry , Arabidopsis/cytology , Cell Polarity/physiology , Plant Cells/physiology , Polymerization , Protein Domains , Animals , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Axin Protein/chemistry , Axin Protein/metabolism , Bryopsida/chemistry , Bryopsida/cytology , Bryopsida/genetics , Bryopsida/growth & development , COS Cells , Chlorocebus aethiops , Dishevelled Proteins/metabolism , HEK293 Cells , Humans , Marchantia/chemistry , Marchantia/cytology , Marchantia/genetics , Marchantia/growth & development , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Plants, Genetically Modified , Repressor Proteins/metabolism , Wnt Signaling Pathway
3.
Annu Rev Cell Dev Biol ; 33: 77-101, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28783960

ABSTRACT

A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Species-specific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites.


Subject(s)
Cell Polarity , Saccharomyces cerevisiae/cytology , Actins/metabolism , Cell Cycle , Models, Biological
4.
Annu Rev Cell Dev Biol ; 32: 173-195, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27362645

ABSTRACT

Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.


Subject(s)
Cytoplasmic Streaming , Drosophila/cytology , Oocytes/cytology , Animals , Cell Polarity , Oogenesis
5.
Annu Rev Biochem ; 83: 275-89, 2014.
Article in English | MEDLINE | ID: mdl-24437662

ABSTRACT

Most single animal cells have an internal vector that determines where recycling membrane is added to the cell's surface. Because of the specific molecular composition of this added membrane, a dynamic asymmetry is formed on the surface of the cell. The consequences of this dynamic asymmetry are discussed, together with what they imply for how cells move. The polarity of a single-celled embryo, such as that of the nematode Caenorhabditis elegans, is explored in a similar framework.


Subject(s)
Cell Membrane/chemistry , Endocytosis , Animals , Biology/methods , Caenorhabditis elegans , Cell Movement , Cytoskeleton/metabolism , Dictyostelium , Fibroblasts/metabolism , HeLa Cells , Hemagglutinins/chemistry , Humans , Membrane Proteins/chemistry , Proteins/chemistry
6.
EMBO J ; 43(15): 3214-3239, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38907033

ABSTRACT

Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.


Subject(s)
Cell Membrane , Cell Polarity , Protein Kinase C , Protein Multimerization , Cell Membrane/metabolism , Protein Kinase C/metabolism , Animals , Protein Binding
7.
Annu Rev Cell Dev Biol ; 30: 317-36, 2014.
Article in English | MEDLINE | ID: mdl-25062359

ABSTRACT

Localized ion fluxes at the plasma membrane provide electrochemical gradients at the cell surface that contribute to cell polarization, migration, and division. Ion transporters, local pH gradients, membrane potential, and organization are emerging as important factors in cell polarization mechanisms. The power of electrochemical effects is illustrated by the ability of exogenous electric fields to redirect polarization in cells ranging from bacteria, fungi, and amoebas to keratocytes and neurons. Electric fields normally surround cells and tissues and thus have been proposed to guide cell polarity in development, cancer, and wound healing. Recent studies on electric field responses in model systems and development of new biosensors provide new avenues to dissect molecular mechanisms. Here, we review recent advances that bring molecular understanding of how electrochemistry contributes to cell polarity in various contexts.


Subject(s)
Cell Polarity/physiology , Animals , Anions/metabolism , Cations/metabolism , Cell Division , Cell Movement , Cell Shape , Dictyostelium/cytology , Electrochemistry , Electromagnetic Fields , Fishes , Fungi/cytology , Hydrogen-Ion Concentration , Intracellular Fluid/chemistry , Ion Transport/physiology , Membrane Potentials/physiology , Regeneration , Static Electricity , Wound Healing
8.
Annu Rev Cell Dev Biol ; 30: 465-502, 2014.
Article in English | MEDLINE | ID: mdl-25000993

ABSTRACT

Neural stem and progenitor cells have a central role in the development and evolution of the mammalian neocortex. In this review, we first provide a set of criteria to classify the various types of cortical stem and progenitor cells. We then discuss the issue of cell polarity, as well as specific subcellular features of these cells that are relevant for their modes of division and daughter cell fate. In addition, cortical stem and progenitor cell behavior is placed into a tissue context, with consideration of extracellular signals and cell-cell interactions. Finally, the differences across species regarding cortical stem and progenitor cells are dissected to gain insight into key developmental and evolutionary mechanisms underlying neocortex expansion.


Subject(s)
Neocortex/growth & development , Neurogenesis/physiology , Animals , Asymmetric Cell Division , Cell Compartmentation , Cell Lineage , Cell Membrane/physiology , Cell Nucleus/physiology , Cell Polarity , Cerebrospinal Fluid/physiology , Humans , Intercellular Junctions/physiology , Lateral Ventricles/embryology , Membrane Lipids/metabolism , Microglia/physiology , Mitosis , Neocortex/cytology , Neocortex/embryology , Neural Stem Cells/classification , Neural Stem Cells/physiology , Neuroepithelial Cells/cytology , Neuroepithelial Cells/physiology , Neurons/physiology , Organelles/physiology , Species Specificity
9.
EMBO J ; 42(7): e112165, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36795017

ABSTRACT

The opportunistic pathogen Pseudomonas aeruginosa adapts to solid surfaces to enhance virulence and infect its host. Type IV pili (T4P), long and thin filaments that power surface-specific twitching motility, allow single cells to sense surfaces and control their direction of movement. T4P distribution is polarized to the sensing pole by the chemotaxis-like Chp system via a local positive feedback loop. However, how the initial spatially resolved mechanical signal is translated into T4P polarity is incompletely understood. Here, we demonstrate that the two Chp response regulators PilG and PilH enable dynamic cell polarization by antagonistically regulating T4P extension. By precisely quantifying the localization of fluorescent protein fusions, we show that phosphorylation of PilG by the histidine kinase ChpA controls PilG polarization. Although PilH is not strictly required for twitching reversals, it becomes activated upon phosphorylation and breaks the local positive feedback mechanism established by PilG, allowing forward-twitching cells to reverse. Chp thus uses a main output response regulator, PilG, to resolve mechanical signals in space and employs a second regulator, PilH, to break and respond when the signal changes. By identifying the molecular functions of two response regulators that dynamically control cell polarization, our work provides a rationale for the diversity of architectures often found in non-canonical chemotaxis systems.


Subject(s)
Bacterial Proteins , Fimbriae Proteins , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Fimbriae, Bacterial/physiology , Cell Movement
10.
EMBO J ; 42(24): e113856, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37953688

ABSTRACT

Apical-basal polarity is maintained by distinct protein complexes that reside in membrane junctions, and polarity loss in monolayered epithelial cells can lead to formation of multilayers, cell extrusion, and/or malignant overgrowth. Yet, how polarity loss cooperates with intrinsic signals to control directional invasion toward neighboring epithelial cells remains elusive. Using the Drosophila ovarian follicular epithelium as a model, we found that posterior follicle cells with loss of lethal giant larvae (lgl) or Discs large (Dlg) accumulate apically toward germline cells, whereas cells with loss of Bazooka (Baz) or atypical protein kinase C (aPKC) expand toward the basal side of wildtype neighbors. Further studies revealed that these distinct multilayering patterns in the follicular epithelium were determined by epidermal growth factor receptor (EGFR) signaling and its downstream target Pointed, a zinc-finger transcription factor. Additionally, we identified Rho kinase as a Pointed target that regulates formation of distinct multilayering patterns. These findings provide insight into how cell polarity genes and receptor tyrosine kinase signaling interact to govern epithelial cell organization and directional growth that contribute to epithelial tumor formation.


Subject(s)
Cell Polarity , Drosophila Proteins , ErbB Receptors , Animals , Cell Polarity/physiology , Drosophila melanogaster , Drosophila Proteins/metabolism , Epithelial Cells/metabolism , Epithelium/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism
11.
EMBO J ; 42(24): e114557, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37987147

ABSTRACT

Motile cells encounter microenvironments with locally heterogeneous mechanochemical composition. Individual compositional parameters, such as chemokines and extracellular matrix pore sizes, are well known to provide guidance cues for pathfinding. However, motile cells face diverse cues at the same time, raising the question of how they respond to multiple and potentially competing signals on their paths. Here, we reveal that amoeboid cells require nuclear repositioning, termed nucleokinesis, for adaptive pathfinding in heterogeneous mechanochemical micro-environments. Using mammalian immune cells and the amoeba Dictyostelium discoideum, we discover that frequent, rapid and long-distance nucleokinesis is a basic component of amoeboid pathfinding, enabling cells to reorientate quickly between locally competing cues. Amoeboid nucleokinesis comprises a two-step polarity switch and is driven by myosin-II forces that readjust the nuclear to the cellular path. Impaired nucleokinesis distorts path adaptions and causes cellular arrest in the microenvironment. Our findings establish that nucleokinesis is required for amoeboid cell navigation. Given that many immune cells, amoebae, and some cancer cells utilize an amoeboid migration strategy, these results suggest that nucleokinesis underlies cellular navigation during unicellular biology, immunity, and disease.


Subject(s)
Amoeba , Dictyostelium , Animals , Cell Movement , Extracellular Matrix , Mammals
12.
Development ; 151(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38488018

ABSTRACT

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Zygote/metabolism , Cell Cycle/genetics , Cell Polarity/genetics , Embryo, Nonmammalian/metabolism
13.
Development ; 151(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38564309

ABSTRACT

In Drosophila, only one cell in a multicellular female germline cyst is specified as an oocyte and a similar process occurs in mammals. The symmetry-breaking cue for oocyte selection is provided by the fusome, a tubular structure connecting all cells in the cyst. The Drosophila spectraplakin Shot localises to the fusome and translates its asymmetry into a polarised microtubule network that is essential for oocyte specification, but how Shot recognises the fusome is unclear. Here, we demonstrate that the actin-binding domain (ABD) of Shot is necessary and sufficient to localise Shot to the fusome and mediates Shot function in oocyte specification together with the microtubule-binding domains. The calponin homology domain 1 of the Shot ABD recognises fusomal F-actin and requires calponin homology domain 2 to distinguish it from other forms of F-actin in the cyst. By contrast, the ABDs of utrophin, Fimbrin, Filamin, Lifeact and F-tractin do not recognise fusomal F-actin. We therefore propose that Shot propagates fusome asymmetry by recognising a specific conformational state of F-actin on the fusome.


Subject(s)
Actins , Drosophila , Animals , Actin Cytoskeleton , Filamins , Mammals , Oocytes
14.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39133134

ABSTRACT

Rho/Rac of plant (ROP) GTPases are plant-specific proteins that function as molecular switches, activated by guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). The bryophyte Marchantia polymorpha contains single copies of ROP (MpROP), GEFs [ROPGEF and SPIKE (SPK)] and GAPs [ROPGAP and ROP ENHANCER (REN)]. MpROP regulates the development of various tissues and organs, such as rhizoids, gemmae and air chambers. The ROPGEF KARAPPO (MpKAR) is essential for gemma initiation, but the functions of other ROP regulatory factors are less understood. This study focused on two GAPs: MpROPGAP and MpREN. Mpren single mutants showed defects in thallus growth, rhizoid tip growth, gemma development, and air-chamber formation, whereas Mpropgap mutants showed no visible abnormalities. However, Mpropgap Mpren double mutants had more severe phenotypes than the Mpren single mutants, suggesting backup roles of MpROPGAP in processes involving MpREN. Overexpression of MpROPGAP and MpREN resulted in similar gametophyte defects, highlighting the importance of MpROP activation/inactivation cycling (or balancing). Thus, MpREN predominantly, and MpROPGAP as a backup, regulate gametophyte development, likely by controlling MpROP activation in M. polymorpha.


Subject(s)
Marchantia , Plant Proteins , Marchantia/genetics , Marchantia/metabolism , Marchantia/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Mutation/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Organogenesis, Plant/genetics , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/genetics
15.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38546045

ABSTRACT

The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.


Subject(s)
Actins , Ciliopathies , GTPase-Activating Proteins , Mice , Humans , Animals , Actins/metabolism , Cilia/metabolism , Polymerization
16.
Proc Natl Acad Sci U S A ; 121(29): e2400569121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985771

ABSTRACT

Defects in planar cell polarity (PCP) have been implicated in diverse human pathologies. Vangl2 is one of the core PCP components crucial for PCP signaling. Dysregulation of Vangl2 has been associated with severe neural tube defects and cancers. However, how Vangl2 protein is regulated at the posttranslational level has not been well understood. Using chemical reporters of fatty acylation and biochemical validation, here we present that Vangl2 subcellular localization is regulated by a reversible S-stearoylation cycle. The dynamic process is mainly regulated by acyltransferase ZDHHC9 and deacylase acyl-protein thioesterase 1 (APT1). The stearoylation-deficient mutant of Vangl2 shows decreased plasma membrane localization, resulting in disruption of PCP establishment during cell migration. Genetically or pharmacologically inhibiting ZDHHC9 phenocopies the effects of the stearoylation loss of Vangl2. In addition, loss of Vangl2 stearoylation enhances the activation of oncogenic Yes-associated protein 1 (YAP), serine-threonine kinase AKT, and extracellular signal-regulated protein kinase (ERK) signaling and promotes breast cancer cell growth and HRas G12V mutant (HRasV12)-induced oncogenic transformation. Our results reveal a regulation mechanism of Vangl2, and provide mechanistic insight into how fatty acid metabolism and protein fatty acylation regulate PCP signaling and tumorigenesis by core PCP protein lipidation.


Subject(s)
Cell Membrane , Cell Polarity , Membrane Proteins , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Polarity/physiology , Cell Membrane/metabolism , Cell Movement , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/genetics , Acyltransferases/metabolism , Acyltransferases/genetics , Animals , Signal Transduction , Protein Processing, Post-Translational , Intracellular Signaling Peptides and Proteins
17.
Proc Natl Acad Sci U S A ; 121(35): e2405217121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172791

ABSTRACT

Intercellular signaling mediated by evolutionarily conserved planar cell polarity (PCP) proteins aligns cell polarity along the tissue plane and drives polarized cell behaviors during tissue morphogenesis. Accumulating evidence indicates that the vertebrate PCP pathway is regulated by noncanonical, ß-catenin-independent Wnt signaling; however, the signaling components and mechanisms are incompletely understood. In the mouse hearing organ, both PCP and noncanonical Wnt (ncWnt) signaling are required in the developing auditory sensory epithelium to control cochlear duct elongation and planar polarity of resident sensory hair cells (HCs), including the shape and orientation of the stereociliary hair bundle essential for sound detection. We have recently discovered a Wnt/G-protein/PI3K pathway that coordinates HC planar polarity and intercellular PCP signaling. Here, we identify Wnt7b as a ncWnt ligand acting in concert with Wnt5a to promote tissue elongation in diverse developmental processes. In the cochlea, Wnt5a and Wnt7b are redundantly required for cochlear duct coiling and elongation, HC planar polarity, and asymmetric localization of core PCP proteins Fzd6 and Dvl2. Mechanistically, Wnt5a/Wnt7b-mediated ncWnt signaling promotes membrane recruitment of Daple, a nonreceptor guanine nucleotide exchange factor for Gαi, and activates PI3K/AKT and ERK signaling, which promote asymmetric Fzd6 localization. Thus, ncWnt and PCP signaling pathways have distinct mutant phenotypes and signaling components, suggesting that they act as separate, parallel pathways with nonoverlapping functions in cochlear morphogenesis. NcWnt signaling drives tissue elongation and reinforces intercellular PCP signaling by regulating the trafficking of PCP-specific Frizzled receptors.


Subject(s)
Cell Polarity , Wnt Proteins , Wnt Signaling Pathway , Wnt-5a Protein , Animals , Cell Polarity/physiology , Wnt Proteins/metabolism , Wnt Proteins/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Mice , Wnt Signaling Pathway/physiology , Cochlea/metabolism , Cochlea/cytology , Cochlea/growth & development , Hair Cells, Auditory/metabolism , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Morphogenesis
18.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38669183

ABSTRACT

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Subject(s)
Carrier Proteins , Cell Polarity , Membrane Proteins , Spine , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , Humans , Mice , Cell Polarity/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Spine/abnormalities , Spine/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Scoliosis/genetics , Scoliosis/congenital , Scoliosis/metabolism , Wnt Signaling Pathway/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Female
19.
Hum Mol Genet ; 33(2): 150-169, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-37815931

ABSTRACT

Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.


Subject(s)
Heart Defects, Congenital , Zebrafish , Animals , Humans , Cell Polarity/genetics , Germ Cells/metabolism , Germ-Line Mutation/genetics , Heart Defects, Congenital/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
20.
J Cell Sci ; 137(5)2024 03 01.
Article in English | MEDLINE | ID: mdl-38441500

ABSTRACT

In this Perspective, Journal of Cell Science invited researchers working on cell and tissue polarity to share their thoughts on unique, emerging or open questions relating to their field. The goal of this article is to feature 'voices' from scientists around the world and at various career stages, to bring attention to innovative and thought-provoking topics of interest to the cell biology community. These voices discuss intriguing questions that consider polarity across scales, evolution, development and disease. What can yeast and protists tell us about the evolution of cell and tissue polarity in animals? How are cell fate and development influenced by emerging dynamics in cell polarity? What can we learn from atypical and extreme polarity systems? How can we arrive at a more unified biophysical understanding of polarity? Taken together, these pieces demonstrate the broad relevance of the fascinating phenomenon of cell polarization to diverse fundamental biological questions.


Subject(s)
Cell Polarity , Research Personnel , Animals , Humans , Biophysics , Cell Differentiation , Saccharomyces cerevisiae
SELECTION OF CITATIONS
SEARCH DETAIL