Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35671510

ABSTRACT

Computational models are often employed in systems biology to study the dynamic behaviours of complex systems. With the rise in the number of computational models, finding ways to improve the reusability of these models and their ability to reproduce virtual experiments becomes critical. Correct and effective model annotation in community-supported and standardised formats is necessary for this improvement. Here, we present recent efforts toward a common framework for annotated, accessible, reproducible and interoperable computational models in biology, and discuss key challenges of the field.


Subject(s)
Computational Biology , Systems Biology , Computer Simulation , Reproducibility of Results
2.
J Exp Bot ; 70(9): 2403-2418, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30615184

ABSTRACT

A recent initiative named 'Crops in silico' proposes that multi-scale models 'have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts' in plant science, particularly directed to crop species. To that end, the group called for 'a paradigm shift in plant modelling, from largely isolated efforts to a connected community'. 'Wet' (experimental) research has been especially productive in plant science, since the adoption of Arabidopsis thaliana as a laboratory model species allowed the emergence of an Arabidopsis research community. Parts of this community invested in 'dry' (theoretical) research, under the rubric of Systems Biology. Our past research combined concepts from Systems Biology and crop modelling. Here we outline the approaches that seem most relevant to connected, 'digital organism' initiatives. We illustrate the scale of experimental research required, by collecting the kinetic parameter values that are required for a quantitative, dynamic model of a gene regulatory network. By comparison with the Systems Biology Markup Language (SBML) community, we note computational resources and community structures that will help to realize the potential for plant Systems Biology to connect with a broader crop science community.


Subject(s)
Crops, Agricultural/physiology , Systems Biology/methods , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology , Kinetics
3.
Anim Genet ; 49(6): 520-526, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30311252

ABSTRACT

The Functional Annotation of ANimal Genomes (FAANG) project aims, through a coordinated international effort, to provide high quality functional annotation of animal genomes with an initial focus on farmed and companion animals. A key goal of the initiative is to ensure high quality and rich supporting metadata to describe the project's animals, specimens, cell cultures and experimental assays. By defining rich sample and experimental metadata standards and promoting best practices in data descriptions, deposition and openness, FAANG champions higher quality and reusability of published datasets. FAANG has established a Data Coordination Centre, which sits at the heart of the Metadata and Data Sharing Committee. It continues to evolve the metadata standards, support submissions and, crucially, create powerful and accessible tools to support deposition and validation of metadata. FAANG conforms to the findable, accessible, interoperable, and reusable (FAIR) data principles, with high quality, open access and functionally interlinked data. In addition to data generated by FAANG members and specific FAANG projects, existing datasets that meet the main-or more permissive legacy-standards are incorporated into a central, focused, functional data resource portal for the entire farmed and companion animal community. Through clear and effective metadata standards, validation and conversion software, combined with promotion of best practices in metadata implementation, FAANG aims to maximise effectiveness and inter-comparability of assay data. This supports the community to create a rich genome-to-phenotype resource and promotes continuing improvements in animal data standards as a whole.


Subject(s)
Data Curation/standards , Genomics , Metadata/standards , Animals , Livestock , Pets , Software
4.
Hastings Cent Rep ; 51(5): 51-53, 2021 09.
Article in English | MEDLINE | ID: mdl-34529850

ABSTRACT

In the September-October 2021 issue of the Hastings Center Report, neither the article by MaryKatherine Gaurke et al. nor the article by Alex Rajczi et al. offers a comprehensive analysis of a just allocation of scarce resources-one "rooted in a collective agreement about what constitutes health in/justice." This omission reflects a larger problem in bioethics: the field's praxis continues to fail to recognize and respond to the obligation to address the fair distribution of burdens and benefits that comes with the principle of justice. This commentary calls on bioethics to incorporate a community-based participatory research (CBPR) framework as part of its praxis. The cocreation of crisis standards of care with community stakeholders, whether the standards were focused on treatments, vaccines, or novel community-engagement strategies, could set a new gold standard for the practice of social justice in research.


Subject(s)
Bioethics , COVID-19 , Humans , Pandemics , SARS-CoV-2 , Social Justice
5.
Front Big Data ; 3: 22, 2020.
Article in English | MEDLINE | ID: mdl-33693395

ABSTRACT

The Adaptive Immune Receptor Repertoire (AIRR) Community is a research-driven group that is establishing a clear set of community-accepted data and metadata standards; standards-based reference implementation tools; and policies and practices for infrastructure to support the deposit, curation, storage, and use of high-throughput sequencing data from B-cell and T-cell receptor repertoires (AIRR-seq data). The AIRR Data Commons is a distributed system of data repositories that utilizes a common data model, a common query language, and common interoperability formats for storage, query, and downloading of AIRR-seq data. Here is described the principal technical standards for the AIRR Data Commons consisting of the AIRR Data Model for repertoires and rearrangements, the AIRR Data Commons (ADC) API for programmatic query of data repositories, a reference implementation for ADC API services, and tools for querying and validating data repositories that support the ADC API. AIRR-seq data repositories can become part of the AIRR Data Commons by implementing the data model and API. The AIRR Data Commons allows AIRR-seq data to be reused for novel analyses and empowers researchers to discover new biological insights about the adaptive immune system.

6.
F1000Res ; 82019.
Article in English | MEDLINE | ID: mdl-31824649

ABSTRACT

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled "An intrinsically disordered protein user community proposal for ELIXIR" held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders.


Subject(s)
Intrinsically Disordered Proteins/metabolism
7.
Front Immunol ; 8: 1418, 2017.
Article in English | MEDLINE | ID: mdl-29163494

ABSTRACT

High-throughput sequencing (HTS) of immunoglobulin (B-cell receptor, antibody) and T-cell receptor repertoires has increased dramatically since the technique was introduced in 2009 (1-3). This experimental approach explores the maturation of the adaptive immune system and its response to antigens, pathogens, and disease conditions in exquisite detail. It holds significant promise for diagnostic and therapy-guiding applications. New technology often spreads rapidly, sometimes more rapidly than the understanding of how to make the products of that technology reliable, reproducible, or usable by others. As complex technologies have developed, scientific communities have come together to adopt common standards, protocols, and policies for generating and sharing data sets, such as the MIAME protocols developed for microarray experiments. The Adaptive Immune Receptor Repertoire (AIRR) Community formed in 2015 to address similar issues for HTS data of immune repertoires. The purpose of this perspective is to provide an overview of the AIRR Community's founding principles and present the progress that the AIRR Community has made in developing standards of practice and data sharing protocols. Finally, and most important, we invite all interested parties to join this effort to facilitate sharing and use of these powerful data sets (join@airr-community.org).

8.
Expert Rev Mol Diagn ; 15(1): 97-109, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25354566

ABSTRACT

Small molecules within biological systems provide powerful insights into the biological roles, processes and states of organisms. Metabolomics is the study of the concentrations, structures and interactions of these thousands of small molecules, collectively known as the metabolome. Metabolomics is at the interface between chemistry, biology, statistics and computer science, requiring multidisciplinary skillsets. This presents unique challenges for researchers to fully utilize the information produced and to capture its potential diagnostic power. A good understanding of study design, sample preparation, analysis methods and data analysis is essential to get the right answers for the right questions. We outline the current state of the art, benefits and challenges of metabolomics to create an understanding of metabolomics studies from the experimental design to data analysis.


Subject(s)
Metabolome , Animals , Data Interpretation, Statistical , Electronic Data Processing , Humans , Magnetic Resonance Spectroscopy/standards , Metabolomics/standards , Reference Standards , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL