Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 894
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 36: 103-125, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29261409

ABSTRACT

T cell receptors (TCRs) are protein complexes formed by six different polypeptides. In most T cells, TCRs are composed of αß subunits displaying immunoglobulin-like variable domains that recognize peptide antigens associated with major histocompatibility complex molecules expressed on the surface of antigen-presenting cells. TCRαß subunits are associated with the CD3 complex formed by the γ, δ, ε, and ζ subunits, which are invariable and ensure signal transduction. Here, we review how the expression and function of TCR complexes are orchestrated by several fine-tuned cellular processes that encompass (a) synthesis of the subunits and their correct assembly and expression at the plasma membrane as a single functional complex, (b) TCR membrane localization and dynamics at the plasma membrane and in endosomal compartments, (c) TCR signal transduction leading to T cell activation, and (d) TCR degradation. These processes balance each other to ensure efficient T cell responses to a variety of antigenic stimuli while preventing autoimmunity.


Subject(s)
Gene Expression Regulation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , CD3 Complex/genetics , CD3 Complex/metabolism , Cell Membrane/metabolism , Endocytosis/genetics , Endocytosis/immunology , Endosomes/metabolism , Humans , Immunomodulation , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Proteolysis , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Structure-Activity Relationship
2.
Cell ; 185(19): 3533-3550.e27, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36113427

ABSTRACT

Integrins are validated drug targets with six approved therapeutics. However, small-molecule inhibitors to three integrins failed in late-stage clinical trials for chronic indications. Such unfavorable outcomes may in part be caused by partial agonism, i.e., the stabilization of the high-affinity, extended-open integrin conformation. Here, we show that the failed, small-molecule inhibitors of integrins αIIbß3 and α4ß1 stabilize the high-affinity conformation. Furthermore, we discovered a simple chemical feature present in multiple αIIbß3 antagonists that stabilizes integrins in their bent-closed conformation. Closing inhibitors contain a polar nitrogen atom that stabilizes, via hydrogen bonds, a water molecule that intervenes between a serine residue and the metal in the metal-ion-dependent adhesion site (MIDAS). Expulsion of this water is a requisite for transition to the open conformation. This change in metal coordination is general to integrins, suggesting broad applicability of the drug-design principle to the integrin family, as validated with a distantly related integrin, α4ß1.


Subject(s)
Drug Design , Integrin alpha4beta1 , Protein Conformation , Serine , Water
3.
Immunity ; 57(7): 1533-1548.e10, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38733997

ABSTRACT

Several interleukin-1 (IL-1) family members, including IL-1ß and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.


Subject(s)
Caspase 1 , Cryoelectron Microscopy , Interleukin-18 , Signal Transduction , Interleukin-18/metabolism , Caspase 1/metabolism , Humans , Inflammasomes/metabolism , Animals , Protein Conformation , Protein Binding , Binding Sites , Mice , Receptors, Interleukin-18/metabolism , Models, Molecular , Intercellular Signaling Peptides and Proteins
4.
Mol Cell ; 84(12): 2223-2237.e4, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870937

ABSTRACT

In Saccharomyces cerevisiae (S. cerevisiae), Mre11-Rad50-Xrs2 (MRX)-Sae2 nuclease activity is required for the resection of DNA breaks with secondary structures or protein blocks, while in humans, the MRE11-RAD50-NBS1 (MRN) homolog with CtIP is needed to initiate DNA end resection of all breaks. Phosphorylated Sae2/CtIP stimulates the endonuclease activity of MRX/N. Structural insights into the activation of the Mre11 nuclease are available only for organisms lacking Sae2/CtIP, so little is known about how Sae2/CtIP activates the nuclease ensemble. Here, we uncover the mechanism of Mre11 activation by Sae2 using a combination of AlphaFold2 structural modeling of biochemical and genetic assays. We show that Sae2 stabilizes the Mre11 nuclease in a conformation poised to cleave substrate DNA. Several designs of compensatory mutations establish how Sae2 activates MRX in vitro and in vivo, supporting the structural model. Finally, our study uncovers how human CtIP, despite considerable sequence divergence, employs a similar mechanism to activate MRN.


Subject(s)
DNA-Binding Proteins , Endodeoxyribonucleases , Endonucleases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Endonucleases/metabolism , Endonucleases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , Humans , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Models, Molecular , Phosphorylation , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Breaks, Double-Stranded , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , Mutation , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , DNA Repair , Enzyme Activation
5.
Mol Cell ; 84(14): 2747-2764.e7, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059371

ABSTRACT

A recombinant lineage of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryoelectron microscopy (cryo-EM) structures of XBB.1.5, XBB.1.16, EG.5, and EG.5.1 spike (S) ectodomains to reveal reinforced 3-receptor binding domain (RBD)-down receptor-inaccessible closed states mediated by interprotomer RBD interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters, including stability, receptor binding, and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.


Subject(s)
COVID-19 , Cryoelectron Microscopy , Mutation , Protein Conformation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Humans , COVID-19/virology , COVID-19/immunology , Protein Binding , Immune Evasion , Models, Molecular , Protein Domains , Binding Sites
6.
Cell ; 164(4): 747-56, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26871634

ABSTRACT

CorA, the major Mg(2+) uptake system in prokaryotes, is gated by intracellular Mg(2+) (KD ∼ 1-2 mM). X-ray crystallographic studies of CorA show similar conformations under Mg(2+)-bound and Mg(2+)-free conditions, but EPR spectroscopic studies reveal large Mg(2+)-driven quaternary conformational changes. Here, we determined cryo-EM structures of CorA in the Mg(2+)-bound closed conformation and in two open Mg(2+)-free states at resolutions of 3.8, 7.1, and 7.1 Å, respectively. In the absence of bound Mg(2+), four of the five subunits are displaced to variable extents (∼ 10-25 Å) by hinge-like motions as large as ∼ 35° at the stalk helix. The transition between a single 5-fold symmetric closed state and an ensemble of low Mg(2+), open, asymmetric conformational states is, thus, the key structural signature of CorA gating. This mechanism is likely to apply to other structurally similar divalent ion channels.


Subject(s)
Bacterial Proteins/ultrastructure , Cation Transport Proteins/ultrastructure , Magnesium/metabolism , Thermotoga maritima/chemistry , Bacterial Proteins/chemistry , Cation Transport Proteins/chemistry , Cryoelectron Microscopy , Models, Molecular , Molecular Dynamics Simulation
7.
Mol Cell ; 82(7): 1288-1296.e5, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35353986

ABSTRACT

Mutations in the NF1 gene cause the familial genetic disease neurofibromatosis type I, as well as predisposition to cancer. The NF1 gene product, neurofibromin, is a GTPase-activating protein and acts as a tumor suppressor by negatively regulating the small GTPase, Ras. However, structural insights into neurofibromin activation remain incompletely defined. Here, we provide cryoelectron microscopy (cryo-EM) structures that reveal an extended neurofibromin homodimer in two functional states: an auto-inhibited state with occluded Ras-binding site and an asymmetric open state with an exposed Ras-binding site. Mechanistically, the transition to the active conformation is stimulated by nucleotide binding, which releases a lock that tethers the catalytic domain to an extended helical repeat scaffold in the occluded state. Structure-guided mutational analysis supports functional relevance of allosteric control. Disease-causing mutations are mapped and primarily impact neurofibromin stability. Our findings suggest a role for nucleotides in neurofibromin regulation and may lead to therapeutic modulation of Ras signaling.


Subject(s)
Neurofibromatosis 1 , Neurofibromin 1 , Cryoelectron Microscopy , GTPase-Activating Proteins/metabolism , Genes, Neurofibromatosis 1 , Humans , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/pathology , Neurofibromin 1/chemistry , Neurofibromin 1/genetics , Neurofibromin 1/metabolism
8.
Mol Cell ; 82(11): 2050-2068.e6, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35447081

ABSTRACT

Aided by extensive spike protein mutation, the SARS-CoV-2 Omicron variant overtook the previously dominant Delta variant. Spike conformation plays an essential role in SARS-CoV-2 evolution via changes in receptor-binding domain (RBD) and neutralizing antibody epitope presentation, affecting virus transmissibility and immune evasion. Here, we determine cryo-EM structures of the Omicron and Delta spikes to understand the conformational impacts of mutations in each. The Omicron spike structure revealed an unusually tightly packed RBD organization with long range impacts that were not observed in the Delta spike. Binding and crystallography revealed increased flexibility at the functionally critical fusion peptide site in the Omicron spike. These results reveal a highly evolved Omicron spike architecture with possible impacts on its high levels of immune evasion and transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
9.
Mol Cell ; 81(20): 4176-4190.e6, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34529927

ABSTRACT

Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2.


Subject(s)
Deubiquitinating Enzymes/metabolism , Polyubiquitin/metabolism , Ubiquitin Thiolesterase/metabolism , Binding Sites , Catalytic Domain , Crystallography , Deubiquitinating Enzymes/genetics , Enzyme Activation , Humans , Kinetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Scattering, Small Angle , Structure-Activity Relationship , Ubiquitin Thiolesterase/genetics , Ubiquitination
10.
Mol Cell ; 78(2): 275-288.e6, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32160514

ABSTRACT

Transcription initiation requires formation of the open promoter complex (RPo). To generate RPo, RNA polymerase (RNAP) unwinds the DNA duplex to form the transcription bubble and loads the DNA into the RNAP active site. RPo formation is a multi-step process with transient intermediates of unknown structure. We use single-particle cryoelectron microscopy to visualize seven intermediates containing Escherichia coli RNAP with the transcription factor TraR en route to forming RPo. The structures span the RPo formation pathway from initial recognition of the duplex promoter in a closed complex to the final RPo. The structures and supporting biochemical data define RNAP and promoter DNA conformational changes that delineate steps on the pathway, including previously undetected transient promoter-RNAP interactions that contribute to populating the intermediates but do not occur in RPo. Our work provides a structural basis for understanding RPo formation and its regulation, a major checkpoint in gene expression throughout evolution.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Promoter Regions, Genetic/genetics , RNA, Bacterial/genetics , Transcription Initiation, Genetic , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/genetics , Nucleic Acid Conformation , Protein Binding/genetics , Protein Conformation
11.
Mol Cell ; 73(5): 1015-1027.e7, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30711376

ABSTRACT

TCRs recognize cognate pMHCs to initiate T cell signaling and adaptive immunity. Mechanical force strengthens TCR-pMHC interactions to elicit agonist-specific catch bonds to trigger TCR signaling, but the underlying dynamic structural mechanism is unclear. We combined steered molecular dynamics (SMD) simulation, single-molecule biophysical approaches, and functional assays to collectively demonstrate that mechanical force induces conformational changes in pMHCs to enhance pre-existing contacts and activates new interactions at the TCR-pMHC binding interface to resist bond dissociation under force, resulting in TCR-pMHC catch bonds and T cell activation. Intriguingly, cancer-associated somatic mutations in HLA-A2 that may restrict these conformational changes suppressed TCR-pMHC catch bonds. Structural analysis also indicated that HLA polymorphism might alter the equilibrium of these conformational changes. Our findings not only reveal critical roles of force-induced conformational changes in pMHCs for activating TCR-pMHC catch bonds but also have implications for T cell-based immunotherapy.


Subject(s)
Adaptive Immunity , HLA-A2 Antigen/immunology , Mechanotransduction, Cellular , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , HEK293 Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , HLA-A2 Antigen/metabolism , Humans , Hybridomas , Mice, Inbred C57BL , Mice, Transgenic , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Single Molecule Imaging/methods , Structure-Activity Relationship , T-Lymphocytes/metabolism
12.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763336

ABSTRACT

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Subject(s)
Adenosine Triphosphatases , Humans , Animals , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Cryoelectron Microscopy , Biological Transport , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Lipid Metabolism , Protein Conformation
13.
J Biol Chem ; 300(6): 107368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750793

ABSTRACT

Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.


Subject(s)
Phosphoric Diester Hydrolases , Humans , Computational Biology/methods , Crystallography, X-Ray , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , RNA-Binding Motifs/genetics
14.
Genes Cells ; 29(1): 17-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984375

ABSTRACT

Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.


Subject(s)
Toxoplasma , Toxoplasma/metabolism , Phosphorylation , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Vacuoles/metabolism
15.
Trends Biochem Sci ; 45(3): 202-216, 2020 03.
Article in English | MEDLINE | ID: mdl-31813734

ABSTRACT

Membrane transporters are key gatekeeper proteins at cellular membranes that closely control the traffic of materials. Their function relies on structural rearrangements of varying degrees that facilitate substrate translocation across the membrane. Characterizing these functionally important molecular events at a microscopic level is key to our understanding of membrane transport, yet challenging to achieve experimentally. Recent advances in simulation technology and computing power have rendered molecular dynamics (MD) simulation a powerful biophysical tool to investigate a wide range of dynamical events spanning multiple spatial and temporal scales. Here, we review recent studies of diverse membrane transporters using computational methods, with an emphasis on highlighting the technical challenges, key lessons learned, and new opportunities to illuminate transporter structure and function.


Subject(s)
Cryoelectron Microscopy , Membrane Transport Proteins/metabolism , Molecular Dynamics Simulation , Biological Transport , Crystallography, X-Ray , Membrane Transport Proteins/chemistry , Protein Conformation
16.
J Biol Chem ; 299(6): 104838, 2023 06.
Article in English | MEDLINE | ID: mdl-37209821

ABSTRACT

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that results from mutations in NOTCH3. How mutations in NOTCH3 ultimately result in disease is not clear, although there is a predilection for mutations to alter the number of cysteines of the gene product, supporting a model in which alterations of conserved disulfide bonds of NOTCH3 drives the disease process. We have found that recombinant proteins with CADASIL NOTCH3 EGF domains 1 to 3 fused to the C terminus of Fc are distinguished from wildtype proteins by slowed mobility in nonreducing gels. We use this gel mobility shift assay to define the effects of mutations in the first three EGF-like domains of NOTCH3 in 167 unique recombinant protein constructs. This assay permits a readout on NOTCH3 protein mobility that indicates that (1) any loss of cysteine mutation in the first three EGF motifs results in structural abnormalities; (2) for loss of cysteine mutants, the mutant amino acid residue plays a minimal role; (3) the majority of changes that result in a new cysteine are poorly tolerated; (4) at residue 75, only cysteine, proline, and glycine induce structural shifts; (5) specific second mutations in conserved cysteines suppress the impact of loss of cysteine CADASIL mutations. These studies support the importance of NOTCH3 cysteines and disulfide bonds in maintaining normal protein structure. Double mutant analysis suggests that suppression of protein abnormalities can be achieved through modification of cysteine reactivity, a potential therapeutic strategy.


Subject(s)
CADASIL , Receptor, Notch3 , Humans , CADASIL/genetics , Cysteine/genetics , Cysteine/metabolism , Disulfides , Epidermal Growth Factor/genetics , Mutation , Receptor, Notch3/genetics
17.
J Biol Chem ; 299(1): 102792, 2023 01.
Article in English | MEDLINE | ID: mdl-36516886

ABSTRACT

The GTPase-activating protein (GAP) p190RhoGAP (p190A) is encoded by ARHGAP35 which is found mutated in cancers. p190A is a negative regulator of the GTPase RhoA in cells and must be targeted to RhoA-dependent actin-based structures to fulfill its roles. We previously identified a functional region of p190A called the PLS (protrusion localization sequence) required for localization of p190A to lamellipodia but also for regulating the GAP activity of p190A. Additional effects of the PLS region on p190A localization and activity need further characterization. Here, we demonstrated that the PLS is required to target p190A to invadosomes. Cellular expression of a p190A construct devoid of the PLS (p190AΔPLS) favored RhoA inactivation in a stronger manner than WT p190A, suggesting that the PLS is an autoinhibitory domain of p190A GAP activity. To decipher this mechanism, we searched for PLS-interacting proteins using a two-hybrid screen. We found that the PLS can interact with p190A itself. Coimmunoprecipitation experiments demonstrated that the PLS interacts with a region in close proximity to the GAP domain. Furthermore, we demonstrated that this interaction is abolished if the PLS harbors cancer-associated mutations: the S866F point mutation and the Δ865-870 deletion. Our results are in favor of defining PLS as an inhibitory domain responsible for masking the p190A functional GAP domain. Thus, p190A could exist in cells under two forms: an inactive closed conformation with a masked GAP domain and an open conformation allowing p190A GAP function. Altogether, our data unveil a new mechanism of p190A regulation.


Subject(s)
Guanine Nucleotide Exchange Factors , Neoplasms , Humans , Actins/metabolism , GTPase-Activating Proteins/metabolism , Mutation , Point Mutation , Pseudopodia/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Protein Domains
18.
J Biol Chem ; 299(4): 104586, 2023 04.
Article in English | MEDLINE | ID: mdl-36889589

ABSTRACT

MDGAs (MAM domain-containing glycosylphosphatidylinositol anchors) are synaptic cell surface molecules that regulate the formation of trans-synaptic bridges between neurexins (NRXNs) and neuroligins (NLGNs), which promote synaptic development. Mutations in MDGAs are implicated in various neuropsychiatric diseases. MDGAs bind NLGNs in cis on the postsynaptic membrane and physically block NLGNs from binding to NRXNs. In crystal structures, the six immunoglobulin (Ig) and single fibronectin III domains of MDGA1 reveal a striking compact, triangular shape, both alone and in complex with NLGNs. Whether this unusual domain arrangement is required for biological function or other arrangements occur with different functional outcomes is unknown. Here, we show that WT MDGA1 can adopt both compact and extended 3D conformations that bind NLGN2. Designer mutants targeting strategic molecular elbows in MDGA1 alter the distribution of 3D conformations while leaving the binding affinity between soluble ectodomains of MDGA1 and NLGN2 intact. In contrast, in a cellular context, these mutants result in unique combinations of functional consequences, including altered binding to NLGN2, decreased capacity to conceal NLGN2 from NRXN1ß, and/or suppressed NLGN2-mediated inhibitory presynaptic differentiation, despite the mutations being located far from the MDGA1-NLGN2 interaction site. Thus, the 3D conformation of the entire MDGA1 ectodomain appears critical for its function, and its NLGN-binding site on Ig1-Ig2 is not independent of the rest of the molecule. As a result, global 3D conformational changes to the MDGA1 ectodomain via strategic elbows may form a molecular mechanism to regulate MDGA1 action within the synaptic cleft.


Subject(s)
Neural Cell Adhesion Molecules , Synapses , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Synapses/metabolism , Binding Sites , Immunoglobulins/genetics , Immunoglobulins/metabolism , Molecular Conformation , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism
19.
J Biol Chem ; 299(12): 105396, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890781

ABSTRACT

Scaffold proteins help mediate interactions between protein partners, often to optimize intracellular signaling. Herein, we use comparative, biochemical, biophysical, molecular, and cellular approaches to investigate how the scaffold protein NEMO contributes to signaling in the NF-κB pathway. Comparison of NEMO and the related protein optineurin from a variety of evolutionarily distant organisms revealed that a central region of NEMO, called the Intervening Domain (IVD), is conserved between NEMO and optineurin. Previous studies have shown that this central core region of the IVD is required for cytokine-induced activation of IκB kinase (IKK). We show that the analogous region of optineurin can functionally replace the core region of the NEMO IVD. We also show that an intact IVD is required for the formation of disulfide-bonded dimers of NEMO. Moreover, inactivating mutations in this core region abrogate the ability of NEMO to form ubiquitin-induced liquid-liquid phase separation droplets in vitro and signal-induced puncta in vivo. Thermal and chemical denaturation studies of truncated NEMO variants indicate that the IVD, while not intrinsically destabilizing, can reduce the stability of surrounding regions of NEMO due to the conflicting structural demands imparted on this region by flanking upstream and downstream domains. This conformational strain in the IVD mediates allosteric communication between the N- and C-terminal regions of NEMO. Overall, these results support a model in which the IVD of NEMO participates in signal-induced activation of the IKK/NF-κB pathway by acting as a mediator of conformational changes in NEMO.


Subject(s)
I-kappa B Kinase , I-kappa B Kinase/chemistry , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Phase Separation , Signal Transduction , Ubiquitin/metabolism , Humans
20.
J Biol Chem ; 299(2): 102855, 2023 02.
Article in English | MEDLINE | ID: mdl-36592927

ABSTRACT

The flavoprotein methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of N5, N10-methylenetetrahydrofolate (CH2-H4folate) to N5-methyltetrahydrofolate (CH3-H4folate), committing a methyl group from the folate cycle to the methionine one. This committed step is the sum of multiple ping-pong electron transfers involving multiple substrates, intermediates, and products all sharing the same active site. Insight into folate substrate binding is needed to better understand this multifunctional active site. Here, we performed activity assays with Thermus thermophilus MTHFR (tMTHFR), which showed pH-dependent inhibition by the substrate analog, N5-formyltetrahydrofolate (CHO-H4folate). Our crystal structure of a tMTHFR•CHO-H4folate complex revealed a unique folate-binding mode; tMTHFR subtly rearranges its active site to form a distinct folate-binding environment. Formation of a novel binding pocket for the CHO-H4folate p-aminobenzoic acid moiety directly affects how bent the folate ligand is and its accommodation in the active site. Comparative analysis of the available active (FAD- and folate-bound) MTHFR complex structures reveals that CHO-H4folate is accommodated in the active site in a conformation that would not support hydride transfer, but rather in a conformation that potentially reports on a different step in the reaction mechanism after this committed step, such as CH2-H4folate ring-opening. This active site remodeling provides insights into the functional relevance of the differential folate-binding modes and their potential roles in the catalytic cycle. The conformational flexibility displayed by tMTHFR demonstrates how a shared active site can use a few amino acid residues in lieu of extra domains to accommodate chemically distinct moieties and functionalities.


Subject(s)
Folic Acid , Methylenetetrahydrofolate Reductase (NADPH2) , Methylenetetrahydrofolate Reductase (NADPH2)/chemistry , Leucovorin/metabolism , Catalytic Domain , Folic Acid/metabolism , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL