Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(16): e2321002121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593072

ABSTRACT

Bacterial collagenases are important virulence factors, secreted by several pathogenic Clostridium, Bacillus, Spirochaetes, and Vibrio species. Yet, the mechanism by which these enzymes cleave collagen is not well understood. Based on biochemical and mutational studies we reveal that collagenase G (ColG) from Hathewaya histolytica recognizes and processes collagen substrates differently depending on their nature (fibrillar vs. soluble collagen); distinct dynamic interactions between the activator and peptidase domain are required based on the substrate type. Using biochemical and circular dichroism studies, we identify the presumed noncatalytic activator domain as the single-domain triple helicase that unwinds collagen locally, transiently, and reversibly.


Subject(s)
Collagen , Collagenases , Collagen/chemistry , Clostridium histolyticum , Clostridium
2.
FASEB J ; 38(11): e23731, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38855909

ABSTRACT

Ca2+ permeation through TRPV4 in fibroblasts is associated with pathological matrix degradation. In human gingival fibroblasts, IL-1ß binding to its signaling receptor (IL-1R1) induces activation of extracellular regulated kinase (ERK) and MMP1 expression, processes that require Ca2+ flux across the plasma membrane. It is not known how IL-1R1, which does not conduct Ca2+, generates Ca2+ signals in response to IL-1. We examined whether TRPV4 mediates the Ca2+ fluxes required for ERK signaling in IL-1 stimulated gingival fibroblasts. TRPV4 was immunostained in fibroblasts of human gingival connective tissue and in focal adhesions of cultured mouse gingival fibroblasts. Human gingival fibroblasts treated with IL-1ß showed no change of TRPV4 expression but there was increased MMP1 expression. In mouse, gingival fibroblasts expressing TRPV4, IL-1 strongly increased [Ca2+]i. Pre-incubation of cells with IL-1 Receptor Antagonist blocked Ca2+ entry induced by IL-1 or the TRPV4 agonist GSK101. Knockout of TRPV4 or expression of a non-Ca2+-conducting TRPV4 pore-mutant or pre-incubation with the TRPV4 inhibitor RN1734, blocked IL-1-induced Ca2+ transients and expression of the mouse interstitial collagenase, MMP13. Treatment of mouse gingival fibroblasts with GSK101 phenocopied Ca2+ and ERK responses induced by IL-1; these responses were absent in TRPV4-null cells or cells expressing a non-conducting TRPV4 pore-mutant. Immunostained IL-1R1 localized with TRPV4 in adhesions within cell extensions. While TRPV4 immunoprecipitates analyzed by mass spectrometry showed no association with IL-1R1, TRPV4 associated with Src-related proteins and Src co-immunoprecipitated with TRPV4. Src inhibition reduced IL-1-induced Ca2+ responses. The functional linkage of TRPV4 with IL-1R1 expands its repertoire of innate immune signaling processes by mediating IL-1-driven Ca2+ responses that drive matrix remodeling in fibroblasts. Thus, inhibiting TRPV4 activity may provide a new pharmacological approach for blunting matrix degradation in inflammatory diseases.


Subject(s)
Calcium Signaling , Fibroblasts , Gingiva , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Animals , Humans , Mice , Fibroblasts/metabolism , Gingiva/metabolism , Gingiva/cytology , Calcium/metabolism , MAP Kinase Signaling System , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-1/metabolism , Interleukin-1/pharmacology , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/pharmacology
3.
Am J Physiol Heart Circ Physiol ; 326(5): H1204-H1218, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38363214

ABSTRACT

Sustained hemodynamic pressure overload (PO) produced by murine transverse aortic constriction (TAC) causes myocardial fibrosis; removal of TAC (unTAC) returns left ventricle (LV) hemodynamic load to normal and results in significant, but incomplete regression of myocardial fibrosis. However, the cellular mechanisms that result in these outcomes have not been defined. The objective was to determine temporal changes in myocardial macrophage phenotype in TAC and unTAC and determine whether macrophage depletion alters collagen degradation after unTAC. Myocardial macrophage abundance and phenotype were assessed by immunohistochemistry, flow cytometry, and gene expression by RT-PCR in control (non-TAC), 2 wk, 4 wk TAC, and 2 wk, 4 wk, and 6 wk unTAC. Myocardial cytokine profiles and collagen-degrading enzymes were determined by immunoassay and immunoblots. Initial collagen degradation was detected with collagen-hybridizing peptide (CHP). At unTAC, macrophages were depleted with clodronate liposomes, and endpoints were measured at 2 wk unTAC. Macrophage number had a defined temporal pattern: increased in 2 wk and 4 wk TAC, followed by increases at 2 wk unTAC (over 4 wk TAC) that then decreased at 4 wk and 6 wk unTAC. At 2 wk unTAC, macrophage area was significantly increased and was regionally associated with CHP reactivity. Cytokine profiles in unTAC reflected a proinflammatory milieu versus the TAC-induced profibrotic milieu. Single-cell sequencing analysis of 2 wk TAC versus 2 and 6 wk unTAC revealed distinct macrophage gene expression profiles at each time point demonstrating unique macrophage populations in unTAC versus TAC myocardium. Clodronate liposome depletion at unTAC reduced CHP reactivity and decreased cathepsin K and proMMP2. We conclude that temporal changes in number and phenotype of macrophages play a critical role in both TAC-induced development and unTAC-mediated partial, but incomplete, regression of myocardial fibrosis.NEW & NOTEWORTHY Our novel findings highlight the dynamic changes in myocardial macrophage populations that occur in response to PO and after alleviation of PO. Our data demonstrated, for the first time, a potential benefit of macrophages in contributing to collagen degradation and the partial regression of interstitial fibrosis following normalization of hemodynamic load.


Subject(s)
Collagen , Fibrosis , Macrophages , Mice, Inbred C57BL , Myocardium , Animals , Macrophages/metabolism , Macrophages/pathology , Myocardium/pathology , Myocardium/metabolism , Male , Mice , Collagen/metabolism , Disease Models, Animal , Ventricular Function, Left , Cytokines/metabolism , Ventricular Pressure , Ventricular Remodeling , Phenotype
4.
Magn Reson Med ; 92(4): 1658-1669, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38725197

ABSTRACT

PURPOSE: This study aims to assess ultrashort-TE magnetization transfer (UTE-MT) imaging of collagen degradation using an in vitro model of rotator cuff tendinopathy. METHODS: Thirty-six supraspinatus tendon specimens were divided into three groups and treated with 600 U collagenase (Group 1), 150 U collagenase (Group 2), and phosphate buffer saline (Group 3). UTE-MT imaging was performed to assess changes in macromolecular fraction (MMF), macromolecule transverse relaxation time (T2m), water longitudinal relaxation rate constant (R1m), the magnetization exchange rate from the macromolecular to water pool (Rm0 w) and from water to the macromolecular pool (Rm0 m), and magnetization transfer ratio (MTR) at baseline and following digestion and their differences between groups. Biochemical and histological studies were conducted to determine the extent of collagen degradation. Correlation analyses were performed with MMF, T2m, R1m, Rm0 w, Rm0 m, and MTR, respectively. Univariate and multivariate linear regression analyses were performed to evaluate combinations of UTE-MT parameters to predict collagen degradation. RESULTS: MMF, T2m, R1m, Rm0 m, and MTR decreased after digestion. MMF (r = -0.842, p < 0.001), MTR (r = -0.78, p < 0.001), and Rm0 m (r = -0.662, p < 0.001) were strongly negatively correlated with collagen degradation. The linear regression model of differences in MMF and Rm0 m before and after digestion explained 68.9% of collagen degradation variation in the tendon. The model of postdigestion in MMF and T2m and the model of MTR explained 54.2% and 52.3% of collagen degradation variation, respectively. CONCLUSION: This study highlighted the potential of UTE-MT parameters for evaluation of supraspinatus tendinopathy.


Subject(s)
Collagen , Magnetic Resonance Imaging , Rotator Cuff , Tendinopathy , Tendinopathy/diagnostic imaging , Tendinopathy/metabolism , Collagen/metabolism , Humans , Rotator Cuff/diagnostic imaging , Rotator Cuff/metabolism , Magnetic Resonance Imaging/methods , Male , Female , Middle Aged , Aged , Collagenases/metabolism , Tendons/diagnostic imaging , Tendons/metabolism , Image Processing, Computer-Assisted/methods
5.
BMC Genomics ; 24(1): 539, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700248

ABSTRACT

BACKGROUND: 5-methylcytosine (m5C) modification is widely associated with many biological and pathological processes. However, knowledge of m5C modification in osteoarthritis (OA) remains lacking. Thus, our study aimed to identify common m5C features in OA. RESULTS: In the present study, we identified 1395 differentially methylated genes (DMGs) and 1673 differentially expressed genes (DEGs) using methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) and RNA-sequencing. A co-expression analysis of DMGs and DEGs showed that the expression of 133 genes was significantly affected by m5C methylation. A protein-protein interaction network of the 133 genes was constructed using the STRING database, and the cytoHubba plug-in of Cytoscape was used to hub genes were screen out 11 hub genes, including MMP14, VTN, COL15A1, COL6A2, SPARC, COL5A1, COL6A3, COL6A1, COL8A2, ADAMTS2 and COL7A1. The Pathway enrichment analysis by the ClueGO and CluePedia plugins in Cytoscape showed that the hub genes were significantly enriched in collagen degradation and extracellular matrix degradation. CONCLUSIONS: Our study indicated that m5C modification might play an important role in OA pathogenesis, and the present study provides worthwhile insight into identifying m5C-related therapeutic targets in OA.


Subject(s)
Osteoarthritis , RNA , Humans , 5-Methylcytosine , Databases, Factual , High-Throughput Nucleotide Sequencing , Osteoarthritis/genetics , Collagen Type VII
6.
Small ; 19(45): e2303414, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37431206

ABSTRACT

Collagen-based hydrogels have a significant impact on wound healing, but they suffer from structural instability and bacterial invasion in infected wounds. Here, electrospun nanofibers of esterified hyaluronan (HA-Bn/T) are developed to immobilize the hydrophobic antibacterial drug tetracycline by π-π stacking interaction. Dopamine-modified hyaluronan and HA-Bn/T are employed simultaneously to stabilize the structure of collagen-based hydrogel by chemically interweaving the collagen fibril network and decreasing the rate of collagen degradation. This renders it injectable for in situ gelation, with suitable skin adhesion properties and long-lasting drug release capability. This hybridized interwoven hydrogel promotes the proliferation and migration of L929 cells and vascularization in vitro. It presents satisfactory antibacterial ability against Staphylococcus aureus and Escherichia coli. The structure also retains the functional protein environment provided by collagen fiber, inhibits the bacterial environment of infected wounds, and modulates local inflammation, resulting in neovascularization, collagen deposition, and partial follicular regeneration. This strategy offers a new solution for infected wound healing.


Subject(s)
Hyaluronic Acid , Hydrogels , Hydrogels/chemistry , Hyaluronic Acid/chemistry , Adhesives , Wound Healing , Collagen/pharmacology , Tetracycline , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Escherichia coli
7.
Exp Eye Res ; 231: 109466, 2023 06.
Article in English | MEDLINE | ID: mdl-37059215

ABSTRACT

Corneal alkali burn (AB) is a blindness-causing ocular trauma commonly seen in clinics. An excessive inflammatory reaction and stromal collagen degradation contribute to corneal pathological damage. Luteolin (LUT) has been studied for its anti-inflammatory effects. In this study, the effect of LUT on cornea stromal collagen degradation and inflammatory damage in rats with corneal alkali burn was investigated. After corneal alkali burn, rats were randomly assigned to the AB group and AB + LUT group and received an injection of saline and LUT (200 mg/kg) once daily. Subsequently, corneal opacity, epithelial defects, inflammation and neovascularization (NV) were observed and recorded on Days 1, 2, 3, 7 and 14 post-injury. The concentration of LUT in ocular surface tissues and anterior chamber, as well as the levels of collagen degradation, inflammatory cytokines, matrix metalloproteinases (MMPs) and their activity in the cornea were detected. Human corneal fibroblasts (HCFs) were co-cultured with interleukin (IL)-1ß and LUT. Cell proliferation and apoptosis were assessed by CCK-8 assay and flow cytometry respectively. Measurement of hydroxyproline (HYP) in culture supernatants was used to quantify the amount of collagen degradation. Plasmin activity was also assessed. ELISA or real-time PCR was used to detect the production of matrix metalloproteinases (MMPs), IL-8, IL-6 and monocyte chemotactic protein (MCP)-1. Furthermore, the immunoblot method was used to assess the phosphorylation of mitogen-activated protein kinases (MAPKs), transforming growth factor-ß-activated kinase (TAK)-1, activator protein-1 (AP-1) and inhibitory protein IκB-α. At last, immunofluorescence staining helped to develop nuclear factor (NF)-κB. LUT was detectable in ocular tissues and anterior chamber after intraperitoneal injection. An intraperitoneal injection of LUT ameliorated alkali burn-elicited corneal opacity, corneal epithelial defects, collagen degradation, NV, and the infiltration of inflammatory cells. The mRNA expressions of IL-1ß, IL-6, MCP-1, vascular endothelial growth factor (VEGF)-A, and MMPs in corneal tissue were downregulated by LUT intervention. And its administration reduced the protein levels of IL-1ß, collagenases, and MMP activity. Furthermore, in vitro study showed that LUT inhibited IL-1ß-induced type I collagen degradation and the release of inflammatory cytokines and chemokines by corneal stromal fibroblasts. LUT also inhibited the IL-1ß-induced activation of TAK-1, mitogen-activated protein kinase (MAPK), c-Jun, and NF-κB signaling pathways in these cells. Our results demonstrate that LUT inhibited alkali burn-stimulated collagen breakdown and corneal inflammation, most likely by attenuating the IL-1ß signaling pathway. LUT may therefore prove to be of clinical value for treating corneal alkali burns.


Subject(s)
Burns, Chemical , Corneal Opacity , Rats , Humans , Animals , Burns, Chemical/complications , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Vascular Endothelial Growth Factor A/metabolism , Luteolin/pharmacology , Luteolin/therapeutic use , Alkalies/toxicity , Interleukin-6/metabolism , Cornea/metabolism , Cytokines/metabolism , Neovascularization, Pathologic/metabolism , Collagen Type I/metabolism , Mitogen-Activated Protein Kinases/metabolism , Corneal Opacity/metabolism , Inflammation/metabolism , Matrix Metalloproteinases/metabolism
8.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686118

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a prevalent form of malignant tumor, characterized by a persistently high incidence and mortality rate. The extracellular matrix (ECM) plays a crucial role in the initiation, progression, and diverse biological behaviors of OSCC, facilitated by mechanisms such as providing structural support, promoting cell migration and invasion, regulating cell morphology, and modulating signal transduction. This study investigated the involvement of ECM-related genes, particularly THBS1, in the prognosis and cellular behavior of OSCC. The analysis of ECM-related gene data from OSCC samples identified 165 differentially expressed genes forming two clusters with distinct prognostic outcomes. Seventeen ECM-related genes showed a significant correlation with survival. Experimental methods were employed to demonstrate the impact of THBS1 on proliferation, migration, invasion, and ECM degradation in OSCC cells. A risk-prediction model utilizing four differentially prognostic genes demonstrated significant predictive value in overall survival. THBS1 exhibited enrichment of the PI3K/AKT pathway, indicating its potential role in modulating OSCC. In conclusion, this study observed and verified that ECM-related genes, particularly THBS1, have the potential to influence the prognosis, biological behavior, and immunotherapy of OSCC. These findings hold significant implications for enhancing survival outcomes and providing guidance for precise treatment of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Collagen , Mouth Neoplasms/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Squamous Cell Carcinoma of Head and Neck/genetics , Thrombospondin 1/metabolism
9.
Am J Physiol Heart Circ Physiol ; 323(1): H165-H175, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35657618

ABSTRACT

Left ventricular pressure overload (LVPO) can develop from antecedent diseases such as aortic valve stenosis and systemic hypertension and is characterized by accumulation of myocardial extracellular matrix (ECM). Evidence from patient and animal models supports limited reductions in ECM following alleviation of PO, however, mechanisms that control the extent and timing of ECM regression are undefined. LVPO, induced by 4 wk of transverse aortic constriction (TAC) in mice, was alleviated by removal of the band (unTAC). Cardiomyocyte cross-sectional area, collagen volume fraction (CVF), myocardial stiffness, and collagen degradation were assessed for: control, 2-wk TAC, 4-wk TAC, 4-wk TAC + 2-wk unTAC, 4-wk TAC + 4-wk unTAC, and 4-wk TAC + 6-wk unTAC. When compared with 4-wk TAC, 2-wk unTAC resulted in increased reactivity of collagen hybridizing peptide (CHP) (representing initiation of collagen degradation), increased levels of collagenases and gelatinases, decreased levels of collagen cross-linking enzymes, but no change in CVF. When compared with 2-wk unTAC, 4-wk unTAC demonstrated decreased CVF, which did not decline to control values. At 4-wk and 6-wk unTAC, CHP reactivity and mediators of ECM degradation were reduced versus 2-wk unTAC, whereas levels of tissue inhibitor of metalloproteinase (TIMP)-1 increased. ECM homeostasis changed in a time-dependent manner after removal of LVPO and is characterized by early increases in collagen degradation, followed by a later dampening of this process. Tempered ECM degradation with time is predicted to contribute to the finding that normalization of hemodynamic overload alone does not completely regress myocardial fibrosis.NEW & NOTEWORTHY In this study, a murine model demonstrated persistent interstitial fibrosis and myocardial stiffness following alleviation of pressure overload.


Subject(s)
Collagen , Myocardium , Animals , Collagen/metabolism , Disease Models, Animal , Fibrosis , Humans , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Ventricular Pressure , Ventricular Remodeling
10.
Appl Environ Microbiol ; 88(7): e0167721, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35285716

ABSTRACT

Vibrio collagenases of the M9A subfamily are closely related to Vibrio pathogenesis for their role in collagen degradation during host invasion. Although some Vibrio collagenases have been characterized, the collagen degradation mechanism of Vibrio collagenase is still largely unknown. Here, an M9A collagenase, VP397, from marine Vibrio pomeroyi strain 12613 was characterized, and its fragmentation pattern on insoluble type I collagen fibers was studied. VP397 is a typical Vibrio collagenase composed of a catalytic module featuring a peptidase M9N domain and a peptidase M9 domain and two accessory bacterial prepeptidase C-terminal domains (PPC domains). It can hydrolyze various collagenous substrates, including fish collagen, mammalian collagens of types I to V, triple-helical peptide [(POG)10]3, gelatin, and 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-o-Arg (Pz-peptide). Atomic force microscopy (AFM) observation and biochemical analyses revealed that VP397 first assaults the C-telopeptide region to dismantle the compact structure of collagen and dissociate tropocollagen fragments, which are further digested into peptides and amino acids by VP397 mainly at the Y-Gly bonds in the repeating Gly-X-Y triplets. In addition, domain deletion mutagenesis showed that the catalytic module of VP397 alone is capable of hydrolyzing type I collagen fibers and that its C-terminal PPC2 domain functions as a collagen-binding domain during collagenolysis. Based on our results, a model for the collagenolytic mechanism of VP397 is proposed. This study sheds light on the mechanism of collagen degradation by Vibrio collagenase, offering a better understanding of the pathogenesis of Vibrio and helping in developing the potential applications of Vibrio collagenase in industrial and medical areas. IMPORTANCE Many Vibrio species are pathogens and cause serious diseases in humans and aquatic animals. The collagenases produced by pathogenic Vibrio species have been regarded as important virulence factors, which occasionally exhibit direct pathogenicity to the infected host or facilitate other toxins' diffusion through the digestion of host collagen. However, our knowledge concerning the collagen degradation mechanism of Vibrio collagenase is still limited. This study reveals the degradation strategy of Vibrio collagenase VP397 on type I collagen. VP397 binds on collagen fibrils via its C-terminal PPC2 domain, and its catalytic module first assaults the C-telopeptide region and then attacks the Y-Gly bonds in the dissociated tropocollagen fragments to release peptides and amino acids. This study offers new knowledge regarding the collagenolytic mechanism of Vibrio collagenase, which is helpful for better understanding the role of collagenase in Vibrio pathogenesis and for developing its industrial and medical applications.


Subject(s)
Collagen Type I , Vibrio , Amino Acid Sequence , Amino Acids , Animals , Collagen/metabolism , Collagen Type I/genetics , Collagenases/genetics , Collagenases/metabolism , Mammals , Peptides/metabolism , Tropocollagen , Vibrio/metabolism
11.
Int J Mol Sci ; 23(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35270025

ABSTRACT

Sunlight is an important factor in regulating the central circadian rhythm, including the modulation of our sleep/wake cycles. Sunlight had also been discovered to have a prominent influence on our skin's circadian rhythm. Overexposure or prolonged exposure to the sun can cause skin photodamage, such as the formation of irregular pigmentation, collagen degradation, DNA damage, and even skin cancer. Hence, this review will be looking into the detrimental effects of sunlight on our skin, not only at the aspect of photoaging but also at its impact on the skin's circadian rhythm. The growing market trend of natural-product-based cosmeceuticals as also caused us to question their potential to modulate the skin's circadian rhythm. Questions about how the skin's circadian rhythm could counteract photodamage and how best to maximize its biopotential will be discussed in this article. These discoveries regarding the skin's circadian rhythm have opened up a completely new level of understanding of our skin's molecular mechanism and may very well aid cosmeceutical companies, in the near future, to develop better products that not only suppress photoaging but remain effective and relevant throughout the day.


Subject(s)
Cosmeceuticals , Skin Aging , Skin Diseases , Circadian Rhythm/physiology , Cosmeceuticals/metabolism , Humans , Skin/metabolism , Skin Diseases/metabolism
12.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328414

ABSTRACT

An infectious process into the uterine cavity represents a major endangered condition that compromises the immune privilege of the maternal-fetal unit and increases the risk for preterm birth (PTB) and premature rupture of membranes (PROM). Fetal membranes are active secretors of antimicrobial peptides (AMP), which limit bacterial growth, such as Escherichia coli. Nevertheless, the antibacterial responses displayed by chorioamniotic membranes against a choriodecidual E. coli infection have been briefly studied. The objective of this research was to characterize the profile of synthesis, activity, and spatial distribution of a broad panel of AMPs produced by fetal membranes in response to E. coli choriodecidual infection. Term human chorioamniotic membranes were mounted in a two independent compartment model in which the choriodecidual region was infected with live E. coli (1 × 105 CFU/mL). Amnion and choriodecidual AMP tissue levels and TNF-α and IL-1ß secretion were measured by the enzyme-linked immunosorbent assay. The passage of bacterium through fetal membranes and their effect on structural continuity was followed for 24 h. Our results showed that E. coli infection caused a progressive mechanical disruption of the chorioamniotic membranes and an activated inflammatory environment. After the challenge, the amnion quickly (2-4 h) induced production of human beta defensins (HBD)-1, HBD-2, and LL-37. Afterwards (8-24 h), the amnion significantly produced HBD-1, HBD-2, HNP-1-3, S100A7, sPLA2, and elafin, whereas the choriodecidua induced LL-37 synthesis. Therefore, we noticed a temporal- and tissue-specific pattern regulation of the synthesis of AMPs by infected fetal membranes. However, fetal membranes were not able to contain the collagen degradation or the bacterial growth and migration despite the battery of produced AMPs, which deeply increases the risk for PTB and PROM. The mixture of recombinant HBDs at low concentrations resulted in increased bactericidal activity compared to each HBD alone in vitro, encouraging further research to study AMP combinations that may offer synergy to control drug-resistant infections in the perinatal period.


Subject(s)
Escherichia coli Infections , Premature Birth , beta-Defensins , Female , Humans , Infant, Newborn , Pregnancy , beta-Defensins/metabolism , Escherichia coli/metabolism , Escherichia coli Infections/metabolism , Extraembryonic Membranes/metabolism , Immunity, Innate , Premature Birth/metabolism
13.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: mdl-33090092

ABSTRACT

Upregulation of matrix metalloproteinase (MMP)-14, a major driven force of extracellular-matrix (ECM) remodelling and cell migration, correlates with ECM breakdown and pathologic manifestation of genotype VII Newcastle disease virus (NDV) in chickens. However, the functional relevance between MMP-14 and pathogenesis of genotype VII NDV remains to be investigated. In this study, expression, biofunction and regulation of MMP-14 induced by genotype VII NDV were analysed in chicken peripheral blood mononuclear cells (PBMCs). The results showed that JS5/05 significantly increased expression and membrane accumulation of MMP-14 in PBMCs, correlating to enhanced collagen degradation and cell migration. Specific MMP-14 inhibition significantly impaired collagen degradation and migration of JS5/05-infected cells, suggesting dependence of these features on MMP-14. In addition, MMP-14 upregulation correlated with activation of the extracellular signal-regulated kinase (ERK) pathway upon JS5/05 infection, and blockage of the ERK signalling significantly suppressed MMP-14-mediated collagen degradation and migration of JS5/05-infected cells. Using a panel of chimeric NDVs derived from gene exchange between genotype VII and IV NDV, the fusion and haemagglutinin-neuraminidase genes were identified as the major viral determinants for MMP-14 expression and activity. In conclusion, MMP-14 was defined as a critical regulator of collagen degradation and cell migration of chicken PBMCs infected with genotype VII NDV, which may contribute to pathology of the virus. Our findings add novel information to the body of knowledge regarding virus-host biology and NDV pathogenesis.


Subject(s)
Cell Movement , Collagen/metabolism , Leukocytes, Mononuclear/virology , Matrix Metalloproteinase 14/metabolism , Newcastle disease virus/pathogenicity , Animals , Cell Membrane/metabolism , Chickens , Extracellular Signal-Regulated MAP Kinases/metabolism , Genotype , HN Protein/genetics , HN Protein/metabolism , Host-Pathogen Interactions , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , MAP Kinase Signaling System , Newcastle disease virus/genetics , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virus Replication
14.
Osteoarthritis Cartilage ; 29(7): 1071-1080, 2021 07.
Article in English | MEDLINE | ID: mdl-33848681

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is a chronic joint disease characterized by progressive degradation of cartilage. It affects more than 10% of the people aged over 60 years-old worldwide with a rising prevalence due to the increasingly aging population. OA is a major source of pain, disability, and socioeconomic cost. Currently, the lack of effective diagnosis and affordable imaging options for early detection and monitoring of OA presents the clinic with many challenges. Spectroscopic Photoacoustic (sPA) imaging has the potential to reveal changes in cartilage composition with different degrees of damage, based on optical absorption contrast. DESIGN: In this study, the capabilities of sPA imaging and its potential to characterize cartilage damage were explored. To this end, 15 pieces of cartilage samples from patients undergoing a total joint replacement were collected and were imaged ex vivo with sPA imaging at a wide optical spectral range (between 500 nm and 1,300 nm) to investigate the photoacoustic properties of cartilage tissue. All the PA spectra of the cartilage samples were analyzed and compared to the corresponding histological results. RESULTS: The collagen related PA spectral changes were clearly visible in our imaging data and were related to different degrees of cartilage damage. The results are in good agreement with histology and the current gold standard, i.e., the Mankin score. CONCLUSIONS: This study demonstrates the potential and possible clinical application of sPA imaging in OA.


Subject(s)
Cartilage, Articular/pathology , Photoacoustic Techniques , Spectrum Analysis , Aged , Aged, 80 and over , Arthroplasty, Replacement, Knee , Female , Humans , Knee Joint/pathology , Male , Middle Aged
15.
Int Urogynecol J ; 32(8): 2273-2281, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32737532

ABSTRACT

INTRODUCTION AND HYPOTHESIS: This study aimed to compare the expression levels of extracellular matrix (ECM) and apoptosis proteins in the uterosacral ligament (USL) of patients with and without pelvic organ prolapse (POP). METHODS: The USL were obtained from patients with POP-Q ≥ III (n = 35) and without POP (n = 20). Immunohistochemistry (IHC) staining and RT-qPCR were conducted to assess the protein and mRNA levels, respectively. The levels of type I collagen (COLI), type III collagen (COLIII), matrix metalloproteinase (MMP)1, MMP2, MMP9, tissue inhibitor of metalloproteinase (TIMP)1, TIMP2, estrogen receptor (ER)α, ERß and apoptosis-related gene B cell lymphoma 2 (Bcl-2)-associated agonist of cell death (Bad) and Bcl-2-associated X (Bax) in the USL were analyzed. RESULTS: The protein expression and mRNA levels of MMP2 and MMP9, mRNA levels of BAD and BAX, and protein expression of active cleaved-Caspase3 were significantly higher in the POP group. There were no evident differences in COLIII, MMP1 or ERß expression at either the mRNA or protein level or in TIMP1, TIMP2 or Caspase3 by IHC between the two groups. However, obvious decreases in COLI and ERα were evident at both the mRNA and protein levels in the POP group, and the mRNA levels of TIMP1 and TIMP2 were also decreased compared to those of the control group. CONCLUSION: ECM in the USL tissues of POP patients is remodeled compared with non-POP patients and is characterized by decreased synthesis and increased degradation of collagen; moreover, the levels of the main proteins involved in apoptosis are increased in POP tissue.


Subject(s)
Extracellular Matrix Proteins , Pelvic Organ Prolapse , Apoptosis , Female , Humans , Ligaments , Pelvic Organ Prolapse/genetics , Uterus
16.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445684

ABSTRACT

The shape and transparency of the cornea are essential for clear vision. However, its location at the ocular surface renders the cornea vulnerable to pathogenic microorganisms in the external environment. Pseudomonas aeruginosa and Staphylococcus aureus are two such microorganisms and are responsible for most cases of bacterial keratitis. The development of antimicrobial agents has allowed the successful treatment of bacterial keratitis if the infection is diagnosed promptly. However, no effective medical treatment is available after progression to corneal ulcer, which is characterized by excessive degradation of collagen in the corneal stroma and can lead to corneal perforation and corneal blindness. This collagen degradation is mediated by both infecting bacteria and corneal fibroblasts themselves, with a urokinase-type plasminogen activator (uPA)-plasmin-matrix metalloproteinase (MMP) cascade playing a central role in collagen destruction by the host cells. Bacterial factors stimulate the production by corneal fibroblasts of both uPA and pro-MMPs, released uPA mediates the conversion of plasminogen in the extracellular environment to plasmin, and plasmin mediates the conversion of secreted pro-MMPs to the active form of these enzymes, which then degrade stromal collagen. Bacterial factors also stimulate expression by corneal fibroblasts of the chemokine interleukin-8 and the adhesion molecule ICAM-1, both of which contribute to recruitment and activation of polymorphonuclear neutrophils, and these cells then further stimulate corneal fibroblasts via the secretion of interleukin-1. At this stage of the disease, bacteria are no longer necessary for collagen degradation. In this review, we discuss the pivotal role of corneal fibroblasts in corneal ulcer associated with infection by P. aeruginosa or S. aureus as well as the development of potential new modes of treatment for this condition.


Subject(s)
Corneal Ulcer/metabolism , Fibroblasts/metabolism , Keratitis/microbiology , Animals , Collagen/metabolism , Cornea/metabolism , Cornea/physiology , Corneal Stroma/metabolism , Corneal Ulcer/etiology , Corneal Ulcer/microbiology , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/physiopathology , Fibrinolysin/metabolism , Humans , Matrix Metalloproteinases/metabolism , Plasminogen/metabolism , Plasminogen Activators/metabolism , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Urokinase-Type Plasminogen Activator/metabolism
17.
Eur J Oral Sci ; 127(1): 1-9, 2019 02.
Article in English | MEDLINE | ID: mdl-30414282

ABSTRACT

Matrix metalloproteinases (MMPs) and cysteine cathepsins (CCs) can break down unprotected type I collagen fibrils in dentin matrix. This study investigated the use of potassium fluoride (KF) as a potential inhibitor of MMPs and CCs in dentin. Demineralized dentin beams were divided into groups (n = 10 in each group) and incubated in artificial saliva (AS, control), either alone or with one of seven concentrations of KF (6-238 mM fluoride) for 1, 7, and 21 d. After 21 d, all groups were further aged in AS for 6 months. Total MMP activity was screened using the colorimetric MMP assay. The activities of MMP-2 and MMP-9 were investigated using gelatin zymography. At the end of each incubation, changes in loss of dry mass and CC-mediated or total dissolution of collagen peptides were measured via precision weighing, C-terminal crosslinked telopeptide of type I collagen (CTX), and hydroxyproline (HYP) assays. The beams were examined using scanning electron microscopy. After 21 d, total MMP activities, dry mass loss, and CTX release for the groups exposed to 179 and 238 mM fluoride were significantly lower compared with the control group. After 6 months, all groups showed similar total MMP activity, dry mass loss, and HYP release, and CTX levels were significantly lower when the fluoride concentration was ≥24 mM. Calcium fluoride (CaF2 )-like precipitates were observed over the beams. In summary, KF significantly inhibited the catalytic activity of dentin matrix-bound CCs but did not seem to be effective for MMP-mediated activity.


Subject(s)
Cathepsins/antagonists & inhibitors , Dentin/drug effects , Fluorides/pharmacology , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinases/metabolism , Potassium Compounds/pharmacology , Cathepsins/metabolism , Dentin/metabolism , Dentin/ultrastructure , Humans , In Vitro Techniques , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Microscopy, Electrochemical, Scanning , Molar , Spectrometry, X-Ray Emission
18.
Biosci Biotechnol Biochem ; 83(7): 1197-1204, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30999820

ABSTRACT

In this study, skin cream containing ziyuglycoside I isolated from Sanguisorba officinalis was manufactured and examined the protective effects of the skin cream against UVB-induced hairless mice. UVB-induced hairless mice were topically treated with the skin cream once a day for 5 weeks. Application of the skin cream did not exhibit side effect on body growth showing normal body weight and food efficiency in the mice. The skin cream treatment also was inhibited mRNA expression of interleukin (IL)-1ß, matrix metalloproteinase (MMP)-2, MMP-9, and MMP-2 protein expression in the mice. Furthermore, the skin cream treatment inhibits epidermal wrinkle formation, wrinkle depth, wrinkle thickness, and collagen degradation in UVB-induced hairless mice. Therefore, the skin cream was able to play a role in the attenuation of photoaging caused by UVB irradiation via downregulation of mRNA expression of inflammatory cytokine IL-1ß, MMP-2, MMP-9, and suppression of MMP-2 proteins expression.


Subject(s)
Sanguisorba/chemistry , Saponins/pharmacology , Skin Aging/drug effects , Skin Aging/radiation effects , Skin Cream/pharmacology , Ultraviolet Rays , Animals , Body Weight/drug effects , Enzyme-Linked Immunosorbent Assay , Female , Interleukin-1beta/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mice , Mice, Hairless , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
19.
Environ Toxicol ; 34(12): 1354-1362, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31436008

ABSTRACT

Ultraviolet-B light (UV-B) is a major cause of skin photoaging, inducing cell death and extracellular matrix collapse by generating reactive oxygen species (ROS). Belamcandae Rhizoma (BR), the rhizome of Belamcanda chinensis Leman, exhibits antioxidant properties, but it remains unknown whether BR extract ameliorates UV-B-induced skin damage. In this study, we evaluated the effects of a standardized BR extract on UV-B-induced apoptosis and collagen degradation in HaCaT cells. BR was extracted using four different methods. We used radical-scavenging assays to compare the antioxidative activities of the four extracts. Cells were irradiated with UV-B and treated with BR boiled in 70% (vol/vol) ethanol (BBE). We measured cell viability, intracellular ROS levels, the expression levels of antioxidative enzymes, and apoptosis-related and collagen degradation-related proteins. The irisflorentin and tectorigenin levels were measured via high-performance liquid chromatography. BBE exhibited the best radical-scavenging and cell protective effects of the four BR extracts. BBE inhibited intracellular ROS generation and induced the synthesis of antioxidative enzymes such as catalase and glutathione. BBE attenuated apoptosis by reducing the level of caspase-3 and increasing the Bcl-2/Bax ratio. BBE reduced the level of matrix metalloproteinase-1 and increased that of type I collagen. The irisflorentin and tectorigenin contents were 0.23% and 0.015%, respectively. From these results, BBE ameliorated UV-B-induced apoptosis and collagen degradation by enhancing the expression of antioxidative enzymes. It may be a useful treatment for UV-B-induced skin damage.


Subject(s)
Apoptosis/drug effects , Collagen Type I/metabolism , Iris/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Ultraviolet Rays , Antioxidants/metabolism , Apoptosis/radiation effects , Cell Line , Glutathione/metabolism , Humans , Iris/metabolism , Isoflavones/analysis , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Matrix Metalloproteinase 1/metabolism , Plant Extracts/chemistry , Protective Agents/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Rhizome/chemistry , Rhizome/metabolism
20.
Cell Physiol Biochem ; 45(3): 1034-1050, 2018.
Article in English | MEDLINE | ID: mdl-29439249

ABSTRACT

BACKGROUND/AIMS: Recently, studies have shown that interleukin-37 (IL-37) is involved in atherosclerosis-related diseases. However, the regulatory mechanisms of IL-37 in atherosclerosis remain unknown. This study aims to determine the role of IL-37 in atherosclerosis and to investigate the underlying mechanisms involved. METHODS: IL-37 expression in human atherosclerotic plaques was detected by immunohistochemical staining and real-time reverse transcription polymerase chain reaction (RT-PCR). Oil Red O staining was used to measure the size of plaques. Cell apoptosis in vitro and in vivo was tested by flow cytometric analysis and terminal deoxynucleotidyl-transferase mediated dUTP nick-end labeling (TUNEL) staining, respectively. Protein expression levels of IL-37, IL-18Rα and p-Smad3 were measured by Weston blotting. RESULTS: Immunohistochemical staining revealed that IL-37 was highly expressed in human atherosclerotic plaques. Intracellular cytokine staining revealed that infiltrated CD4+ T lymphocytes and vascular smooth muscle cells (VSMCs), but not macrophages, were the major sources of IL-37. Mice that overexpressed IL-37 exhibited significant improvements in their atherosclerotic burden, as demonstrated by reduced plaque size, increased collagen levels, and reduced numbers of apoptotic cells in vivo. Subsequently, mechanistic studies showed that IL-37 played an anti-atherosclerotic role, at least partially, through reducing inflammation by promoting the differentiation of the T helper cell anti-inflammatory phenotype, and through increasing plaque stability by decreasing matrix metalloproteinase (MMP)-2/13-mediated degradation of collagen and inhibiting VSMCs apoptosis. CONCLUSION: IL-37 may be a novel potential therapeutic target in patients with atherosclerotic heart disease.


Subject(s)
Interleukin-1/metabolism , Plaque, Atherosclerotic/metabolism , Animals , Antibodies, Neutralizing/immunology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apoptosis/drug effects , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/prevention & control , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Cytokines/analysis , Humans , Hydrogen Peroxide/toxicity , Interleukin-1/genetics , Interleukin-18 Receptor alpha Subunit/genetics , Interleukin-18 Receptor alpha Subunit/immunology , Interleukin-18 Receptor alpha Subunit/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Smad3 Protein/deficiency , Smad3 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL