Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Small ; 20(22): e2307853, 2024 May.
Article in English | MEDLINE | ID: mdl-38143294

ABSTRACT

Converting carbon dioxide (CO2) into fuel and high-value-added chemicals is considered a green and effective way to solve global energy and environmental problems. Covalent triazine frameworks (CTFs) are extensively utilized as an emerging catalyst for photo/electrocatalytic CO2 reduction reaction (CO2RR) recently recognized for their distinctive qualities, including excellent thermal and chemical stability, π-conjugated structure, rich nitrogen content, and a strong affinity for CO2, etc. Nevertheless, single-component CTFs have the problems of accelerated recombination of photoexcited electron-hole pairs and restricted conductivity, which limit their application for photo/electrocatalytic CO2RR. Therefore, emphasis will then summarize the strategies for enhancing the photocatalytic and electrocatalytic efficiency of CTFs for CO2RR in this paper, including atom doping, constructing a heterojunction structure, etc. This review first illustrates the synthesis strategies of CTFs and the advantages of CTFs in the field of photo/electrocatalytic CO2RR. Subsequently, the mechanism of CTF-based materials in photo/electrocatalytic CO2RR is described. Lastly, the challenges and future prospects of CTFs in photo/electrocatalytic CO2RR are addressed, which offers a fresh perspective for the future development of CTFs in photo/electrocatalytic CO2RR.

2.
Small ; 20(30): e2310884, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38376170

ABSTRACT

Exploring covalent triazine frameworks (CTFs) with high capacitative activity is highly desirable and challenging. Herein, the S-rich CTFs cathode is pioneeringly introduced in Zn-ion hybrid supercapacitors (ZSC), achieving outstanding capacity and energy density, and satisfactory anti-freezing flexibility. Specifically, the S-bridged CTFs are synthesized by a bifunctional template-catalytic strategy, where ZnCl2 serves as both the catalyst/solvent and in situ template to construct triazine frameworks with interconnected pores and layered gaps. The resultant CTFs (CTFS-750) are employed as a reasonable pattern-like system to more deeply scrutinize the synergistic effect of S-bridged triazine and layered porous architecture for polymer-based cathodes in Zn-ion storage. The experimental results indicate that the adsorption barriers of Zn-ions on CTFS-750 are effectively weakened, and accessible Zn2+-absorption sites provided by the C─S─C and C═N bonds have been confirmed via DFT calculations. Consequently, the CTFS-750 cathode-assembled ZSC displays an ultra-high capacity of 211.6 mAh g-1 at 1.0 A g-1, an outstanding energy density of 202.7 Wh kg-1, and attractive cycling performance. Moreover, the resulting flexible ZSC device shows superior capacity, good adaptability, and satisfactory anti-freezing behavior. This approach sheds new light on constructing advanced polymer-based cathodes at the atom level and paves the way for fabricating high-performance ZSC and beyond.

3.
Small ; : e2403743, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973074

ABSTRACT

Photocatalytic hydrogen peroxide production from water and oxygen offers a clean and sustainable alternative to the conventional energy-intensive anthraquinone oxidation method. Compared to powdered covalent triazine frameworks (CTFs), the film morphology of CTFs provides better connectivity in 2D, yielding several advantages: more efficient connections between active sites, reduced electron-hole pair recombination, increased resistance to superoxide radical induced corrosion, and decreased light scattering. Leveraging these benefits, it has incorporated dual active sites for both the oxygen reduction reaction (ORR) and the water oxidation reaction (WOR) into a CTF film system. This dual-active CTF film demonstrated an exceptional hydrogen peroxide production rate of 19 460 µmol h⁻¹ m⁻2 after 1 h and 17 830 µmol h⁻¹ m⁻2 after 5 h under visible light irradiation (≥420 nm) without the need for sacrificial agents.

4.
Molecules ; 29(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611916

ABSTRACT

This study reports on a metal-free Covalent Triazine Framework (CTF) incorporating bithiophene structural units (TP-CTF) with a semicrystalline structure as an efficient heterogeneous photocatalyst under visible light irradiation. The physico-chemical properties and composition of this material was confirmed via different characterization solid-state techniques, such as XRD, TGA, CO2 adsorption and FT-IR, NMR and UV-Vis spectroscopies. The compound was synthesized through a solvothermal process and was explored as a heterogeneous photocatalyst for the oxidative coupling of amines to imines under visible light irradiation. TP-CTF demonstrated outstanding photocatalytic activity, with high conversion rates and selectivity. Importantly, the material exhibited exceptional stability and recyclability, making it a strong candidate for sustainable and efficient imine synthesis. The low bandgap of TP-CTF enabled the efficient absorption of visible light, which is a notable advantage for visible-light-driven photocatalysis.

5.
Angew Chem Int Ed Engl ; 63(6): e202317664, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38131249

ABSTRACT

Crystalline covalent triazine frameworks (CTFs) have gained considerable interest in energy and catalysis owing to their well-defined nitrogen-rich π-conjugated porosity and superior physicochemical properties, however, suffer from very limited molecular structures. Herein we report a novel solvent-free FeCl3 -catalyzed polymerization of 2, 6-pyridinedicarbonitrile (DCP) to achieve the first synthesis of crystalline, dual-porous, pyridine-based CTF (Fe-CTF). The FeCl3 could not only act as a highly active Lewis acid catalyst for promoting the two-dimensional ordered polymerization of DCP monomers, but also in situ coordinate with the tridentate chelators generated between pyridine and triazine groups to yield unique Fe-N3 single-atom active sites in Fe-CTF. Abundant few-layer crystalline nanosheets (Fe-CTF NSs) could be prepared through simple ball-milling exfoliation of the bulk layered Fe-CTF and exhibited remarkable electrocatalytic performance for oxygen reduction reaction (ORR) with a half-wave potential and onset potential up to 0.902 and 1.02 V respectively, and extraordinary Zn-air battery performance with an ultrahigh specific capacity and power density of 811 mAh g-1 and 230 mW cm-2 respectively. By combining operando X-ray absorption spectroscopy with density functional theory calculations, we revealed a dynamic and reversible evolution of Fe-N3 to Fe-N2 during the electrocatalytic process, which could further accelerate the electrocatalytic reaction.

6.
Small ; 19(30): e2301847, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37170694

ABSTRACT

An electronically conjugated functional triazine framework is used to synthesize a physicochemically interlocked sulfur cathode that delivers high energy density coupled with exceptional cycle life in lithium-sulfur batteries. Conventional melt-diffusion strategies to impregnate sulfur in the cathode offer poor cycle life due to physical mixing with weak interactions. By contrast, in this approach, sulfur is physicochemically entrapped within a nanoporous and heteroatom doped high surface area covalent triazine framework, resulting in outstanding electrochemical performance (≈89% capacity retention after 1000 cycles, the energy density of ≈2,022 Wh kg-1 sulfur and high-rate capability up to 12 C). The overall structural characteristics and interactions of sulfur with the covalent triazine framework are explored in detail to explain the intriguing properties of the sulfur cathode.

7.
Chemistry ; 29(17): e202203077, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36504463

ABSTRACT

Covalent Triazine Frameworks (CTFs) have received great attention from academia owing to their unique structure characteristics such as nitrogen-rich structure, chemical stability, fully conjugated skeleton and high surface area; all these unique properties make CTFs attractive for widespread applications, especially for photocatalytic applications. In this review, we aim to provide recent advances in the CTFs preparation, and mainly focus on their photocatalytic applications. This review provides a comprehensive and systematic overview of the CTFs' synthetic methods, crystallinity lifting strategies, and their applications for photocatalytic water splitting. Firstly, a brief background including the photocatalytic water splitting and crystallinity are provided. Then, synthetic methods related to CTFs and the strategies for enhancing the crystallinity are summarized and compared. After that, the general photocatalytic mechanism and the strategies to improve the photocatalytic performance of CTFs are discussed. Finally, the perspectives and challenges of fabricating high crystalline CTFs and designing CTFs with excellent photocatalytic performance are discussed, inspiring the development of CTF materials in photocatalytic applications.

8.
Macromol Rapid Commun ; 44(13): e2200974, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37153967

ABSTRACT

Volatile organic compounds (VOCs) may have short- and long-term adverse health effects. Especially, aromatic VOCs including benzene, toluene, ethylbenzene, and xylene (BTEX) are important indoor air pollutants. Developing highly efficient porous adsorbents with broad applicability remains a major challenge. In this study, a perchlorinated covalent-triazine framework (ClCTF-1-400) is prepared for adsorbing BTEX. ClCTF-1-400 is confirmed as a partially oxidized/chlorinated microporous covalent triazine framework through a variety of characterization. It is found that ClCTF-1-400 is reversible VOCs absorbent with very high absorption capacities, which can adsorb benzene (693 mg g-1 ), toluene (621 mg g-1 ), ethylbenzene (603 mg g-1 ), o-xylene (500 mg g-1 ), m-xylene (538 mg g-1 ), and p-xylene (592 mg g-1 ) at 25 °C and their saturated vapor pressure (≈ 1 kPa). ClCTF-1-400 is of higher adsorption capacities for all selected VOCs than activated carbon and other reported adsorbents. The adsorption mechanism is also inferred through theoretical calculation and in-site Fourier Transform Infrared (FTIR) spectroscopy. The observed excellent BTEX adsorption performance is attributed to the multiple weak interactions between the ClCTF-1-400 frameworks and aromatic molecules through multiple weak interactions (CH… π and CCl… π). The breakthrough experiment demonstrates ClCTF-1-400 has the potential for real VOCs pollutant removal in air.


Subject(s)
Volatile Organic Compounds , Benzene , Adsorption , Xylenes , Toluene
9.
Mikrochim Acta ; 190(6): 238, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37222823

ABSTRACT

The manufacturing of chiral covalent triazine framework core-shell microspheres CC-MP CCTF@SiO2 composite is reported as stationary phase for HPLC enantioseparation. The CC-MP CCTF@SiO2 core-shell microspheres were prepared by immobilizing chiral COF CC-MP CCTF constructed using cyanuric chloride and (S)-2-methylpiperazine on the surface of activated SiO2 through an in-situ growth approach. Various racemates as analytes were separated on the CC-MP CCTF@SiO2-packed column. The experimental results indicate that 19 pairs of enantiomers were well separated on the CC-MP CCTF@SiO2-packed column, including alcohols, phenols, amines, ketones, and organic acids. Among them, there are 17 pairs of enantiomers that can achieve baseline separation with good peak shapes. Their resolution values on this chiral column are between 0.4 and 5.61. The influences of analyte mass, column temperature, and composition of the mobile phase on the resolution of enantiomers were studied. In addition, the chiral resolution ability of CC-MP CCTF@SiO2-packed column was compared with the commercial chiral chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some CCOF@SiO2 chiral columns (ß-CD-COF@SiO2, CTpBD@SiO2, and MDI-ß-CD-modified COF@SiO2). The CC-MP CCTF@SiO2-packed column exhibited some unique advantages and can complement these chiral columns in chiral separations. The research results show that the CC-MP CCTF@SiO2 chiral column offered high column efficiency (e.g., 17680 plates m-1 for ethyl mandelate), low column backpressure (5-9 bar), high enantioselectivity, and excellent chiral resolution ability for HPLC enantioseparation with good stability and reproducibility. The relative standard deviations (RSD) (n = 5) of the retention time, and peak areas by repeated separation of ethyl mandelate are 0.23% and 0.67%, respectively. It demonstrates that the CC-MP CCTF@SiO2 core-shell microsphere composite has great potential in enantiomeric separation by HPLC.

10.
Angew Chem Int Ed Engl ; 62(27): e202304173, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37132083

ABSTRACT

Constructing photocatalyst systems to functionalize the inert C-H bonds has attracted extensive research interest. However, purposeful modulation of interfacial charge transfer in heterostructures remains a challenge, as it usually suffers from sluggish kinetics. Reported herein is an easy strategy to construct the heteroatom-induced interface for developing the titanium-organic frameworks (MOF-902) @ thiophene-based covalent triazine frameworks (CTF-Th) nanosheets S-scheme heterojunctions with controllable oxygen vacancies (OVs). Specifically, Ti atoms were first anchored onto the heteroatom site of CTF-Th nanosheets, and then grown into MOF-902 via an interfacial Ti-S linkage, generating OVs. Using in situ X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations, the enhanced interfacial charge separation and transfer induced by moderate OVs in the pre-designed S-scheme nanosheets was validated. The heterostructures exhibited an improved efficiency in photocatalytic C3-acylation of indoles under mild conditions with a yield 8.2 times larger than pristine CTF-Th or MOF-902 and enabled an extended scope of substrates (15 examples). This performance is superior to state-of-the-art photocatalyst and can be retained, without significant loss, after 12 consecutive cycles.

11.
Angew Chem Int Ed Engl ; 62(7): e202212015, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36108176

ABSTRACT

Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.

12.
Small ; 18(16): e2200129, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35261149

ABSTRACT

Covalent triazine frameworks (CTFs) represent promising polymeric photocatalysts for photocatalytic hydrogen production with visible light. However, the separation and transfer of charges in CTFs are isotropic because of the uniform distribution of donor-acceptor motifs in the skeleton. Herein, to achieve the anisotropic charge carrier separation and migration, thiophene (Th) or benzothiadiazole (BT) unit is selected as the dopant to modify the molecular structure of CTF-based photocatalysts. Both theoretical and experimental studies reveal that the incorporation of Th or BT units induces the anisotropic charge carrier separation and migration at the interface of CTFs. The optimized polymer manifests a much enhanced photocatalytic activity for photocatalytic hydrogen production with visible light, and thus this study provides a useful tool to design conjugated polymer photocatalysts at the molecular level for solar energy conversion.

13.
Small ; 18(20): e2200984, 2022 May.
Article in English | MEDLINE | ID: mdl-35419938

ABSTRACT

The morphology regulation of covalent triazine frameworks (CTFs) is a great challenge, which may be due to the difficulty in controlling its morphology by traditional synthesis methods. Herein, a general approach to fabricate morphology controllable CTFs by a mild polycondensation reaction in mixed solvents without any templating agents is reported. As a proof of concept, a type of crystalline CTFs with distinctive fibrous morphology (MS-F-CTF-1) (MS: Mixed Solvent; F: Fibrous Morphology) is developed by adjusting the ratio of mixed solvents to control the solubility of monomers, so that the nucleation, crystal growth, and subsequent self-assembly are controlled, which facilitates the formation of fibrous morphology. The resultant crystalline MS-F-CTF-1 shows uniform fibrous morphology with a diameter of about 100 nm and a length of several micrometers. Notably, the fibrous morphology of CTFs can efficiently improve the photocatalytic hydrogen evolution performance, in which the hydrogen evolution rate can be boosted by about two times in comparison to block ones.

14.
Environ Sci Technol ; 56(13): 9474-9485, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35613434

ABSTRACT

Precisely tailoring the electronic structure and surface chemistry of metal-free covalent triazine frameworks (CTFs) for efficient photoactivation of oxyanions is environmentally desirable but still challenging. Of interest to us in this work was to construct artificial defective accumulation sites into a CTF network (CTF-SDx) to synchronously modulate both thermodynamic (e.g., band structure) and kinetic (e.g., charge separation/transfer/utilization and surface adsorption) behaviors and probe how the transformation affected the subsequent activation mechanism of peroxymonosulfate (PMS). With the incorporation of terminal cyano (-CN) groups and boron (B) dopants, the delocalized CTF-SD underwent a narrowed electronic energy gap for increased optical absorption as well as a downshifted valence band position for enhanced oxidation capacity. Moreover, the localized charge accumulation regions induced by the electron-withdrawing -CN groups facilitated the exciton dissociation process, while the adjacent electron-deficient areas enabled strong affinity toward PMS molecules. All of these merits impelled the photoactivation reaction with PMS, and a 15-fold enhancement of bisphenol-A (BPA) removal was found in the CTF-SD2/PMS/vis system compared with the corresponding pristine CTF system. Mechanistic investigations demonstrated that this system decomposed organics primarily through a singlet oxygen-mediated nonradical process, which originated from PMS oxidative activation over photoinduced holes initiated by an electron transfer process, thereby opening a new avenue for designing an efficient PMS activation strategy for the selective oxidation of organic pollutants.

15.
Macromol Rapid Commun ; 43(20): e2200392, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35678742

ABSTRACT

Covalent triazine frameworks (CTFs) are among the most valuable frameworks owing to many fantastic properties. However, molten salt-involved preparation of CTFs at 400-600 °C causes debate on whether CTFs represent organic frameworks or carbon. Herein, new CTFs based on the 1,3-dicyanoazulene monomer (CTF-Azs) are synthesized using molten ZnCl2 at 400-600 °C. Chemical structure analysis reveals that the CTF-Az prepared at low temperature (400 °C) exhibits polymeric features, whereas those prepared at high temperatures (600 °C) exhibit typical carbon features. Even after being treated at even higher temperatures, the CTF-Azs retain their rich porosity, but the polymeric features vanish. Although structural de-conformation is a widely accepted outcome in polymer-to-carbon rearrangement processes, the study evaluates such processes in the context of CTF systems. A proof-of-concept study is performed, observing that the as-synthesized CTF-Azs exhibit promising performance as cathodes for Li- and K-ion batteries. Moreover, the as-prepared NPCs exhibit excellent catalytic oxygen reduction reaction (ORR) performance; hence, they can be used as air cathodes in Zn-air batteries. This study not only provides new building blocks for novel CTFs with controllable polymer/carbon features but also offers insights into the formation and structure transformation history of CTFs during thermal treatment.

16.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328595

ABSTRACT

Conductive and porous nitrogen-rich materials have great potential as supercapacitor electrode materials. The exceptional efficiency of such compounds, however, is dependent on their larger surface area and the level of nitrogen doping. To address these issues, we synthesized a porous covalent triazine framework (An-CTFs) based on 9,10-dicyanoanthracene (An-CN) units through an ionothermal reaction in the presence of different molar ratios of molten zinc chloride (ZnCl2) at 400 and 500 °C, yielding An-CTF-10-400, An-CTF-20-400, An-CTF-10-500, and An-CTF-20-500 microporous materials. According to N2 adsorption-desorption analyses (BET), these An-CTFs produced exceptionally high specific surface areas ranging from 406-751 m2·g-1. Furthermore, An-CTF-10-500 had a capacitance of 589 F·g-1, remarkable cycle stability up to 5000 cycles, up to 95% capacity retention, and strong CO2 adsorption capacity up to 5.65 mmol·g-1 at 273 K. As a result, our An-CTFs are a good alternative for both electrochemical energy storage and CO2 uptake.


Subject(s)
Metal-Organic Frameworks , Triazines , Adsorption , Anthracenes , Carbon Dioxide/chemistry , Nitrogen/chemistry , Triazines/chemistry
17.
Angew Chem Int Ed Engl ; 61(15): e202117668, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35038216

ABSTRACT

The growth of crystalline covalent triazine frameworks (CTFs) is still considered as a great challenge due to the less reversible covalent bonds of triazine linkages. The research studies of crystalline CTFs to date have been limited to two-dimensional (2D) structures, and the three-dimensional (3D) crystalline CTFs have never been reported before. Herein we report the design and synthesis of two 3D crystalline CTFs, termed 3D CTF-TPM and 3D CTF-TPA through a reversible/irreversible polycondensation approach. The targeted 3D CTFs adopt ctn topology, and show moderate crystallinity, relatively large surface area (ca. 2000 m2 g-1 ), and high CO2 uptake capacity (23.61 wt.%). Moreover, these 3D CTFs exhibit ultrastability in the presence of boiling water, strong acid (1 M HCl) and strong base (1 M NaOH). This contribution represents the first report of 3D crystalline CTFs, which not only extends their structural diversity but also offers a synthetic strategy and structural basis for expanding practical applications of CTF materials.

18.
Angew Chem Int Ed Engl ; 61(18): e202201482, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35218273

ABSTRACT

Covalent triazine-based frameworks (CTFs) are typically produced by the salt-melt polycondensation of aromatic nitriles in the presence of ZnCl2 . In this reaction, molten ZnCl2 salt acts as both a solvent and Lewis acid catalyst. However, when cyclotrimerization takes place at temperatures above 300 °C, undesired carbonization occurs. In this study, an ionothermal synthesis method for CTF-based photocatalysts was developed using a ternary NaCl-KCl-ZnCl2 eutectic salt (ES) mixture with a melting point of approximately 200 °C. This temperature is lower than the melting point of pure ZnCl2 (318 °C), thus providing milder salt-melt conditions. These conditions facilitated the polycondensation process, while avoiding carbonization of the polymeric backbone. The resulting CTF-ES200 exhibited enhanced optical and electronic properties, and displayed remarkable photocatalytic performance in the hydrogen evolution reaction.

19.
Angew Chem Int Ed Engl ; 61(4): e202113926, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34741378

ABSTRACT

The rapid synthesis of crystalline covalent triazine frameworks (CTFs) and exploration of the polymerization mechanism are highly desired for the research of crystalline porous polymers, but have not yet been reported. Herein, we demonstrate a scalable microwave-assisted synthetic strategy to successfully prepare a series of highly crystalline and semiconducting CTFs within 20 minutes for the first time. By in situ imaging and time-dependent characterization, we proposed an ordered two-dimensional (2D) polymerization mechanism for crystalline CTFs, in which the monomers rapidly polymerize into periodic 2D molecular sheets within 10 s and then grow into more ordered framework structures. Photocatalytic study of CTF with different crystallinity revealed that large crystalline domain could significantly improve the photocatalytic performance. Single-layer and few-layer crystalline 2D triazine polymer nanosheets could be obtained through simple ball-milling exfoliation of the bulk layered CTFs and exhibit nearly fivefold improved photocatalytic hydrogen evolution rate up to 7971 µmol g-1 h-1 .

20.
Small ; 17(34): e2007576, 2021 08.
Article in English | MEDLINE | ID: mdl-34160904

ABSTRACT

Photocatalytic H2 evolution under solar illumination has been considered to be a promising technology for green energy resources. Developing highly efficient photocatalysts for photocatalytic water splitting is long-term desired but still challenging. Conjugated polymers (CPs) have attracted ongoing attention and have been considered to be promising alternatives for solar-driven H2 production due to the excellent merits of the large π-conjugated system, versatile structures, tunable photoelectric properties, and well-defined chemical composites. The excellent merits have offered numerous methods for boosting photocatalytic hydrogen evolution (PHE) of initial CP-based photocatalysts, whose apparent quantum yield is dramatically increased from <1 to >20% in recent five years. According to the photocatalytic mechanism, this review herein systematically summarizes three major strategies for boosting photocatalytic H2 production of CPs: 1) enhancing visible light absorption, 2) suppressing recombination of electron-hole pairs, and 3) boosting surface catalytic reaction, mainly involving eleven methods, that is, copolymerization, modifying cross-linker, constructing a donor-acceptor structure, functionalization, fabricating organic heterojunction, loading cocatalyst, and surface modification. Finally, the perspectives towards the future development of PHE are proposed.


Subject(s)
Hydrogen , Polymers , Catalysis , Light , Sunlight
SELECTION OF CITATIONS
SEARCH DETAIL