Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 760
Filter
Add more filters

Publication year range
1.
Stem Cells ; 42(6): 526-539, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38563224

ABSTRACT

To resist lineage-dependent therapies such as androgen receptor inhibition, prostate luminal epithelial adenocarcinoma cells often adopt a stem-like state resulting in lineage plasticity and phenotypic heterogeneity. Castrate-resistant prostate adenocarcinoma can transition to neuroendocrine (NE) and occasionally to amphicrine, co-expressed luminal and NE, phenotypes. We developed castrate-resistant prostate cancer (CRPC) patient-derived organoid models that preserve heterogeneity of the originating tumor, including an amphicrine model displaying a range of luminal and NE phenotypes. To gain biological insight and to identify potential treatment targets within heterogeneous tumor cell populations, we assessed the lineage hierarchy and molecular characteristics of various CRPC tumor subpopulations. Transcriptionally similar stem/progenitor (St/Pr) cells were identified for all lineage populations. Lineage tracing in amphicrine CRPC showed that heterogeneity originated from distinct subclones of infrequent St/Pr cells that produced mainly quiescent differentiated amphicrine progeny. By contrast, adenocarcinoma CRPC progeny originated from St/Pr cells and self-renewing differentiated luminal cells. Neuroendocrine prostate cancer (NEPC) was composed almost exclusively of self-renewing St/Pr cells. Amphicrine subpopulations were enriched for secretory luminal, mesenchymal, and enzalutamide treatment persistent signatures that characterize clinical progression. Finally, the amphicrine St/Pr subpopulation was specifically depleted with an AURKA inhibitor, which blocked tumor growth. These data illuminate distinct stem cell (SC) characteristics for subtype-specific CRPC in addition to demonstrating a context for targeting differentiation-competent prostate SCs.


Subject(s)
Cell Lineage , Neoplastic Stem Cells , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Cell Lineage/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Animals , Cell Differentiation , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Mice , Benzamides , Nitriles
2.
Mol Ther ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38872307

ABSTRACT

Efferocytosis, the clearance of apoptotic cells by macrophages, plays a crucial role in inflammatory responses and effectively prevents secondary necrosis. However, the mechanisms underlying efferocytosis in acute pancreatitis (AP) remain unclear. In this study, we demonstrated the presence of efferocytosis in injured human and mouse pancreatic tissues. We also observed significant upregulation of CD47, an efferocytosis-related the "do not eat me" molecule in injured acinar cells. Subsequently, we used CRISPR-Cas9 gene editing, anti-adeno-associated virus (AAV) gene modification, and anti-CD47 antibody to investigate the potential therapeutic role of AP. CD47 expression was negatively regulated by upstream miR133a, which is controlled by the transcription factor TRIM28. To further investigate the regulation of efferocytosis and reduction of pancreatic necrosis in AP, we used miR-133a-agomir and pancreas-specific AAV-shTRIM28 to modulate CD47 expression. Our findings confirmed that CD47-mediated efferocytosis is critical for preventing pancreatic necrosis and suggest that targeting the TRIM28-miR133a-CD47 axis is clinically relevant for the treatment of AP.

3.
Mol Ther ; 32(3): 619-636, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38310355

ABSTRACT

Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Humans , Animals , Mice , Mucopolysaccharidosis II/therapy , Mucopolysaccharidosis II/drug therapy , Iduronate Sulfatase/genetics , Iduronate Sulfatase/metabolism , Genetic Therapy , Central Nervous System/metabolism , Lentivirus/genetics , Lentivirus/metabolism , Hematopoietic Stem Cells/metabolism
4.
Semin Cancer Biol ; 88: 157-171, 2023 01.
Article in English | MEDLINE | ID: mdl-36581020

ABSTRACT

Extracellular vesicles (EVs) are nano-sized particles that hold tremendous potential in the clinical space, as their biomolecular profiles hold a key to non-invasive liquid biopsy for cancer diagnosis and prognosis. EVs are present in most bodily fluids, hence are easily obtainable from patients, advantageous to that of traditional, invasive tissue biopsies and imaging techniques. However, there are certain constraints that hinder clinical use of EVs. The translation of EV biomarkers from "bench-to-bedside" is encumbered by the methods of EV isolation and subsequent biomarker detection currently implemented in laboratories. Although current isolation and detection methods are effective, they lack practicality, with their requirement for high bodily fluid volumes, low equipment availability, slow turnaround times and high costs. The high demand for techniques that overcome these limitations has resulted in significant advancements in nanotechnological devices. These devices are designed to integrate EV isolation and biomarker detection into a one-step method of direct EV detection from bodily fluids. This provides promise for the acceleration of EVs into current clinical standards. This review highlights the importance of EVs as cancer biomarkers, the methodological obstacles currently faced in clinical studies and how novel nanodevices could advance clinical translation.


Subject(s)
Extracellular Vesicles , Humans , Biomarkers, Tumor , Liquid Biopsy/methods , Nanotechnology
5.
Med Res Rev ; 44(3): 919-938, 2024 May.
Article in English | MEDLINE | ID: mdl-38095832

ABSTRACT

Mesenchymal stem cells (MSCs) are one of the few stem cell types used in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair, due to their unique paracrine capacity, multiple differentiation potential, active components in exosomes, and effective mitochondria donation. At present, MSCs derived from tissues such as bone marrow and umbilical cord are widely applied in preclinical and clinical studies. Nevertheless, there remain challenges to the maintenance of consistently good quality MSCs derived from different donors or tissues, directly impacting their application as advanced therapy products. In this review, we discuss the promises, problems, and prospects associated with translation of MSC research into a pharmaceutical product. We review the hurdles encountered in translation of MSCs and MSC-exosomes from the research bench to an advanced therapy product compliant with good manufacturing practice (GMP). These difficulties include how to set up GMP-compliant protocols, what factors affect raw material selection, cell expansion to product formulation, establishment of quality control (QC) parameters, and quality assurance to comply with GMP standards. To avoid human error and reduce the risk of contamination, an automatic, closed system that allows real-time monitoring of QC should be considered. We also highlight potential advantages of pluripotent stem cells as an alternative source for MSC and exosomes generation and manufacture.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Humans , Cell Differentiation , Stem Cells , Cell Proliferation
6.
Mol Cancer ; 23(1): 134, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951879

ABSTRACT

Natural killer (NK) cells are important immune cells in the organism and are the third major type of lymphocytes besides T cells and B cells, which play an important function in cancer therapy. In addition to retaining the tumor cell killing function of natural killer cells, natural killer cell-derived exosomes cells also have the characteristics of high safety, wide source, easy to preserve and transport. At the same time, natural killer cell-derived exosomes are easy to modify, and the engineered exosomes can be used in combination with a variety of current cancer therapies, which not only enhances the therapeutic efficacy, but also significantly reduces the side effects. Therefore, this review summarizes the source, isolation and modification strategies of natural killer cell-derived exosomes and the combined application of natural killer cell-derived engineered exosomes with other antitumor therapies, which is expected to accelerate the clinical translation process of natural killer cell-derived engineered exosomes in cancer therapy.


Subject(s)
Exosomes , Killer Cells, Natural , Neoplasms , Humans , Clinical Relevance , Exosomes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology
7.
J Neuroinflammation ; 21(1): 97, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627787

ABSTRACT

The unfavorable prognosis of many neurological conditions could be attributed to limited tissue regeneration in central nervous system (CNS) and overwhelming inflammation, while liver X receptor (LXR) may regulate both processes due to its pivotal role in cholesterol metabolism and inflammatory response, and thus receives increasing attentions from neuroscientists and clinicians. Here, we summarize the signal transduction of LXR pathway, discuss the therapeutic potentials of LXR agonists based on preclinical data using different disease models, and analyze the dilemma and possible resolutions for clinical translation to encourage further investigations of LXR related therapies in CNS disorders.


Subject(s)
Central Nervous System Diseases , Orphan Nuclear Receptors , Humans , Liver X Receptors , Orphan Nuclear Receptors/metabolism , Central Nervous System/metabolism , Inflammation , Central Nervous System Diseases/drug therapy
8.
J Transl Med ; 22(1): 794, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198892

ABSTRACT

The cornea is the outermost layer of the eye and plays an essential role in our visual system. Limbal epithelial stem cells (LESCs), which are localized to a highly regulated limbal niche, are the master conductors of corneal epithelial regeneration. Damage to LESCs and their niche may result in limbal stem cell deficiency (LSCD), a disease confused ophthalmologists so many years and can lead to corneal conjunctivalization, neovascularization, and even blindness. How to restore the LESCs function is the hot topic for ocular scientists and clinicians around the world. This review introduced LESCs and the niche microenvironment, outlined various techniques for isolating and culturing LESCs used in LSCD research, presented common diseases that cause LSCD, and provided a comprehensive overview of both the diagnosis and multiple treatments for LSCD from basic research to clinical therapies, especially the emerging cell therapies based on various stem cell sources. In addition, we also innovatively concluded the latest strategies in recent years, including exogenous drugs, tissue engineering, nanotechnology, exosome and gene therapy, as well as the ongoing clinical trials for treating LSCD in recent five years. Finally, we highlighted challenges from bench to bedside in LSCD and discussed cutting-edge areas in LSCD therapeutic research. We hope that this review could pave the way for future research and translation on treating LSCD, a crucial step in the field of ocular health.


Subject(s)
Epithelium, Corneal , Limbus Corneae , Regeneration , Stem Cells , Humans , Limbus Corneae/cytology , Limbus Corneae/pathology , Stem Cells/cytology , Epithelium, Corneal/cytology , Epithelium, Corneal/pathology , Animals , Precision Medicine , Epithelial Cells
9.
Metabolomics ; 20(3): 60, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773013

ABSTRACT

Metabolomic epidemiology studies are complex and require a broad array of domain expertise. Although many metabolite-phenotype associations have been identified; to date, few findings have been translated to the clinic. Bridging this gap requires understanding of both the underlying biology of these associations and their potential clinical implications, necessitating an interdisciplinary team approach. To address this need in metabolomic epidemiology, a workshop was held at Metabolomics 2023 in Niagara Falls, Ontario, Canada that highlighted the domain expertise needed to effectively conduct these studies -- biochemistry, clinical science, epidemiology, and assay development for biomarker validation -- and emphasized the role of interdisciplinary teams to move findings towards clinical translation.


Subject(s)
Metabolomics , Translational Research, Biomedical , Metabolomics/methods , Humans , Biomarkers/metabolism , Ontario
10.
Stem Cells ; 41(10): 893-906, 2023 10 08.
Article in English | MEDLINE | ID: mdl-37407022

ABSTRACT

Mesenchymal stem/stromal cells (MSCs), a class of cells with proliferative, immunomodulatory, and reparative functions, have shown therapeutic potential in a variety of systemic diseases, including metabolic syndrome (MetS). The cluster of morbidities that constitute MetS might be particularly amenable for the application of MSCs, which employ an arsenal of reparative actions to target multiple pathogenic pathways simultaneously. Preclinical studies have shown that MSCs can reverse pathological changes in MetS mainly by inhibiting inflammation, improving insulin resistance, regulating glycolipid metabolism, and protecting organ function. However, several challenges remain to overcome before MSCs can be applied for treating MetS. For example, the merits of autologous versus allogeneic MSCs sources remain unclear, particularly with autologous MSCs obtained from the noxious MetS milieu. The distinct characteristics and relative efficacy of MSCs harvested from different tissue sources also require clarification. Moreover, to improve the therapeutic efficacy of MSCs, investigators have explored several approaches that improved therapeutic efficacy but may involve potential safety concerns. This review summarized the potentially useful MSCs strategy for treating MetS, as well as some hurdles that remain to be overcome. In particular, larger-scale studies are needed to determine the therapeutic efficacy and safety of MSCs for clinical application.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Metabolic Syndrome , Humans , Metabolic Syndrome/therapy , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism
11.
Cytotherapy ; 26(3): 231-241, 2024 03.
Article in English | MEDLINE | ID: mdl-38099894

ABSTRACT

BACKGROUND: The temporomandibular joint (TMJ) disc is a critical fibrocartilaginous structure with limited regenerative capacity in the oral system. Perforation of the TMJ disc can lead to osteoarthritis and ankylosis of the TMJ because of the lack of disc protection. Clinical treatments for TMJ disc perforation, such as discectomy, hyaluronic acid injection, endoscopic surgery and high position arthroplasty of TMJ, are questionable with regard to long-term outcomes, and only three fourths of TMJ disc perforations are repairable by surgery, even in the short-term. Tissue engineering offers the potential for cure of repairable TMJ disc perforations and regeneration of unrepairable ones. OBJECTIVES: This review discusses the classification of TMJ disc perforation and defines typical TMJ disc perforation. Advancements in the engineering-based repair of TMJ disc perforation by stem cell therapy, construction of a disc-like scaffold and functionalization by offering bioactive stimuli are also summarized in the review, and the barriers developing engineering technologies need to overcome to be popularized are discussed.


Subject(s)
Osteoarthritis , Temporomandibular Joint Disc , Humans , Temporomandibular Joint Disc/surgery , Tissue Engineering
12.
Cytotherapy ; 26(4): 340-350, 2024 04.
Article in English | MEDLINE | ID: mdl-38349309

ABSTRACT

BACKGROUND AIMS: Age-related macular degeneration (AMD) is the most common cause of blindness in elderly patients within developed countries, affecting more than 190 million worldwide. In AMD, the retinal pigment epithelial (RPE) cell layer progressively degenerates, resulting in subsequent loss of photoreceptors and ultimately vision. There is currently no cure for AMD, but therapeutic strategies targeting the complement system are being developed to slow the progression of the disease. METHODS: Replacement therapy with pluripotent stem cell-derived (hPSC) RPEs is an alternative treatment strategy. A cell therapy product must be produced in accordance with Good Manufacturing Practices at a sufficient scale to facilitate extensive pre-clinical and clinical testing. Cryopreservation of the final cell product is therefore highly beneficial, as the manufacturing, pre-clinical and clinical testing can be separated in time and location. RESULTS: We found that mature hPSC-RPE cells do not survive conventional cryopreservation techniques. However, replating the cells 2-5 days before cryopreservation facilitates freezing. The replated and cryopreserved hPSC-RPE cells maintained their identity, purity and functionality as characteristic RPEs, shown by cobblestone morphology, pigmentation, transcriptional profile, RPE markers, transepithelial resistance and pigment epithelium-derived factor secretion. Finally, we showed that the optimal replating time window can be tracked noninvasively by following the change in cobblestone morphology. CONCLUSIONS: The possibility of cryopreserving the hPSC-RPE product has been instrumental in our efforts in manufacturing and performing pre-clinical testing with the aim for clinical translation.


Subject(s)
Macular Degeneration , Pluripotent Stem Cells , Humans , Aged , Cell Differentiation , Macular Degeneration/therapy , Cryopreservation , Epithelial Cells , Retinal Pigments
13.
J Cardiovasc Magn Reson ; 26(2): 101051, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909656

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment of heart disease; however, limitations of CMR include long exam times and high complexity compared to other cardiac imaging modalities. Recently advancements in artificial intelligence (AI) technology have shown great potential to address many CMR limitations. While the developments are remarkable, translation of AI-based methods into real-world CMR clinical practice remains at a nascent stage and much work lies ahead to realize the full potential of AI for CMR. METHODS: Herein we review recent cutting-edge and representative examples demonstrating how AI can advance CMR in areas such as exam planning, accelerated image reconstruction, post-processing, quality control, classification and diagnosis. RESULTS: These advances can be applied to speed up and simplify essentially every application including cine, strain, late gadolinium enhancement, parametric mapping, 3D whole heart, flow, perfusion and others. AI is a unique technology based on training models using data. Beyond reviewing the literature, this paper discusses important AI-specific issues in the context of CMR, including (1) properties and characteristics of datasets for training and validation, (2) previously published guidelines for reporting CMR AI research, (3) considerations around clinical deployment, (4) responsibilities of clinicians and the need for multi-disciplinary teams in the development and deployment of AI in CMR, (5) industry considerations, and (6) regulatory perspectives. CONCLUSIONS: Understanding and consideration of all these factors will contribute to the effective and ethical deployment of AI to improve clinical CMR.

14.
Mol Biol Rep ; 51(1): 688, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796570

ABSTRACT

Selenium nanoparticles (SeNPs) are an appealing carrier for the targeted delivery. The selenium nanoparticles are gaining global attention because of the potential therapeutic applications in several diseases e.g., rheumatoid arthritis (RA), inflammatory bowel disease (IBD), asthma, liver, and various autoimmune disorders like psoriasis, cancer, diabetes, and a variety of infectious diseases. Despite the fact still there is no recent literature that summarises the therapeutic applications of SeNPs. There are some challenges that need to be addressed like finding targets for SeNPs in various diseases, and the various functionalization techniques utilized to increase SeNP's stability while facilitating wide drug-loaded SeNP distribution to tumor areas and preventing off-target impacts need to focus on understanding more about the therapeutic aspects for better understanding the science behind it. Keeping that in mind we have focused on this gap and try to summarize all recent key targeted therapies for SeNPs in cancer treatment and the numerous functionalization strategies. We have also focused on recent advancements in SeNP functionalization methodologies and mechanisms for biomedical applications, particularly in anticancer, anti-inflammatory, and anti-infection therapeutics. Based on our observation we found that SeNPs could potentially be useful in suppressing viral epidemics, like the ongoing COVID-19 pandemic, in complement to their antibacterial and antiparasitic uses. SeNPs are significant nanoplatforms with numerous desirable properties for clinical translation.


Subject(s)
Nanoparticles , Selenium , Humans , Selenium/therapeutic use , Selenium/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Animals , COVID-19 , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , SARS-CoV-2/drug effects , Drug Delivery Systems/methods
15.
J Nanobiotechnology ; 22(1): 500, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169401

ABSTRACT

Bone defects pose significant challenges in healthcare, with over 2 million bone repair surgeries performed globally each year. As a burgeoning force in the field of bone tissue engineering, 3D printing offers novel solutions to traditional bone transplantation procedures. However, current 3D-printed bone scaffolds still face three critical challenges in material selection, printing methods, cellular self-organization and co-culture, significantly impeding their clinical application. In this comprehensive review, we delve into the performance criteria that ideal bone scaffolds should possess, with a particular focus on the three core challenges faced by 3D printing technology during clinical translation. We summarize the latest advancements in non-traditional materials and advanced printing techniques, emphasizing the importance of integrating organ-like technologies with bioprinting. This combined approach enables more precise simulation of natural tissue structure and function. Our aim in writing this review is to propose effective strategies to address these challenges and promote the clinical translation of 3D-printed scaffolds for bone defect treatment.


Subject(s)
Bioprinting , Bone and Bones , Organoids , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Humans , Tissue Engineering/methods , Organoids/cytology , Bioprinting/methods , Animals , Bone Regeneration , Bone Transplantation/methods
16.
J Nanobiotechnology ; 22(1): 18, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172932

ABSTRACT

Exosomes are nanoscale extracellular vesicles secreted by cells and enclosed by a lipid bilayer membrane containing various biologically active cargoes such as proteins, lipids, and nucleic acids. Engineered exosomes generated through genetic modification of parent cells show promise as drug delivery vehicles, and they have been demonstrated to have great therapeutic potential for treating cancer, cardiovascular, neurological, and immune diseases, but systematic knowledge is lacking regarding optimization of drug loading and assessment of delivery efficacy. This review summarizes current approaches for engineering exosomes and evaluating their drug delivery effects, and current techniques for assessing exosome drug loading and release kinetics, cell targeting, biodistribution, pharmacokinetics, and therapeutic outcomes are critically examined. Additionally, this review synthesizes the latest applications of exosome engineering and drug delivery in clinical translation. The knowledge compiled in this review provides a framework for the rational design and rigorous assessment of exosomes as therapeutics. Continued advancement of robust characterization methods and reporting standards will accelerate the development of exosome engineering technologies and pave the way for clinical studies.


Subject(s)
Exosomes , Extracellular Vesicles , Neoplasms , Humans , Exosomes/metabolism , Tissue Distribution , Drug Delivery Systems/methods , Extracellular Vesicles/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Pharmaceutical Preparations/metabolism
17.
Gynecol Endocrinol ; 40(1): 2382818, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39039858

ABSTRACT

Premature ovarian insufficiency (POI) or premature ovarian failure (POF) is a multifactorial disorder occurring in reproductive-age women, characterized by elevated levels of follicle-stimulating hormone (FSH) and irregular or absent menstrual cycles, often accompanied by perimenopausal symptoms and infertility. While assisted reproductive technology can address the reproductive aspirations of some POI-affected women, it is hindered by issues such as exorbitant expenses, substantial risks, and poor rates of conception. Encouragingly, extensive research is exploring novel approaches to enhance fertility, particularly in the realm of stem cell therapy, showcasing both feasibility and significant potential. Human amniotic epithelial cells (hAECs) from discarded placental tissues are crucial in regenerative medicine for their pluripotency, low immunogenicity, non-tumorigenicity, accessibility, and minimal ethical concerns. Preclinical studies highlight the underlying mechanisms and therapeutic effects of hAECs in POI treatment, and current research is focusing on innovative interventions to augment hAECs' efficacy. However, despite these strides, overcoming application challenges is essential for successful clinical translation. This paper conducted a comprehensive analysis of the aforementioned issues, examining the prospects and challenges of hAECs in POI, with the aim of providing some insights for future research and clinical practice.


Subject(s)
Amnion , Epithelial Cells , Primary Ovarian Insufficiency , Humans , Primary Ovarian Insufficiency/therapy , Female , Epithelial Cells/transplantation , Amnion/cytology , Amnion/transplantation
18.
J Ultrasound Med ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032010

ABSTRACT

Artificial intelligence (AI) models can play a more effective role in managing patients with the explosion of digital health records available in the healthcare industry. Machine-learning (ML) and deep-learning (DL) techniques are two methods used to develop predictive models that serve to improve the clinical processes in the healthcare industry. These models are also implemented in medical imaging machines to empower them with an intelligent decision system to aid physicians in their decisions and increase the efficiency of their routine clinical practices. The physicians who are going to work with these machines need to have an insight into what happens in the background of the implemented models and how they work. More importantly, they need to be able to interpret their predictions, assess their performance, and compare them to find the one with the best performance and fewer errors. This review aims to provide an accessible overview of key evaluation metrics for physicians without AI expertise. In this review, we developed four real-world diagnostic AI models (two ML and two DL models) for breast cancer diagnosis using ultrasound images. Then, 23 of the most commonly used evaluation metrics were reviewed uncomplicatedly for physicians. Finally, all metrics were calculated and used practically to interpret and evaluate the outputs of the models. Accessible explanations and practical applications empower physicians to effectively interpret, evaluate, and optimize AI models to ensure safety and efficacy when integrated into clinical practice.

19.
J Neuroeng Rehabil ; 21(1): 18, 2024 02 04.
Article in English | MEDLINE | ID: mdl-38311729

ABSTRACT

Practicing clinicians in neurorehabilitation continue to lack a systematic evidence base to personalize rehabilitation therapies to individual patients and thereby maximize outcomes. Computational modeling- collecting, analyzing, and modeling neurorehabilitation data- holds great promise. A key question is how can computational modeling contribute to the evidence base for personalized rehabilitation? As representatives of the clinicians and clinician-scientists who attended the 2023 NSF DARE conference at USC, here we offer our perspectives and discussion on this topic. Our overarching thesis is that clinical insight should inform all steps of modeling, from construction to output, in neurorehabilitation and that this process requires close collaboration between researchers and the clinical community. We start with two clinical case examples focused on motor rehabilitation after stroke which provide context to the heterogeneity of neurologic injury, the complexity of post-acute neurologic care, the neuroscience of recovery, and the current state of outcome assessment in rehabilitation clinical care. Do we provide different therapies to these two different patients to maximize outcomes? Asking this question leads to a corollary: how do we build the evidence base to support the use of different therapies for individual patients? We discuss seven points critical to clinical translation of computational modeling research in neurorehabilitation- (i) clinical endpoints, (ii) hypothesis- versus data-driven models, (iii) biological processes, (iv) contextualizing outcome measures, (v) clinical collaboration for device translation, (vi) modeling in the real world and (vii) clinical touchpoints across all stages of research. We conclude with our views on key avenues for future investment (clinical-research collaboration, new educational pathways, interdisciplinary engagement) to enable maximal translational value of computational modeling research in neurorehabilitation.


Subject(s)
Neurological Rehabilitation , Stroke Rehabilitation , Stroke , Humans , Outcome Assessment, Health Care
20.
Perfusion ; : 2676591241240725, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519444

ABSTRACT

INTRODUCTION: A radical paradigm shift in the treatment of premature infants failing conventional treatment is to recreate fetal physiology using an extracorporeal Artificial Placenta (AP). The aim of this study is to evaluate the effects of changing fetal hemoglobin percent (HbF%) on physiology and circuit function during AP support in an ovine model. METHODS: Extremely premature lambs (n = 5) were delivered by cesarean section at 117-121 d estimated gestational age (EGA) (term = 145d), weighing 2.5 ± 0.35 kg. Lambs were cannulated using 10-14Fr cannulae for drainage via the right jugular vein and reinfusion via the umbilical vein. Lambs were intubated and lungs were filled with perfluorodecalin to a meniscus with a pressure of 5-8 cm H2O. The first option for transfusion was fetal whole blood from twins followed by maternal red blood cells. Arterial blood gases were used to titrate AP support to maintain fetal blood gas values. RESULTS: The mean survival time on circuit was 119.6 ± 39.5 h. Hemodynamic parameters and lactate were stable throughout. As more adult blood transfusions were given to maintain hemoglobin at 10 mg/dL, the HbF% declined, reaching 40% by post operative day 7. The HbF% was inversely proportional to flow rates as higher flows were required to maintain adequate oxygen saturation and perfusion. CONCLUSIONS: Transfusion of adult blood led to decreased fetal hemoglobin concentration during AP support. The HbF% was inversely proportional to flow rates. Future directions include strategies to decrease the priming volume and establishing a fetal blood bank to have blood rich in HbF.

SELECTION OF CITATIONS
SEARCH DETAIL