Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.354
Filter
Add more filters

Publication year range
1.
Immunity ; 54(4): 797-814.e6, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33765436

ABSTRACT

Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.


Subject(s)
COVID-19/immunology , Lung/immunology , Myeloid Cells/immunology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , COVID-19/pathology , Cytokines/immunology , Cytokines/metabolism , Humans , Inflammation , Longitudinal Studies , Lung/pathology , Macrophages/immunology , Macrophages/pathology , Middle Aged , Monocytes/immunology , Monocytes/pathology , Myeloid Cells/pathology , SARS-CoV-2 , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Transcriptome , Young Adult
2.
CA Cancer J Clin ; 71(1): 34-46, 2021 01.
Article in English | MEDLINE | ID: mdl-32997807

ABSTRACT

The delivery of cancer care has never changed as rapidly and dramatically as we have seen with the coronavirus disease 2019 (COVID-19) pandemic. During the early phase of the pandemic, recommendations for the management of oncology patients issued by various professional societies and government agencies did not recognize the significant regional differences in the impact of the pandemic. California initially experienced lower than expected numbers of cases, and the health care system did not experience the same degree of the burden that had been the case in other parts of the country. In light of promising trends in COVID-19 infections and mortality in California, by late April 2020, discussions were initiated for a phased recovery of full-scale cancer services. However, by July 2020, a surge of cases was reported across the nation, including in California. In this review, the authors share the response and recovery planning experience of the University of California (UC) Cancer Consortium in an effort to provide guidance to oncology practices. The UC Cancer Consortium was established in 2017 to bring together 5 UC Comprehensive Cancer Centers: UC Davis Comprehensive Cancer Center, UC Los Angeles Jonsson Comprehensive Cancer Center, UC Irvine Chao Family Comprehensive Cancer Center, UC San Diego Moores Cancer Center, and the UC San Francisco Helen Diller Family Comprehensive Cancer Center. The interventions implemented in each of these cancer centers are highlighted, with a focus on opportunities for a redesign in care delivery models. The authors propose that their experiences gained during this pandemic will enhance pre-pandemic cancer care delivery.


Subject(s)
COVID-19 , Cancer Care Facilities/organization & administration , Delivery of Health Care/organization & administration , Neoplasms/therapy , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , California/epidemiology , Global Health , Humans , Infection Control/methods , Infection Control/organization & administration , Neoplasms/complications , Neoplasms/diagnosis , Pandemics , Telemedicine/methods , Telemedicine/organization & administration
3.
CA Cancer J Clin ; 70(6): 480-504, 2020 11.
Article in English | MEDLINE | ID: mdl-32910493

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has given rise to a pandemic of unprecedented proportions in the modern era because of its highly contagious nature and impact on human health and society: coronavirus disease 2019 (COVID-19). Patients with cardiovascular (CV) risk factors and established CV disease (CVD) are among those initially identified at the highest risk for serious complications, including death. Subsequent studies have pointed out that patients with cancer are also at high risk for a critical disease course. Therefore, the most vulnerable patients are seemingly those with both cancer and CVD, and a careful, unified approach in the evaluation and management of this patient population is especially needed in times of the COVID-19 pandemic. This review provides an overview of the unique implications of the viral outbreak for the field of cardio-oncology and outlines key modifications in the approach to this ever-increasing patient population. These modifications include a shift toward greater utilization of cardiac biomarkers and a more focused CV imaging approach in the broader context of modifications to typical practice pathways. The goal of this strategic adjustment is to minimize the risk of SARS-CoV-2 infection (or other future viral outbreaks) while not becoming negligent of CVD and its important impact on the overall outcomes of patients who are being treated for cancer.


Subject(s)
Antineoplastic Agents/adverse effects , COVID-19/complications , Cardiovascular Diseases/etiology , Cross Infection/prevention & control , Neoplasms/complications , Neoplasms/therapy , Anthracyclines/adverse effects , COVID-19/physiopathology , COVID-19/prevention & control , COVID-19/transmission , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/therapy , Humans , Proteasome Inhibitors/adverse effects , Protein Kinase Inhibitors/adverse effects , Radiotherapy/adverse effects , Receptor, ErbB-2/antagonists & inhibitors , Referral and Consultation , SARS-CoV-2 , Trastuzumab/adverse effects
4.
Article in English | MEDLINE | ID: mdl-39192049

ABSTRACT

During the global health emergency caused by the coronavirus disease 2019 (COVID-19), evidence relating to the efficacy of convalescent plasma therapy-evidence critically needed for both public policy and clinical practice-came from multiple levels of the epistemic hierarchy. The challenges of conducting clinical research during a pandemic, combined with the biological complexities of convalescent plasma treatment, required the use of observational data to fully assess the impact of convalescent plasma therapy on COVID symptomatology, hospitalization rates, and mortality rates. Observational studies showing the mortality benefits of convalescent plasma emerged early during the COVID-19 pandemic from multiple continents and were substantiated by real-time pragmatic meta-analyses. Although many randomized clinical trials (RCTs) were initiated at the onset of the pandemic and were designed to provide high-quality evidence, the relative inflexibility in the design of clinical trials meant that findings generally lagged behind other forms of emerging information and ultimately provided inconsistent results on the efficacy of COVID-19 convalescent plasma. In the pandemic framework, it is necessary to emphasize more flexible analytic strategies in clinical trials, including secondary, subgroup, and exploratory analyses. We conclude that in totality, observational studies and clinical trials taken together provide strong evidence of a mortality benefit conferred by COVID-19 convalescent plasma, while acknowledging that some randomized clinical trials examined suboptimal uses of convalescent plasma.

5.
Brain ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375207

ABSTRACT

Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.

6.
Mol Ther ; 32(1): 227-240, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37925604

ABSTRACT

The novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), can trigger dysregulated immune responses known as the cytokine release syndrome (CRS), leading to severe organ dysfunction and respiratory distress. Our study focuses on developing an improved cell-permeable nuclear import inhibitor (iCP-NI), capable of blocking the nuclear transport of inflammation-associated transcription factors, specifically nuclear factor kappa B (NF-κB). By fusing advanced macromolecule transduction domains and nuclear localization sequences from human NF-κB, iCP-NI selectively interacts with importin α5, effectively reducing the expression of proinflammatory cytokines. In mouse models mimic SARS-CoV-2-induced pneumonitis, iCP-NI treatment demonstrated a significant decrease in mortality rates by suppressing proinflammatory cytokine production and immune cell infiltration in the lungs. Similarly, in hamsters infected with SARS-CoV-2, iCP-NI effectively protected the lung from inflammatory damage by reducing tumor necrosis factor-α, interleukin-6 (IL-6), and IL-17 levels. These promising results highlight the potential of iCP-NI as a therapeutic approach for COVID-19-related lung complications and other inflammatory lung diseases.


Subject(s)
COVID-19 , Mice , Animals , Humans , Transcription Factors/metabolism , Active Transport, Cell Nucleus , SARS-CoV-2 , NF-kappa B/metabolism , Inflammation , Cytokines/metabolism , Peptides/metabolism
7.
Am J Respir Crit Care Med ; 209(6): 693-702, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38051928

ABSTRACT

Rationale: Respiratory viral infections can be transmitted from pregnant women to their offspring, but frequency, mechanisms, and postnatal outcomes remain unclear. Objectives: The aims of this prospective cohort study were to compare the frequencies of transplacental transmission of respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), analyze the concentrations of inflammatory mediators in maternal and fetal blood, and assess clinical consequences. Methods: We recruited pregnant women who developed upper respiratory infections or tested positive for SARS-CoV-2. Maternal and cord blood samples were collected at delivery. Study questionnaires and electronic medical records were used to document demographic and medical information. Measurements and Main Results: From October 2020 to June 2022, droplet digital PCR was used to test blood mononuclear cells from 103 mother-baby dyads. Twice more newborns in our sample were vertically infected with RSV compared with SARS-CoV-2 (25.2% [26 of 103] vs. 11.9% [12 of 101]; P = 0.019). Multiplex ELISA measured significantly increased concentrations of several inflammatory cytokines and chemokines in maternal and cord blood from newborns, with evidence of viral exposure in utero compared with control dyads. Prenatal infection was associated with significantly lower birth weight and postnatal weight growth. Conclusions: Data suggest a higher frequency of vertical transmission for RSV than SARS-CoV-2. Intrauterine exposure is associated with fetal inflammation driven by soluble inflammatory mediators, with expression profiles dependent on the virus type and affecting the rate of viral transmission. Virus-induced inflammation may have pathological consequences already in the first days of life, as shown by its effects on birth weight and postnatal weight growth.


Subject(s)
Pregnancy Complications, Infectious , Respiratory Syncytial Virus, Human , Pregnancy , Infant, Newborn , Female , Humans , Prospective Studies , Birth Weight , SARS-CoV-2 , Fetus , Inflammation , Inflammation Mediators , Pregnancy Complications, Infectious/epidemiology
8.
Semin Immunol ; 55: 101507, 2021 06.
Article in English | MEDLINE | ID: mdl-34716096

ABSTRACT

Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Humans , Immunity, Humoral
9.
J Infect Dis ; 229(6): 1750-1758, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38271235

ABSTRACT

BACKGROUND: The long-term pulmonary sequelae of mild coronavirus disease 2019 (COVID-19) remains unknown. In this study, we aimed to characterize lung function trajectories in individuals with mild COVID-19 from preinfection to 2 years postinfection. METHODS: We reinvited participants 2 years after infection from our matched cohort study of the Copenhagen General Population who had initially been examined 5.4 months after infection. We repeated lung tests and questionnaires. Linear mixed models were used to estimate dynamics in lung volumes in individuals with COVID-19 patients versus uninfected controls over two intervals: from pre-infection to 6 months postinfection and 6 months postinfection to 2 years postinfection. RESULTS: 52 individuals (48.6%) attended the 2-year examination at median 1.9 years (interquartile range, 1.8-2.4) after COVID-19, all with mild infection. Individuals with COVID-19 had an adjusted excess decline in forced expiratory volume in 1 second (FEV1) of 13.0 mL per year (95% confidence interval [CI], -23.5 to -2.5; P = .02) from before infection to 6 months after infection compared to uninfected controls. From 6 to 24 months after infection, they had an excess decline of 7.5 mL per year (95% CI, -25.6-9.6; P = .40). A similar pattern was observed for forced vital capacity (FVC). Participants had a mean increase in diffusing capacity for carbon monoxide (DLco) of 3.33 (SD 7.97) between the 6- and 24-month examination. CONCLUSIONS: Our results indicate that mild COVID-19 infection affects lung function at the time of infection with limited recovery 2 years after infection.


Subject(s)
COVID-19 , Lung , Respiratory Function Tests , SARS-CoV-2 , Humans , COVID-19/physiopathology , Male , Female , Middle Aged , Lung/physiopathology , Adult , Follow-Up Studies , Forced Expiratory Volume , Denmark/epidemiology , Aged , Cohort Studies , Vital Capacity/physiology
10.
J Infect Dis ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38547499

ABSTRACT

Enterovirus D68 (EV-D68) infections are associated with severe respiratory disease and acute flaccid myelitis (AFM). The European Non-Polio Enterovirus Network (ENPEN) aimed to investigate the epidemiological and genetic characteristics of EV-D68 and its clinical impact during the fall-winter season of 2021/22. From 19 European countries, 58 institutes reported 10,481 (6.8%) EV-positive samples of which 1,004 (9.6%) were identified as EV-D68 (852 respiratory samples). Clinical data was reported for 969 cases. 78.9% of infections were reported in children (0-5 years); 37.9% of cases were hospitalised. Acute respiratory distress was commonly noted (93.1%) followed by fever (49.4%). Neurological problems were observed in 6.4% of cases with six reported with AFM. Phylodynamic/Nextstrain and phylogenetic analyses based on 694 sequences showed the emergence of two novel B3-derived lineages, with no regional clustering. In conclusion, we describe a large-scale EV-D68 European upsurge with severe clinical impact and the emergence of B3-derived lineages.

11.
Emerg Infect Dis ; 30(2): 354-357, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270133

ABSTRACT

To assess the susceptibility of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) to SARS-CoV-2, we performed experimental infections in both species. Elk did not shed infectious virus but mounted low-level serologic responses. Mule deer shed and transmitted virus and mounted pronounced serologic responses and thus could play a role in SARS-CoV-2 epidemiology.


Subject(s)
COVID-19 , Deer , Animals , COVID-19/veterinary , SARS-CoV-2 , Equidae
12.
Emerg Infect Dis ; 30(9): 1948-1952, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39174035

ABSTRACT

Pneumocystis jirovecii pneumonia is an opportunistic infection that affects HIV-infected and immunocompromised persons and rarely affects immunocompetent patients. However, after the advent of the COVID-19 pandemic, some COVID-19 patients without immunocompromise or HIV were infected with P. jirovecii. Clinical manifestations were atypical, easily misdiagnosed, and rapidly progressive, and the prognosis was poor.


Subject(s)
COVID-19 , Coinfection , Pneumocystis carinii , Pneumonia, Pneumocystis , SARS-CoV-2 , Humans , Middle Aged , COVID-19/complications , Immunocompetence , Immunocompromised Host , Pneumonia, Pneumocystis/complications , Pneumonia, Pneumocystis/diagnosis
13.
Emerg Infect Dis ; 30(2): 245-254, 2024 02.
Article in English | MEDLINE | ID: mdl-38270128

ABSTRACT

During January-August 2021, the Community Prevalence of SARS-CoV-2 Study used time/location sampling to recruit a cross-sectional, population-based cohort to estimate SARS-CoV-2 seroprevalence and nasal swab sample PCR positivity across 15 US communities. Survey-weighted estimates of SARS-CoV-2 infection and vaccine willingness among participants at each site were compared within demographic groups by using linear regression models with inverse variance weighting. Among 22,284 persons >2 months of age and older, median prevalence of infection (prior, active, or both) was 12.9% across sites and similar across age groups. Within each site, average prevalence of infection was 3 percentage points higher for Black than White persons and average vaccine willingness was 10 percentage points lower for Black than White persons and 7 percentage points lower for Black persons than for persons in other racial groups. The higher prevalence of SARS-CoV-2 infection among groups with lower vaccine willingness highlights the disparate effect of COVID-19 and its complications.


Subject(s)
COVID-19 , Vaccines , Adult , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Cross-Sectional Studies , Prevalence , Seroepidemiologic Studies
14.
Emerg Infect Dis ; 30(8): 1589-1598, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043405

ABSTRACT

To determine the characteristics of pediatric patients 0-19 years of age who died after onset of SARS-CoV-2 infection in Japan during January 1-September 30, 2022, we reviewed multiple sources. We identified 62 cases, collected detailed information from medical records and death certificates, and conducted interviews, resulting in 53 patients with detailed information for our study. Among 46 patients with internal causes of death (i.e., not external causes such as trauma), 15% were <1 year of age, 59% had no underlying disease, and 88% eligible for vaccination were unvaccinated. Nonrespiratory symptoms were more common than respiratory symptoms. Out-of-hospital cardiac arrest affected 46% of patients, and time from symptom onset to death was <7 days for 77%. Main suspected causes of death were central nervous system abnormalities (35%) and cardiac abnormalities (20%). We recommend careful follow-up of pediatric patients after SARS-CoV-2 infection during the first week after symptom onset, regardless of underlying diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/epidemiology , Child, Preschool , Infant , Child , Japan/epidemiology , Female , Male , Adolescent , Infant, Newborn , Young Adult
15.
Emerg Infect Dis ; 30(7): 1352-1360, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916546

ABSTRACT

Accurate and timely mortality surveillance is crucial for elucidating risk factors, particularly for emerging diseases. We compared use of COVID-19 keywords on death certificates alone to identify COVID-19 deaths in Minnesota, USA, during 2020-2022, with use of a standardized mortality definition incorporating additional clinical data. For analyses, we used likelihood ratio χ2 and median 1-way tests. Death certificates alone identified 96% of COVID-19 deaths confirmed by the standardized definition and an additional 3% of deaths that had been classified as non-COVID-19 deaths by the standardized definition. Agreement between methods was >90% for most groups except children, although agreement among adults varied by demographics and location at death. Overall median time from death to filing of death certificate was 3 days; decedent characteristics and whether autopsy was performed varied. Death certificates are an efficient and timely source of COVID-19 mortality data when paired with SARS-CoV-2 testing data.


Subject(s)
COVID-19 , Death Certificates , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/epidemiology , Minnesota/epidemiology , Male , Middle Aged , Female , Adult , Aged , Child , Adolescent , Child, Preschool , Young Adult , Infant , Aged, 80 and over , Cause of Death , Autopsy , COVID-19 Testing/methods
16.
Emerg Infect Dis ; 30(4): 711-720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526123

ABSTRACT

To examine the risk associated with bus riding and identify transmission chains, we investigated a COVID-19 outbreak in Germany in 2021 that involved index case-patients among bus-riding students. We used routine surveillance data, performed laboratory analyses, interviewed case-patients, and conducted a cohort study. We identified 191 case-patients, 65 (34%) of whom were elementary schoolchildren. A phylogenetically unique strain and epidemiologic analyses provided a link between air travelers and cases among bus company staff, schoolchildren, other bus passengers, and their respective household members. The attack rate among bus-riding children at 1 school was ≈4 times higher than among children not taking a bus to that school. The outbreak exemplifies how an airborne agent may be transmitted effectively through (multiple) short (<20 minutes) public transport journeys and may rapidly affect many persons.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , COVID-19/epidemiology , Cohort Studies , Disease Outbreaks , Germany/epidemiology
17.
Emerg Infect Dis ; 30(5): 1058-1060, 2024 May.
Article in English | MEDLINE | ID: mdl-38666607

ABSTRACT

To determine changes in Bordetella pertussis and B. parapertussis detection rates, we analyzed 1.43 million respiratory multiplex PCR test results from US facilities from 2019 through mid-2023. From mid-2022 through mid-2023, Bordetella spp. detection increased 8.5-fold; 95% of detections were B. parapertussis. While B. parapertussis rates increased, B. pertussis rates decreased.


Subject(s)
Bordetella Infections , Bordetella parapertussis , Communicable Diseases, Emerging , Bordetella parapertussis/genetics , Bordetella parapertussis/isolation & purification , United States/epidemiology , Humans , Bordetella Infections/epidemiology , Bordetella Infections/microbiology , Bordetella Infections/diagnosis , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Bordetella pertussis/genetics , Bordetella pertussis/isolation & purification , History, 21st Century , Child , Child, Preschool , Whooping Cough/epidemiology , Whooping Cough/microbiology , Whooping Cough/diagnosis , Adult , Adolescent , Infant , Multiplex Polymerase Chain Reaction , Young Adult
18.
Emerg Infect Dis ; 30(5): 947-955, 2024 May.
Article in English | MEDLINE | ID: mdl-38666615

ABSTRACT

During December 11, 2020-March 29, 2022, the US government delivered ≈700 million doses of COVID-19 vaccine to vaccination sites, resulting in vaccination of ≈75% of US adults during that period. We evaluated accessibility of vaccination sites. Sites were accessible by walking within 15 minutes by 46.6% of persons, 30 minutes by 74.8%, 45 minutes by 82.8%, and 60 minutes by 86.7%. When limited to populations in counties with high social vulnerability, accessibility by walking was 55.3%, 81.1%, 86.7%, and 89.4%, respectively. By driving, lowest accessibility was 96.5% at 15 minutes. For urban/rural categories, the 15-minute walking accessibility between noncore and large central metropolitan areas ranged from 27.2% to 65.1%; driving accessibility was 79.9% to 99.5%. By 30 minutes driving accessibility for all urban/rural categories was >95.9%. Walking time variations across jurisdictions and between urban/rural areas indicate that potential gains could have been made by improving walkability or making transportation more readily available.


Subject(s)
COVID-19 Vaccines , COVID-19 , Health Services Accessibility , SARS-CoV-2 , Vaccination , Humans , United States/epidemiology , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Health Services Accessibility/statistics & numerical data , Vaccination/statistics & numerical data , Rural Population , Walking , Urban Population
19.
Emerg Infect Dis ; 30(5): 956-967, 2024 May.
Article in English | MEDLINE | ID: mdl-38666622

ABSTRACT

We estimated COVID-19 transmission potential and case burden by variant type in Alberta, British Columbia, and Ontario, Canada, during January 23, 2020-January 27, 2022; we also estimated the effectiveness of public health interventions to reduce transmission. We estimated time-varying reproduction number (Rt) over 7-day sliding windows and nonoverlapping time-windows determined by timing of policy changes. We calculated incidence rate ratios (IRRs) for each variant and compared rates to determine differences in burden among provinces. Rt corresponding with emergence of the Delta variant increased in all 3 provinces; British Columbia had the largest increase, 43.85% (95% credible interval [CrI] 40.71%-46.84%). Across the study period, IRR was highest for Omicron (8.74 [95% CrI 8.71-8.77]) and burden highest in Alberta (IRR 1.80 [95% CrI 1.79-1.81]). Initiating public health interventions was associated with lower Rt and relaxing restrictions and emergence of new variants associated with increases in Rt.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/transmission , Ontario/epidemiology , British Columbia/epidemiology , Alberta/epidemiology , Incidence , Basic Reproduction Number , Public Health
20.
Emerg Infect Dis ; 30(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38190760

ABSTRACT

To support the ongoing management of viral respiratory diseases while transitioning out of the acute phase of the COVID-19 pandemic, many countries are moving toward an integrated model of surveillance for SARS-CoV-2, influenza virus, and other respiratory pathogens. Although many surveillance approaches catalyzed by the COVID-19 pandemic provide novel epidemiologic insight, continuing them as implemented during the pandemic is unlikely to be feasible for nonemergency surveillance, and many have already been scaled back. Furthermore, given anticipated cocirculation of SARS-CoV-2 and influenza virus, surveillance activities in place before the pandemic require review and adjustment to ensure their ongoing value for public health. In this report, we highlight key challenges for the development of integrated models of surveillance. We discuss the relative strengths and limitations of different surveillance practices and studies as well as their contribution to epidemiologic assessment, forecasting, and public health decision-making.


Subject(s)
COVID-19 , Virus Diseases , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL