Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Biochem ; 91: 61-87, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35363509

ABSTRACT

Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery.

2.
Annu Rev Biochem ; 88: 365-381, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30633551

ABSTRACT

Covalent inhibitors are widely used in drug discovery and chemical biology. Although covalent inhibitors are frequently designed to react with noncatalytic cysteines, many ligand binding sites lack an accessible cysteine. Here, we review recent advances in the chemical biology of lysine-targeted covalent inhibitors and chemoproteomic probes. By analyzing crystal structures of proteins bound to common metabolites and enzyme cofactors, we identify a large set of mostly unexplored lysines that are potentially targetable with covalent inhibitors. In addition, we describe mass spectrometry-based approaches for determining proteome-wide lysine ligandability and lysine-reactive chemoproteomic probes for assessing drug-target engagement. Finally, we discuss the design of amine-reactive inhibitors that form reversible covalent bonds with their protein targets.


Subject(s)
Drug Discovery/methods , Lysine/chemistry , Proteome/metabolism , Ligands , Mass Spectrometry , Protein Binding , Proteome/chemistry , Sulfinic Acids
3.
Cell ; 172(1-2): 358-372.e23, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29307493

ABSTRACT

Metabolite-protein interactions control a variety of cellular processes, thereby playing a major role in maintaining cellular homeostasis. Metabolites comprise the largest fraction of molecules in cells, but our knowledge of the metabolite-protein interactome lags behind our understanding of protein-protein or protein-DNA interactomes. Here, we present a chemoproteomic workflow for the systematic identification of metabolite-protein interactions directly in their native environment. The approach identified a network of known and novel interactions and binding sites in Escherichia coli, and we demonstrated the functional relevance of a number of newly identified interactions. Our data enabled identification of new enzyme-substrate relationships and cases of metabolite-induced remodeling of protein complexes. Our metabolite-protein interactome consists of 1,678 interactions and 7,345 putative binding sites. Our data reveal functional and structural principles of chemical communication, shed light on the prevalence and mechanisms of enzyme promiscuity, and enable extraction of quantitative parameters of metabolite binding on a proteome-wide scale.


Subject(s)
Metabolome , Proteome/metabolism , Proteomics/methods , Signal Transduction , Software , Allosteric Regulation , Binding Sites , Escherichia coli , Metabolomics/methods , Protein Binding , Protein Interaction Maps , Proteome/chemistry , Saccharomyces cerevisiae , Sequence Analysis, Protein/methods
4.
Annu Rev Pharmacol Toxicol ; 64: 507-526, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37722721

ABSTRACT

Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.


Subject(s)
Drug Delivery Systems , Proteome , Humans , Technology
5.
J Biol Chem ; 300(8): 107506, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944118

ABSTRACT

Iron-sulfur (Fe-S) clusters are required for essential biological pathways, including respiration and isoprenoid biosynthesis. Complex Fe-S cluster biogenesis systems have evolved to maintain an adequate supply of this critical protein cofactor. In Escherichia coli, two Fe-S biosynthetic systems, the "housekeeping" Isc and "stress responsive" Suf pathways, interface with a network of cluster trafficking proteins, such as ErpA, IscA, SufA, and NfuA. GrxD, a Fe-S cluster-binding monothiol glutaredoxin, also participates in Fe-S protein biogenesis in both prokaryotes and eukaryotes. Previous studies in E. coli showed that the ΔgrxD mutation causes sensitivity to iron depletion, spotlighting a critical role for GrxD under conditions that disrupt Fe-S homeostasis. Here, we utilized a global chemoproteomic mass spectrometry approach to analyze the contribution of GrxD to the Fe-S proteome. Our results demonstrate that (1) GrxD is required for biogenesis of a specific subset of Fe-S proteins under iron-depleted conditions, (2) GrxD is required for cluster delivery to ErpA under iron limitation, (3) GrxD is functionally distinct from other Fe-S trafficking proteins, and (4) GrxD Fe-S cluster binding is responsive to iron limitation. All these results lead to the proposal that GrxD is required to maintain Fe-S cluster delivery to the essential trafficking protein ErpA during iron limitation conditions.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Glutaredoxins , Iron-Sulfur Proteins , Iron , Escherichia coli/metabolism , Escherichia coli/genetics , Glutaredoxins/metabolism , Glutaredoxins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Iron/metabolism , Stress, Physiological , Lyases
6.
J Proteome Res ; 23(8): 3716-3725, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39008777

ABSTRACT

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 µg of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g., H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 µg of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamline the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.


Subject(s)
Cysteine , Tandem Mass Spectrometry , Acylation , Animals , Cysteine/chemistry , Cysteine/metabolism , Mice , Tandem Mass Spectrometry/methods , Hydroxylamine/chemistry , Chromatography, Liquid/methods , Lipoylation , Protein Processing, Post-Translational , Sulfhydryl Compounds/chemistry , Proteins/chemistry , Proteins/metabolism , Brain/metabolism
7.
Expert Rev Mol Med ; 26: e6, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38604802

ABSTRACT

Target deconvolution can help understand how compounds exert therapeutic effects and can accelerate drug discovery by helping optimise safety and efficacy, revealing mechanisms of action, anticipate off-target effects and identifying opportunities for therapeutic expansion. Chemoproteomics, a combination of chemical biology with mass spectrometry has transformed target deconvolution. This review discusses modification-free chemoproteomic approaches that leverage the change in protein thermodynamics induced by small molecule ligand binding. Unlike modification-based methods relying on enriching specific protein targets, these approaches offer proteome-wide evaluations, driven by advancements in mass spectrometry sensitivity, increasing proteome coverage and quantitation methods. Advances in methods based on denaturation/precipitation by thermal or chemical denaturation, or by protease degradation are evaluated, emphasising the evolving landscape of chemoproteomics and its potential impact on future drug-development strategies.


Subject(s)
Drug Discovery , Proteome , Humans , Proteome/analysis , Proteome/chemistry , Proteome/metabolism , Drug Discovery/methods , Mass Spectrometry , Drug Development
8.
Chembiochem ; 25(16): e202400382, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38819848

ABSTRACT

Imidazole-1-sulfonyl and -sulfonate (imidazylate) are widely used in synthetic chemistry as nucleofuges for diazotransfer, nucleophilic substitution, and cross-coupling reactions. The utility of these reagents for protein bioconjugation, in contrast, have not been comprehensively explored and important considering the prevalence of imidazoles in biomolecules and drugs. Here, we synthesized a series of alkyne-modified sulfonyl- and sulfonate-imidazole probes to investigate the utility of this electrophile for protein binding. Alkylation of the distal nitrogen activated the nucleofuge capability of the imidazole to produce sulfonyl-imidazolium electrophiles that were highly reactive but unstable for biological applications. In contrast, arylsulfonyl imidazoles functioned as a tempered electrophile for assessing ligandability of select tyrosine and lysine sites in cell proteomes and when mated to a recognition element could produce targeted covalent inhibitors with reduced off-target activity. In summary, imidazole nucleofuges show balanced stability and tunability to produce sulfone-based electrophiles that bind functional tyrosine and lysine sites in the proteome.


Subject(s)
Imidazoles , Tyrosine , Imidazoles/chemistry , Imidazoles/chemical synthesis , Humans , Tyrosine/chemistry , Molecular Structure , Alkylation
9.
Mol Cell Proteomics ; 21(3): 100197, 2022 03.
Article in English | MEDLINE | ID: mdl-35033677

ABSTRACT

The gut microbiota plays an important yet incompletely understood role in the induction and propagation of ulcerative colitis (UC). Organism-level efforts to identify UC-associated microbes have revealed the importance of community structure, but less is known about the molecular effectors of disease. We performed 16S rRNA gene sequencing in parallel with label-free data-dependent LC-MS/MS proteomics to characterize the stool microbiomes of healthy (n = 8) and UC (n = 10) patients. Comparisons of taxonomic composition between techniques revealed major differences in community structure partially attributable to the additional detection of host, fungal, viral, and food peptides by metaproteomics. Differential expression analysis of metaproteomic data identified 176 significantly enriched protein groups between healthy and UC patients. Gene ontology analysis revealed several enriched functions with serine-type endopeptidase activity overrepresented in UC patients. Using a biotinylated fluorophosphonate probe and streptavidin-based enrichment, we show that serine endopeptidases are active in patient fecal samples and that additional putative serine hydrolases are detectable by this approach compared with unenriched profiling. Finally, as metaproteomic databases expand, they are expected to asymptotically approach completeness. Using ComPIL and de novo peptide sequencing, we estimate the size of the probable peptide space unidentified ("dark peptidome") by our large database approach to establish a rough benchmark for database sufficiency. Despite high variability inherent in patient samples, our analysis yielded a catalog of differentially enriched proteins between healthy and UC fecal proteomes. This catalog provides a clinically relevant jumping-off point for further molecular-level studies aimed at identifying the microbial underpinnings of UC.


Subject(s)
Colitis, Ulcerative , Microbiota , Chromatography, Liquid , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/microbiology , Endopeptidases , Feces/microbiology , Humans , RNA, Ribosomal, 16S/genetics , Serine , Tandem Mass Spectrometry
10.
J Proteome Res ; 22(10): 3360-3367, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37676756

ABSTRACT

Activity-based proteome profiling (ABPP) is a powerful chemoproteomic technology for global profiling of protein activity and modifications. The tandem orthogonal proteolysis-ABPP (TOP-ABPP) strategy utilizes a clickable enrichment tag with cleavable linkers to enable direct identification of probe-labeled residue sites within the target proteins. However, such a site-specific chemoproteomic workflow requires a long operation time and complex sample preparation procedures, limiting its wide applications. In the current study, we developed a simplified and ultrafast peptide enrichment and release TOP-ABPP ("superTOP-ABPP") pipeline for site-specific quantitative chemoproteomic analysis with special agarose resins that are functionalized with azide groups and acid-cleavable linkers. The azide groups allow enrichment of peptides that are labeled by the alkynyl probe through a one-step click reaction, which can be conveniently released by acid cleavage for subsequent LC-MS/MS analysis. In comparison with the traditional TOP-ABPP method, superTOP-ABPP cuts down the averaged sample preparation time from 25 to 9 h, and significantly improves the sensitivity and coverage of site-specific cysteinome profiling. The method can also be seamlessly integrated with reductive dimethylation to enable quantitative chemoproteomic analysis with a high accuracy. The simplified and ultrafast superTOP-ABPP will become a valuable tool for site-specific quantitative chemoproteomic studies.

11.
J Proteome Res ; 22(7): 2218-2231, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37285454

ABSTRACT

Recent advances in targeted covalent inhibitors have aroused significant interest for their potential in drug development for difficult therapeutic targets. Proteome-wide profiling of functional residues is an integral step of covalent drug discovery aimed at defining actionable sites and evaluating compound selectivity in cells. A classical workflow for this purpose is called IsoTOP-ABPP, which employs an activity-based probe and two isotopically labeled azide-TEV-biotin tags to mark, enrich, and quantify proteome from two samples. Here we report a novel isobaric 11plex-AzidoTMT reagent and a new workflow, named AT-MAPP, that significantly expands multiplexing power as compared to the original isoTOP-ABPP. We demonstrate its application in identifying cysteine on- and off-targets using a KRAS G12C covalent inhibitor ARS-1620. However, changes in some of these hits can be explained by modulation at the protein and post-translational levels. Thus, it would be crucial to interrogate site-level bona fide changes in concurrence to proteome-level changes for corroboration. In addition, we perform a multiplexed covalent fragment screening using four acrylamide-based compounds as a proof-of-concept. This study identifies a diverse set of liganded cysteine residues in a compound-dependent manner with an average hit rate of 0.07% in intact cell. Lastly, we screened 20 sulfonyl fluoride-based compounds to demonstrate that the AT-MAPP assay is flexible for noncysteine functional residues such as tyrosine and lysine. Overall, we envision that 11plex-AzidoTMT will be a useful addition to the current toolbox for activity-based protein profiling and covalent drug development.


Subject(s)
Cysteine , Proteome , Proteome/metabolism , Cysteine/metabolism , Proteomics , Protein Processing, Post-Translational , Drug Discovery
12.
J Proteome Res ; 22(7): 2450-2459, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37347238

ABSTRACT

Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Bunge (Danshen), displays strong antiproliferative activity against cancer cells. However, their protein targets remain unknown. Here, we deconvoluted the protein targets of SAA using chemoproteomics and phosphoproteomics. By using alkynylated SAA as a probe, we discovered that SAA is a covalent ligand that can modify cellular proteins via its electrophilic α,ß-unsaturated ester moiety. The subsequent chemoproteomics profiling revealed that 46 proteins were covalently modified by SAA, including Raptor, a subunit of mTORC1 for recruiting substrates for mTORC1. Although gene ontology enrichment analysis of these proteins suggested that SAA displays a promiscuous protein interaction, phosphoproteomics profiling revealed that the SAA modulated phosphoproteins were mainly enriched in the signaling pathways of PI3K-Akt-mTOR, which is closely related to cell growth and proliferation. This was confirmed by the biochemical assay with purified mTORC1, a Western blot assay with phospho-specific antibodies, and a cellular thermal shift assay. Our work discovered that SAA is a covalent ligand for protein modification and mTORC1 is one of its targets. Moreover, our work demonstrated that the integrative profiling of chemoproteomics and phosphoproteomics can be a powerful tool for target deconvolution for bioactive natural products.


Subject(s)
Phosphatidylinositol 3-Kinases , Signal Transduction , Mechanistic Target of Rapamycin Complex 1 , Ligands , Caffeic Acids/pharmacology
13.
Chembiochem ; 24(11): e202200766, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36922348

ABSTRACT

Metastasis poses a major challenge in cancer management, including EML4-ALK-rearranged non-small cell lung cancer (NSCLC). As cell migration is a critical step during metastasis, we assessed the anti-migratory activities of several clinical ALK inhibitors in NSCLC cells and observed differential anti-migratory capabilities despite similar ALK inhibition, with brigatinib displaying superior anti-migratory effects over other ALK inhibitors. Applying an unbiased in situ mass spectrometry-based chemoproteomics approach, we determined the proteome-wide target profile of brigatinib in EML4-ALK+ NSCLC cells. Dose-dependent and cross-competitive chemoproteomics suggested MARK2 and MARK3 as relevant brigatinib kinase targets. Functional validation showed that combined pharmacological inhibition or genetic modulation of MARK2/3 inhibited cell migration. Consistently, brigatinib treatment induced inhibitory YAP1 phosphorylation downstream of MARK2/3. Collectively, our data suggest that brigatinib exhibits unusual cross-phenotype polypharmacology as, despite similar efficacy for inhibiting EML4-ALK-dependent cell proliferation as other ALK inhibitors, it more effectively prevented migration of NSCLC cells due to co-targeting of MARK2/3.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Anaplastic Lymphoma Kinase/therapeutic use , Organophosphorus Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Cell Movement , Protein Serine-Threonine Kinases
14.
Chembiochem ; 24(23): e202300371, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37756477

ABSTRACT

Dysregulated oxidative stress plays a major role in cancer pathogenesis and some types of cancer cells are particularly vulnerable to inhibition of their cellular antioxidant capacity. Glutamate-cysteine ligase (GCL) is the first and rate-limiting step in the synthesis of the major cellular antioxidant glutathione (GSH). Developing a GCL inhibitor may be an attractive therapeutic strategy for certain cancer types that are particularly sensitive to oxidative stress. In this study, we reveal a cysteine-reactive ligand, EN25, that covalently targets an allosteric cysteine C114 on GCLM, the modifier subunit of GCL, and leads to inhibition of GCL activity. This interaction also leads to reduced cellular GSH levels and impaired cell viability in ARID1A-deficient cancer cells, which are particularly vulnerable to glutathione depletion, but not in ARID1A-positive cancer cells. Our studies uncover a novel potential ligandable site within GCLM that can be targeted to inhibit GSH synthesis in vulnerable cancer cell types.


Subject(s)
Antioxidants , Glutamate-Cysteine Ligase , Glutamate-Cysteine Ligase/metabolism , Cysteine/metabolism , Enzyme Inhibitors , Glutathione/metabolism
15.
Chembiochem ; 24(7): e202200669, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36652345

ABSTRACT

PLP-dependent enzymes represent an important class of highly "druggable" enzymes that perform a wide array of critical reactions to support all organisms. Inhibition of individual members of this family of enzymes has been validated as a therapeutic target for pathologies ranging from infection with Mycobacterium tuberculosis to epilepsy. Given the broad nature of the activities within this family of enzymes, we envisioned a universally acting probe to characterize existing and putative members of the family that also includes the necessary chemical moieties to enable activity-based protein profiling experiments. Hence, we developed a probe that contains an N-hydroxyalanine warhead that acts as a covalent inhibitor of PLP-dependent enzymes, a linear diazirine for UV crosslinking, and an alkyne moiety to enable enrichment of crosslinked proteins. Our molecule was used to study PLP-dependent enzymes in vitro as well as look at whole-cell lysates of M. tuberculosis and assess inhibitory activity. The probe was able to enrich and identify LysA, a PLP-dependent enzyme crucial for lysine biosynthesis, through mass spectrometry. Overall, our study shows the utility of this trifunctional first-generation probe. We anticipate further optimization of probes for PLP-dependent enzymes will enable the characterization of rationally designed covalent inhibitors of PLP-dependent enzymes, which will expedite the preclinical characterization of these important therapeutic targets.


Subject(s)
Pyridoxal Phosphate , Pyridoxal Phosphate/chemistry , Models, Molecular , Mass Spectrometry
16.
Chembiochem ; 24(14): e202300111, 2023 07 17.
Article in English | MEDLINE | ID: mdl-36964942

ABSTRACT

Chlorinated gymnastatin and dankastatin alkaloids derived from the fungal strain Gymnascella dankaliensis have been reported to possess significant anticancer activity but their mode of action is unknown. These members possess electrophilic functional groups that can might undergo covalent bond formation with specific proteins to exert their biological activity. To better understand the mechanism of action of this class of natural products, we mapped the proteome-wide cysteine reactivity of the most potent of these alkaloids, dankastatin B, by using activity-based protein profiling chemoproteomic approaches. We identified a primary target of dankastatin B in breast cancer cells as cysteine C65 of the voltage-dependent anion-selective channel on the outer mitochondrial membrane VDAC3. We demonstrated direct and covalent interaction of dankastatin B with VDAC3. VDAC3 knockdown conferred hypersensitivity to dankastatin B-mediated antiproliferative effects in breast cancer cells, thus indicating that VDAC3 was at least partially involved in the anticancer effects of this natural product. Our study reveals a potential mode of action of dankastatin B through covalent targeting of VDAC3 and highlights the utility of chemoproteomic approaches in gaining mechanistic understanding of electrophilic natural products.


Subject(s)
Biological Products , Breast Neoplasms , Humans , Female , Cysteine/chemistry , Biological Products/chemistry , Mitochondria/metabolism , Breast Neoplasms/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Voltage-Dependent Anion Channels/metabolism
17.
Chembiochem ; 24(11): e202300116, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37069799

ABSTRACT

While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cysteine , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation
18.
Anal Bioanal Chem ; 415(4): 527-532, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36602567

ABSTRACT

The 2022 Nobel Prize in Chemistry recognized the development of biorthogonal chemical ligation reactions known as click chemistry in biomedicine. This concept has catalyzed significant progress in sensing and diagnosis, chemical biology, materials chemistry, and drug discovery and delivery. In proteomics, the ability to incorporate a click tag into proteins has propelled development of powerful new methods for selective enrichment of protein complexes that inform understanding of protein networks. It also has had a strong influence on the ability to enrich for protein post-translational modifications. This feature article summarizes the impacts of biorthogonal click chemistry on proteomics.


Subject(s)
Click Chemistry , Nobel Prize , Click Chemistry/methods , Proteins , Protein Processing, Post-Translational , Proteomics/methods , Chemistry
19.
Int J Mol Sci ; 24(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37298676

ABSTRACT

This study aimed at searching for the enzymes that are responsible for the higher hydroxylation of flavonols serving as UV-honey guides for pollinating insects on the petals of Asteraceae flowers. To achieve this aim, an affinity-based chemical proteomic approach was developed by relying on the use of quercetin-bearing biotinylated probes, which were thus designed and synthesized to selectively and covalently capture relevant flavonoid enzymes. Proteomic and bioinformatic analyses of proteins captured from petal microsomes of two Asteraceae species (Rudbeckia hirta and Tagetes erecta) revealed the presence of two flavonol 6-hydroxylases and several additional not fully characterized proteins as candidates for the identification of novel flavonol 8-hydroxylases, as well as relevant flavonol methyl- and glycosyltransferases. Generally speaking, this substrate-based proteome profiling methodology constitutes a powerful tool for the search for unknown (flavonoid) enzymes in plant protein extracts.


Subject(s)
Asteraceae , Flavonoids , Asteraceae/metabolism , Proteomics , Flavonols/metabolism , Mixed Function Oxygenases , Plant Proteins/metabolism
20.
Angew Chem Int Ed Engl ; 62(40): e202305866, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37309018

ABSTRACT

Cellular proteins are dynamically regulated in response to environmental stimuli. Conventional proteomics compares the entire proteome in different cellular states to identify differentially expressed proteins, which suffers from limited sensitivity for analyzing acute and subtle changes. To address this challenge, nascent proteomics has been developed, which selectively analyzes the newly synthesized proteins, thus offering a more sensitive and timely insight into the dynamic changes of the proteome. In this Minireview, we discuss recent advancements in nascent proteomics, with an emphasis on methodological developments. Also, we delve into the current challenges and provide an outlook on the future prospects of this exciting field.


Subject(s)
Proteome , Proteomics , Proteome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL