Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(34): e2309043120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37590416

ABSTRACT

Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.


Subject(s)
Apicoplasts , Cysts , Toxoplasma , Toxoplasmosis , Animals , Female , Pregnancy , Humans , Toxoplasma/genetics , Central Nervous System , Mammals
2.
Parasitol Res ; 123(8): 303, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39160298

ABSTRACT

This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.


Subject(s)
Brain , Disease Models, Animal , Mice, Inbred C57BL , Nebivolol , Parasite Load , Toxoplasmosis, Animal , Animals , Nebivolol/pharmacology , Nebivolol/therapeutic use , Mice , Toxoplasmosis, Animal/drug therapy , Toxoplasmosis, Animal/parasitology , Brain/parasitology , Brain/pathology , Brain/drug effects , Female , Neurons/drug effects , Neurons/parasitology , Ethanolamines/pharmacology , Ethanolamines/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Treatment Outcome , Nitric Oxide/metabolism , Toxoplasma/drug effects , Nitric Oxide Synthase Type II/metabolism
3.
Exp Parasitol ; 246: 108460, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642299

ABSTRACT

Chronic toxoplasmosis which is positively correlated with many neuropsychiatric problems has no curative treatment till now; due to the resistant tissue cysts especially in the brain. In search of an effective treatment, guanabenz-loaded polyethylene glycol poly lactic-co-glycolic acid (PEG-PLGA) nanoparticles was evaluated against chronic experimental toxoplasmosis. For this purpose, each mouse was infected with 10 cysts of Toxoplasma gondii (ME 49 strain). Treated mice received either guanabenz alone (5 mg/kg/day) in subgroup IIa or guanabenz-loaded nanoparticles by full dose in subgroup IIb or guanabenz-loaded nanoparticles by the half dose (2.5 mg/kg/day) in subgroup IIc. Subgroup Ie was treated by pyrimethamine and sulfadiazine. The treatment started on day 25 post-infection for 19 successive days. Then Parasitological, histopathological, immunohistochemical, immunological and ultrastructural morphological studies were performed. The results showed that: subgroup IIb showed the highest statistically significant reduction in the neuroinflammation and brain tissue cysts (77%) with a significant higher efficacy in comparison with pyrimethamine and sulfadiazine and showed the highest level of IFN-γ, while the lowest level was in subgroup IIa. All group II mice showed similar changes of depression and compression of the wall of the cyst. This is marked in subgroup IIb with release of crescent shaped bradyzoite outside the cyst. PEG-PLGA nanoparticles had no toxic effect on the liver or the kidney of the mice. It could be concluded that guanabenz-loaded PEG-PLGA nanoparticles could be promising and safe for treatment of chronic toxoplasmosis.


Subject(s)
Guanabenz , Nanoparticles , Toxoplasma , Toxoplasmosis , Animals , Mice , Guanabenz/pharmacology , Guanabenz/therapeutic use , Nanoparticles/therapeutic use , Pyrimethamine/therapeutic use , Pyrimethamine/pharmacology , Sulfadiazine/therapeutic use , Sulfadiazine/pharmacology , Toxoplasmosis/drug therapy
4.
J Clin Microbiol ; 59(8): e0041621, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34077255

ABSTRACT

To improve serodiagnostic methods for diagnosis of acute from chronic toxoplasmosis, an economical in-house enzyme-linked immunosorbent assay (ELISA) for measuring Toxoplasma-specific IgG, IgM, and IgG avidity has been developed and assessed based on use of various Toxoplasma gondii antigens, including SAG1, GRA7, and a combination of SAG1 and GRA7 (SAG1+GRA7), as well as Toxoplasma lysate antigens (TLAs). Performances of in-house IgM, IgG, and IgG avidity assays were compared to those of ELISA commercial kits and VIDAS Toxo IgG avidity. A set of 138 sera from patients with acquired T. gondii infection and seronegative people were assessed. Receiver operating characteristic (ROC) analysis revealed an area under curve (AUC) of 0.98, 0.97, 0.99, and 0.99 for IgM-TLAs, IgM-SAG1, IgM-GRA7, and IgM-SAG1+GRA7, respectively. Furthermore, AUC was calculated as 0.99, 0.99, 0.98, and 0.99 for IgG-TLAs, IgG-SAG1, IgG-GRA7, and IgG-SAG1+GRA7, respectively. The current study showed that GRA7 included 100% sensitivity for the detection of Toxo IgM, while SAG1 included 89.7% sensitivity. Furthermore, the highest specificity (97.2%) to detect Toxo IgM was achieved using SAG1+GRA7 antigen. For the detection of Toxo IgG, the highest sensitivity (100%) was recorded for SAG1+GRA7, followed by TLAs (97.9%). The SAG1+GRA7 showed the greatest potential for assessing avidity of IgG antibodies, with 97.1% sensitivity and 96.6% specificity compared to those of VIDAS Toxo IgG avidity. The preliminary results have promised better discriminations between acute and chronic infections using a combination of SAG1 and GRA7 recombinant antigens compared to those using TLAs.


Subject(s)
Toxoplasma , Toxoplasmosis , Antibodies, Protozoan , Antibody Affinity , Antigens, Protozoan , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , Immunoglobulin M , Sensitivity and Specificity , Toxoplasmosis/diagnosis
5.
Molecules ; 26(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557392

ABSTRACT

BACKGROUND: Myrtus communis (M. communis) is a wild aromatic plant used for traditional herbal medicine that can be demonstrated in insecticidal, antioxidant, anti-inflammatory, and antimicrobial activity of its essential oils (MCEO). AIM: The present study aimed to evaluate the prophylactic effects of M. communis essential oil (MCEO) against chronic toxoplasmosis induced by the Tehran strain of Toxoplasma gondii in mice. METHODS: Gas chromatography/mass spectrometry (GC/MS) analysis was performed to determine the chemical composition of MCEO. Mice were then orally administrated with MCEO at the doses of 100, 200, and 300 mg/kg/day and also atovaquone 100 mg/kg for 21 days. On the 15th day, the mice were infected with the intraperitoneal inoculation of 20-25 tissue cysts from the Tehran strain of T. gondii. The mean numbers of brain tissue cysts and the mRNA levels of IL-12 and IFN-γ in mice of each tested group were measured. RESULTS: By GC/MS, the major constituents were α-pinene (24.7%), 1,8-cineole (19.6%), and linalool (12.6%), respectively. The results demonstrated that the mean number of T. gondii tissue cysts in experimental groups Ex1 (p < 0.05), Ex2 (p < 0.001) and Ex3 (p < 0.001) was meaningfully reduced in a dose-dependent manner compared with the control group (C2). The mean diameter of tissue cyst was significantly reduced in mice of the experimental groups Ex2 (p < 0.01) and Ex3 (p < 0.001). The results demonstrated that although the mRNA levels of IFN-γ and IL-12 were elevated in all mice of experimental groups, a significant increase (p < 0.001) was observed in tested groups of Ex2 and Ex3 when compared with control groups. CONCLUSION: The findings of the present study demonstrated the potent prophylactic effects of MCEO especially in the doses 200 and 300 mg/kg in mice infected with T. gondii. Although the exceptional anti-Toxoplasma effects of MCEO and other possessions, such as improved innate immunity and low toxicity are positive topics, there is, however, a need for more proof from investigations in this field.


Subject(s)
Antiparasitic Agents/pharmacology , Immunity, Innate/drug effects , Myrtus/chemistry , Oils, Volatile/pharmacology , Toxoplasmosis/immunology , Animals , Antiparasitic Agents/therapeutic use , Mice , Oils, Volatile/therapeutic use , Toxoplasma/drug effects , Toxoplasma/physiology , Toxoplasmosis/drug therapy
6.
World J Microbiol Biotechnol ; 37(3): 48, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33566198

ABSTRACT

Toxoplasma gondii is a worldwide protozoan parasite that infects almost all warm-blooded animals. Although human toxoplasmosis is mostly latent, pregnant women and immunocompromised patients need effective treatment. There are drugs of choice for treatment of toxoplasmosis; however, due to their side effects and/or their disease stage-specificity, prescription of them is limited. During recent years, nanomedicine has been employed to overcome limitations of conventional drugs. Here, we provided a state-of-the-art review of experimental toxoplasmosis treatment using nanotechnology.


Subject(s)
Nanomedicine , Toxoplasma/drug effects , Toxoplasmosis/drug therapy , Animals , Drug Delivery Systems , Drug-Related Side Effects and Adverse Reactions , Humans , Pharmaceutical Preparations , Toxoplasmosis/parasitology , Treatment Outcome , Zoonoses/parasitology
7.
J Clin Microbiol ; 58(9)2020 08 24.
Article in English | MEDLINE | ID: mdl-32321784

ABSTRACT

Risk of mother-to-child transmission of Toxoplasma gondii during pregnancy is much greater in women who are exposed to primary T. gondii infection (toxoplasmosis) after conception compared to those who were exposed to the infection before conception. Therefore, laboratory tests that help classify recent primary toxoplasmosis are important tools for the management of pregnant women suspected to have T. gondii exposure. Detection of Toxoplasma IgM (Toxo IgM) is a sensitive indicator of primary toxoplasmosis, but the indicator specificity is low because sometimes natural IgM antibodies react with Toxoplasma antigens in the absence of the infection. Furthermore, Toxo IgM sometimes persists in blood serum for several months or years following the primary infection. In recent decades, Toxo IgG avidity assay has been used as a standard diagnostic technique for a better estimation of the infection acquisition time and identification of the primary T. gondii infection during pregnancy. Avidity is described as the aggregate strength; by which, a mixture of polyclonal IgG molecules reacts with multiple epitopes of the proteins. This parameter matures gradually within 6 months of the primary infection. A high Toxo IgG avidity index allows a recent infection (less than 4 months) to be excluded, whereas a low Toxo IgG avidity index indicates a probable recent infection with no exclusions of the older infections. This minireview is based on various aspects of T. gondii IgG avidity testing, including (i) description of avidity and basic methods used in primary studies on T. gondii IgG avidity and primary infections; (ii) importance of IgG avidity testing in pregnancy; (iii) result summary of the major studies on the use of T. gondii IgG avidity assay in pregnancy; (iv) brief explanation of the T. gondii IgG avidity values in newborns; (v) result summary of the major studies on T. gondii IgG avidity and PCR; (vi) discussion of commercially available T. gondii IgG avidity assays, including newer automated assays; and (vii) current issues and controversies in diagnosis of primary T. gondii infections in pregnancy.


Subject(s)
Toxoplasma , Toxoplasmosis , Antibodies, Protozoan , Antibody Affinity , Female , Humans , Immunoglobulin G , Immunoglobulin M , Infant, Newborn , Infectious Disease Transmission, Vertical , Pregnancy , Toxoplasmosis/diagnosis
8.
Exp Parasitol ; 206: 107756, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31494217

ABSTRACT

Toxoplasma gondii is a widely distributed protozoan parasite, which affects worm-blooded animals including human. The commonest chemotherapeutics used for treatment of symptomatic toxoplasmosis have numerous adverse effects. Thus there is an eminent need to develop new therapeutic agents. Here we described the therapeutic efficacy of 4-(2-chloroquinolin-3-yl)-6-(2,5-dimethoxyphenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile (PPQ-8); a quinoline-related compound in a mouse model of acute and chronic toxoplasmosis. In acute infection, PPQ-8 decreased the parasite load in liver and spleen with amelioration of the hepatic and splenic pathology. In addition, recovered tachyzoites showed distorted shapes, reduced sizes, irregularities, surface protrusions, erosions and peeling besides apical region distortion when seen by scanning electron microscopy. In chronic toxoplasmosis, PPQ-8 produced degeneration and reduction of the brain cysts without stimulating a damaging inflammatory response within the brain. In both models acute and chronic, PPQ-8 prolonged the survival time of mice. These findings hold promise for the development of a novel anti-toxoplasmosis drug using PPQ-8, but further in vivo studies should be carried out to elucidate PPQ-8 mechanism of action and to report its efficacy in combination with other anti-toxoplasmosis agents.


Subject(s)
Quinolines/therapeutic use , Toxoplasma/pathogenicity , Toxoplasmosis, Animal/drug therapy , Acute Disease , Analysis of Variance , Animals , Ascitic Fluid/parasitology , Brain/parasitology , Brain/pathology , Chronic Disease , Female , Kaplan-Meier Estimate , Liver/parasitology , Liver/pathology , Mice , Microscopy, Electron, Scanning , Normal Distribution , Quinolines/chemical synthesis , Quinolines/chemistry , Quinolines/toxicity , Random Allocation , Spleen/parasitology , Spleen/pathology , Toxoplasma/drug effects , Toxoplasma/ultrastructure , Toxoplasmosis, Animal/parasitology
9.
BMC Infect Dis ; 18(1): 117, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29514647

ABSTRACT

BACKGROUND: Toxoplasma gondii is an obligate intracellular parasite that can infect almost all warm-blooded animals. T. gondii profilin (TgPF) plays a crucial role in parasite motility and host cell invasion, and has shown promise against toxoplasmosis. DNA vaccine was considered to elicit effective humoral and cell-mediated immunity against T. gondii infection. The objective of the present study was to evaluate the immunogenicity of TgPF in mice using a DNA vaccination strategy. METHODS: A DNA vaccine (pVAX-PF) encoding TgPF gene was constructed and then was intramuscularly injected into mice with and without a plasmid encoding IL-15 (pVAX-IL-15). The immune responses in immunized Kunming mice including lymphocyte proliferation, levels of cytokines, antibody titers and T lymphocyte subclasses were analyzed. The protective efficacy against chronic T. gondii infection was observed at 4 weeks post-infection with the cyst-forming PRU strain of T. gondii (Genotype II). RESULTS: EitherpVAX-PF with or without pVAX-IL-15 could elicit higher level of IgG and IgG2a antibodies and produce strong cellular immune responses in the immunized mice. The brain cyst numbers in mice immunized with pVAX-PF + pVAX-IL-15 (1843 ± 215.7) and pVAX-PF (1897 ± 337.8) were reduced 40.82% and 39.08%, respectively, compared to that in mice received nothing (3114 ± 168.8), and the differences were statistically significant (P < 0.0001). However, the T. gondii cyst numbers in mice immunized with pVAX-PF + pVAX-IL-15 were not statistically significantly different compared to that in mice immunized with pVAX-PF alone [t(10) = 0.33, P > 0.05]. CONCLUSIONS: The present study indicated that TgPF could be a promising vaccine candidate against chronic toxoplasmosis, which can be further used to develop multi-epitope vaccine formulations in food-producing animals against T. gondii infection.


Subject(s)
Profilins/genetics , Protozoan Proteins/genetics , Protozoan Vaccines/immunology , Toxoplasma/immunology , Toxoplasmosis/prevention & control , Vaccines, DNA/immunology , Animals , Antibodies, Protozoan/blood , Cytokines/analysis , Enzyme-Linked Immunosorbent Assay , Female , Immunity, Cellular , Immunoglobulin G/blood , Immunoglobulin G/classification , Injections, Intramuscular , Interleukin-15/genetics , Mice , Plasmids/genetics , Plasmids/metabolism , T-Lymphocytes/classification , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Toxoplasmosis/immunology , Vaccines, DNA/genetics
10.
Exp Parasitol ; 185: 62-70, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29309783

ABSTRACT

The development of an effective and safe vaccine to prevent Toxoplasma gondii infection is an important aim due to the great clinical and economic impact of this parasitosis. We have previously demonstrated that immunization with the serine protease inhibitor-1 (TgPI-1) confers partial protection to C3H/HeN and C57BL/6 mice. In order to improve the level of protection, in this work, we combined this novel antigen with ROP2 and/or GRA4 recombinant proteins (rTgPI-1+rROP2, rTgPI-1+rGRA4, rTgPI-1+rROP2+rGRA4) to explore the best combination against chronic toxoplasmosis in C3H/HeN mice. All tested vaccine formulations, administered following a homologous prime-boost protocol that combines intradermal and intranasal routes, conferred partial protection as measured by the reduction of brain cyst burden following oral challenge with tissue cysts of Me49 T. gondii strain. The highest level of protection was achieved by the mixture of rTgPI-1 and rROP2 proteins with an average parasite burden reduction of 50% compared to the unvaccinated control group. The vaccine-induced protective effect was related to the elicitation of systemic cellular and humoral immune responses that included antigen-specific spleen cell proliferation, the release of Th1/Th2 cytokines, and the generation of antigen-specific antibodies in serum. Additionally, mucosal immune responses were also induced, characterized by secretion of antigen-specific IgA antibodies in intestinal lavages and specific mesenteric lymph node cell proliferation. Our results demonstrate that rTgPI-1+rROP2 antigens seem a promising mixture to be combined with other immunogenic proteins in a multiantigenic vaccine formulation against toxoplasmosis.


Subject(s)
Antigens, Protozoan/immunology , Protozoan Vaccines/standards , Toxoplasma/immunology , Toxoplasmosis, Animal/prevention & control , Animals , Antibodies, Protozoan/blood , Cell Line , Chronic Disease , Cytokines/metabolism , Female , Fibroblasts/parasitology , Foreskin/cytology , Humans , Immunoglobulin A, Secretory/analysis , Immunoglobulin G/blood , Intestinal Mucosa/immunology , Male , Membrane Proteins/immunology , Mice , Mice, Inbred C3H , Protozoan Proteins/immunology , Spleen/cytology , Spleen/immunology , Vaccines, Synthetic/standards
11.
Exp Parasitol ; 157: 12-22, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26112396

ABSTRACT

Toxoplasmosis is a zoonotic protozoal disease affecting more than a billion people worldwide. The shortfalls of the current treatment options necessitate the development of non-toxic and well-tolerated, efficient alternatives especially against the cyst form. The current study was undertaken to investigate, for the first time, the potential potency of miltefosine against Toxoplasma gondii infection in acute and chronic experimental toxoplasmosis. Results showed that there is no evidence of anti-parasitic activity of miltefosine against T. gondii tachyzoites in acute experimental toxoplasmosis. However, anti-parasitic activity of miltefosine against T. gondii cyst stage in chronic experimental toxoplasmosis could not be excluded as demonstrated by significant reduction in brain cyst burden. Moreover, considerable morphological changes in the cysts were revealed by light and electron microscopy study and also by amelioration of pathological changes in the brain. Future studies should focus on enhancement of anti-toxoplasma activity of miltefosine against chronic toxoplasmosis using formulation based nanotechnology. To the best of our knowledge, this is the first study highlighting efficacy of miltefosine against chronic toxoplasmosis, thus, increasing the list of diseases that can be targeted by this drug.


Subject(s)
Antiprotozoal Agents/therapeutic use , Infectious Encephalitis/drug therapy , Phosphorylcholine/analogs & derivatives , Toxoplasma/growth & development , Toxoplasmosis, Animal/drug therapy , Animals , Antiprotozoal Agents/pharmacology , Brain/parasitology , Brain/pathology , Disease Models, Animal , Infectious Encephalitis/mortality , Infectious Encephalitis/parasitology , Liver/parasitology , Liver/pathology , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Spleen/parasitology , Spleen/pathology , Survival Rate , Toxoplasma/drug effects , Toxoplasma/ultrastructure , Toxoplasmosis, Animal/mortality , Toxoplasmosis, Animal/parasitology
12.
Int J Med Microbiol ; 304(7): 911-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25037927

ABSTRACT

Toxoplasmosis is an important zoonosis transmitted from animals to humans world-wide. In order to determine Toxoplasma gondii genotypes in individuals living in Germany and to compare findings with those in animals, we analysed nine independent and unlinked genetic markers (nSAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) by PCR-RFLP in 83 archived T. gondii-positive DNA samples from patients with ocular toxoplasmosis (n=35), toxoplasmic encephalitis (n=32), systemic toxoplasmosis after bone-marrow transplantation (n=15) and congenital toxoplasmosis (n=1). In 46 of these 83 samples the presence of T. gondii DNA was confirmed by conventional end-point PCR. Among these, 17 T. gondii-positive samples were typed at all nine loci. The majority (15/17, 88.2%) of these samples were of T. gondii type II (i.e., including both, the Apico type II and Apico type I variants). In addition, in one sample a T. gondii type II/type III allele combination and in another sample a T. gondii genotype displaying type III alleles at all markers was observed. In the remaining 11 samples, in which T. gondii could only be partially typed, exclusively type II (n=10) or type III (n=1) alleles were observed. Results of the present study suggest that the majority of patients in Germany are infected with type II T. gondii regardless of the clinical manifestation of toxoplasmosis. This finding is in accord with the predominance of type II T. gondii in oocysts isolated from cats and in tissues of other intermediate hosts in Germany.


Subject(s)
Toxoplasma/classification , Toxoplasma/genetics , Toxoplasmosis/parasitology , Adult , Aged , Alleles , Animals , Cats , Child, Preschool , Genetic Markers , Genotype , Genotyping Techniques , Germany/epidemiology , Humans , Male , Middle Aged , Molecular Epidemiology , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Toxoplasma/isolation & purification , Toxoplasmosis/epidemiology , Young Adult
13.
Article in English | MEDLINE | ID: mdl-37939652

ABSTRACT

BACKGROUND: Persistent inflammation related to aging ("inflammaging") is exacerbated by chronic infections and contributes to frailty in older adults. We hypothesized associations between Toxoplasma gondii (T. gondii), a common parasite causing an oligosymptomatic unremitting infection, and frailty, and secondarily between T. gondii and previously reported markers of immune activation in frailty. METHODS: We analyzed available demographic, social, and clinical data in Spanish and Portuguese older adults [N = 601; age: mean (SD) 77.3 (8.0); 61% women]. Plasma T. gondii immunoglobulin G (IgG) serointensity was measured with an enzyme-linked immunosorbent assay. The Fried criteria were used to define frailty status. Validated translations of Mini-Mental State Examination, Geriatric Depression Scale, and the Charlson Comorbidity Index were used to evaluate confounders. Previously analyzed biomarkers that were significantly associated with frailty in both prior reports and the current study, and also related to T. gondii serointensity, were further accounted for in multivariable logistic models with frailty as outcome. RESULTS: In T. gondii-seropositives, there was a significant positive association between T. gondii IgG serointensity and frailty, accounting for age (p = .0002), and resisting adjustment for multiple successive confounders. Among biomarkers linked with frailty, kynurenine/tryptophan and soluble tumor necrosis factor receptor II were positively associated with T. gondii serointensity in seropositives (p < .05). Associations with other biomarkers were not significant. CONCLUSIONS: This first reported association between T. gondii and frailty is limited by a cross-sectional design and warrants replication. While certain biomarkers of inflammaging were associated with both T. gondii IgG serointensity and frailty, they did not fully mediate the T. gondii-frailty association.


Subject(s)
Frailty , Toxoplasma , Toxoplasmosis , Humans , Female , Aged , Male , Cross-Sectional Studies , Immunoglobulin G , Antibodies, Protozoan , Biomarkers , Immunoglobulin M , Risk Factors
14.
Virulence ; 15(1): 2329566, 2024 12.
Article in English | MEDLINE | ID: mdl-38509723

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite responsible for a pathology called toxoplasmosis, which primarily affects immunocompromised individuals and developing foetuses. The parasite can scavenge essential nutrients from its host to support its growth and survival. Among them, iron is one of the most important elements needed to sustain basic cellular functions as it is involved in a number of key metabolic processes, including oxygen transport, redox balance, and electron transport. We evaluated the effects of an iron chelator on the development of several parasite strains and found that they differed in their ability to tolerate iron depletion. The growth of parasites usually associated with a model of acute toxoplasmosis was strongly affected by iron depletion, whereas cystogenic strains were less sensitive as they were able to convert into persisting developmental forms that are associated with the chronic form of the disease. Ultrastructural and biochemical characterization of the impact of iron depletion on parasites also highlighted striking changes in both their metabolism and that of the host, with a marked accumulation of lipid droplets and perturbation of lipid homoeostasis. Overall, our study demonstrates that although acute iron depletion has an important effect on the growth of T. gondii, it has a more profound impact on actively dividing parasites, whereas less metabolically active parasite forms may be able to avoid some of the most detrimental consequences.


Subject(s)
Parasites , Toxoplasma , Toxoplasmosis , Animals , Humans
15.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 304-309, 2024 Jun 07.
Article in Zh | MEDLINE | ID: mdl-38952318

ABSTRACT

OBJECTIVE: To investigate the development and dynamic changes of cysts in the brain of mice following infection with different forms of Toxoplasma gondii, so as to provide insights into for toxoplasmosis prevention and control. METHODS: ICR mice at ages of 6 to 8 weeks, each weighing 20 to 25 g, were intraperitoneally injected with tachyzoites of the T. gondii PRU strain at a dose of 1 × 105 tachyzoites per mouse, orally administered with cysts at a dose of 20 oocysts per mouse or oocysts at a dose of 200 oocysts per mouse for modeling chronic T. gondii infection in mice, and the clinical symptoms and survival of mice were observed post-infection. Mice were orally infected with T. gondii cysts at doses of 10 (low-dose group), 20 (medium-dose group), 40 cysts per mouse (high-dose group), and the effect of different doses of T. gondii infections on the number of cysts was examined in the mouse brain. Mice were orally administered with T. gondii cysts at a dose of 20 cysts per mouse, and grouped according to gender (female and male) and time points of infections (20, 30, 60, 90, 120, 150, 180 days post-infection), and the effects of gender and time points of infections on the number of cysts was examined in the mouse brain. In addition, mice were divided into the tachyzoite group (Group T), the first-generation cyst group (Group C1), the second-generation cyst group (Group C2), the third-generation cyst (Group C3) and the fourth-generation cyst group (Group C4). Mice in the Group T were intraperitoneally injected with T. gondii tachyzoites at a dose of 1 × 105 tachyzoites per mouse, and the cysts were collected from the mouse brain tissues 30 days post-infection, while mice in the Group C1 were orally infected with the collected cysts at a dose of 30 cysts per mouse. Continuous passage was performed by oral administration with cysts produced by the previous generation in mice, and the effect of continuous passage on the number of cysts was examined in the mouse brain. RESULTS: Following infection with T. gondii tachyzoites, cysts and oocysts in mice, obvious clinical symptoms were observed on days 6 to 13 and mice frequently died on days 7 to 12. The survival rates of mice were 67.0%, 87.0% and 53.0%, and the mean numbers of cysts were (516.0 ± 257.2), (1 203.0 ± 502.0) and (581.0 ± 183.1) in the mouse brain (F = 11.94, P < 0.01) on day 30 post-infection with T. gondii tachyzoites, cysts and oocysts, respectively, and the numbers of cysts in the brain tissues were significantly lower in mice infected with T. gondii tachyzoites and oocysts than in those infected with cysts (all P values < 0.01). The survival rates of mice were 87.0%, 87.0% and 60.0%, and the mean numbers of cysts were (953.0 ± 355.5), (1 084.0 ± 474.3) and (1 113.0 ± 546.0) in the mouse brain in the low-, medium- and high-dose groups on day 30 post-infection, respectively (F = 0.42, P > 0.05). The survival rates of male and female mice were 73.0% and 80.0%, and the mean numbers of cysts were (946.4 ± 411.4) and (932.1 ± 322.4) in the brain tissues of male and female mice, respectively (F = 1.63, P > 0.05). Following continuous passage, the mean numbers of cysts were (516.0 ± 257.2), (1 203.0 ± 502.0), (896.8 ± 332.3), (782.5 ± 423.9) and (829.2 ± 306.0) in the brain tissues of mice in the T, C1, C2, C3 and C4 groups, respectively (F = 4.82, P < 0.01), and the number of cysts was higher in the mouse brain in Group 1 than in Group T (P < 0.01). Following oral administration of 20 T. gondii cysts in mice, cysts were found in the moues brain for the first time on day 20 post-infection, and the number of cysts gradually increased over time, peaked on days 30 and 90 post-infection and then gradually decreased; however, the cysts were still found in the mouse brain on day 180 post-infection. CONCLUSIONS: There is a higher possibility of developing chronic T. gondii infection in mice following infection with cysts than with oocysts or tachyzoites and the most severe chronic infection is seen following infection with cysts. The number of cysts does not correlate with the severity of chronic T. gondii infection, and the number of cysts peaks in the mouse brain on days 30 and 90 post-infection.


Subject(s)
Brain , Mice, Inbred ICR , Toxoplasma , Toxoplasmosis, Animal , Animals , Mice , Female , Male , Brain/parasitology , Chronic Disease , Toxoplasmosis, Animal/parasitology , Toxoplasma/physiology , Toxoplasmosis/parasitology , Disease Models, Animal
16.
Parasit Vectors ; 17(1): 247, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835064

ABSTRACT

BACKGROUND: The interplay between Toxoplasma gondii infection and tumor development is intriguing and not yet fully understood. Some studies showed that T. gondii reversed tumor immune suppression, while some reported the opposite, stating that T. gondii infection promoted tumor growth. METHODS: We created three mouse models to investigate the interplay between T. gondii and tumor. Model I aimed to study the effect of tumor growth on T. gondii infection by measuring cyst number and size. Models II and III were used to investigate the effect of different stages of T. gondii infection on tumor development via flow cytometry and bioluminescent imaging. Mouse strains (Kunming, BALB/c, and C57BL/6J) with varying susceptibilities to tumors were used in the study. RESULTS: The size and number of brain cysts in the tumor-infected group were significantly higher, indicating that tumor presence promotes T. gondii growth in the brain. Acute T. gondii infection, before or after tumor cell introduction, decreased tumor growth manifested by reduced bioluminescent signal and tumor size and weight. In the tumor microenvironment, CD4+ and CD8+ T cell number, including their subpopulations (cytotoxic CD8+ T cells and Th1 cells) had a time-dependent increase in the group with acute T. gondii infection compared with the group without infection. However, in the peripheral blood, the increase of T cells, including cytotoxic CD8+ T cells and Th1 cells, persisted 25 days after Lewis lung carcinoma (LLC) cell injection in the group with acute T. gondii. Chronic T. gondii infection enhanced tumor growth as reflected by increase in tumor size and weight. The LLC group with chronic T. gondii infection exhibited decreased percentages of cytotoxic CD8+ T cells and Th1 cells 25 days post-LLC injection as compared with the LLC group without T. gondii infection. At week 4 post-LLC injection, chronic T. gondii infection increased tumor formation rate [odds ratio (OR) 1.71] in both KM and BALB/c mice. CONCLUSIONS: Our research elucidates the dynamics between T. gondii infection and tumorigenesis. Tumor-induced immune suppression promoted T. gondii replication in the brain. Acute and chronic T. gondii infection had opposing effects on tumor development.


Subject(s)
Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Toxoplasma , Animals , Mice , Toxoplasma/immunology , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Female , CD8-Positive T-Lymphocytes/immunology , Brain/parasitology , Brain/pathology , Chronic Disease , Tumor Microenvironment , Neoplasms/parasitology , Acute Disease
17.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256946

ABSTRACT

Toxoplasma gondii causes a global parasitic disease. Therapeutic options for eradicating toxoplasmosis are limited. In this study, ZnO and Mg-doped ZnO NPs were prepared, and their structural and morphological chrematistics were investigated. The XRD pattern revealed that Mg-doped ZnO NPs have weak crystallinity and a small crystallite size. FTIR and XPS analyses confirmed the integration of Mg ions into the ZnO framework, producing the high-purity Mg-doped ZnO nanocomposite. TEM micrographs determined the particle size of un-doped ZnO in the range of 29 nm, reduced to 23 nm with Mg2+ replacements. ZnO and Mg-doped ZnO NPs significantly decreased the number of brain cysts (p < 0.05) by 29.30% and 35.08%, respectively, compared to the infected untreated group. The administration of ZnO and Mg-doped ZnO NPs revealed a marked histopathological improvement in the brain, liver, and spleen. Furthermore, ZnO and Mg-doped ZnO NPs reduced P53 expression in the cerebral tissue while inducing CD31 expression, which indicated a protective effect against the infection-induced apoptosis and the restoration of balance between free radicals and antioxidant defense activity. In conclusion, the study proved these nanoparticles have antiparasitic, antiapoptotic, and angiogenetic effects. Being nontoxic compounds, these nanoparticles could be promising adjuvants in treating chronic toxoplasmosis.

18.
Microorganisms ; 11(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38004683

ABSTRACT

During Toxoplasma gondii chronic infection, certain internal factors that trigger the proliferation of neural progenitor cells (NPCs), such as brain inflammation, cell death, and changes in cytokine levels, are observed. NPCs give rise to neuronal cell types in the adult brain of some mammals. NPCs are capable of dividing and differentiating into a restricted repertoire of neuronal and glial cell types. In this study, the proliferation of NPCs was evaluated in CD-1 adult male mice chronically infected with the T. gondii ME49 strain. Histological brain sections from the infected mice were evaluated in order to observe T. gondii tissue cysts. Sagittal and coronal sections from the subventricular zone of the lateral ventricles and from the subgranular zone of the hippocampal dentate gyrus, as well as sagittal sections from the rostral migratory stream, were obtained from infected and non-infected mice previously injected with bromodeoxyuridine (BrdU). A flotation immunofluorescence technique was used to identify BrdU+ NPC. The scanning of BrdU+ cells was conducted using a confocal microscope, and the counting was performed with ImageJ® software (version 1.48q). In all the evaluated zones from the infected mice, a significant proliferation of the NPCs was observed when compared with that of the control group. We concluded that chronic infection with T. gondii increased the proliferation of NPCs in the three evaluated zones. Regardless of the role these cells are playing, our results could be useful to better understand the pathogenesis of chronic toxoplasmosis.

19.
mBio ; 14(5): e0183623, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37675999

ABSTRACT

IMPORTANCE: The classical depiction of the Toxoplasma lifecycle is bradyzoite excystation conversion to tachyzoites, cell lysis, and immune control, followed by the reestablishment of bradyzoites and cysts. In contrast, we show that tachyzoite growth slows independent of the host immune response at a predictable time point following excystation. Furthermore, we demonstrate a host cell-dependent pathway of continuous amplification of the cyst-forming bradyzoite population. The developmental plasticity of the excysted bradyzoites further underlines the critical role the cyst plays in the flexibility of the lifecycle of this ubiquitous parasite. This revised model of Toxoplasma recrudescence uncovers previously unknown complexity in the clinically important bradyzoite stage of the parasite, which opens the door to further study these novel developmental features of the Toxoplasma intermediate life cycle.


Subject(s)
Toxoplasma , Animals , Toxoplasma/metabolism , Life Cycle Stages , Protozoan Proteins/metabolism
20.
Ocul Immunol Inflamm ; : 1-10, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37315178

ABSTRACT

This work analyzed exhaustion markers in CD8+ T-cell subpopulations in 21 samples of peripheral blood mononuclear cells (PBMCs) from individuals with ocular toxoplasmosis (n = 9), chronic asymptomatic toxoplasmosis (n = 7), and non-infected people (n = 5) by using RT-qPCR and flow cytometry techniques. The study found that gene expression of PD-1 and CD244, but not LAG-3, was higher in individuals with ocular toxoplasmosis versus individuals with asymptomatic infection or uninfected. Expression of PD1 in CD8+ central memory (CM) cells was higher in nine individuals with toxoplasmosis versus five uninfected individuals (p = .003). After ex vivo stimulation, an inverse correlation was found between the exhaustion markers and quantitative clinical characteristics (lesion size, recurrence index, and number of lesions). A total exhaustion phenotype was found in 55.5% (5/9) of individuals with ocular toxoplasmosis. Our results suggest that the CD8+ exhaustion phenotype is involved in the pathogenesis of ocular toxoplasmosis.

SELECTION OF CITATIONS
SEARCH DETAIL