Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Article in English | MEDLINE | ID: mdl-38393318

ABSTRACT

During the analysis of a collection of Pseudomonas strains linked to an outbreak in an intensive care unit at King Faisal Specialist Hospital and Research Center in 2019, one isolate (CFS3442T) was identified phenotypically as Pseudomonas aeruginosa. However, whole-genome sequencing revealed its true identity as a member of the genus Stenotrophomonas, distinct from both P. aeruginosa and Stenotrophomonas maltophilia. The isolate demonstrated: (i) a significant phylogenetic distance from P. aeruginosa; (ii) considerable genomic differences from several S. maltophilia reference strains and other Stenotrophomonas species; and (iii) unique phenotypic characteristics. Based on the combined geno- and phenotypic data, we propose that this isolate represents a novel species within the genus Stenotrophomonas, for which the name Stenotrophomonas riyadhensis sp. nov. is proposed. The type strain is CFS3442T (=NCTC 14921T=LMG 33162T).


Subject(s)
Fatty Acids , Stenotrophomonas , Fatty Acids/chemistry , Phylogeny , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Base Composition , Bacterial Typing Techniques , Hospitals
2.
Article in English | MEDLINE | ID: mdl-37750754

ABSTRACT

Three Gram-stain-negative, facultatively anaerobic, rod-shaped, catalase-positive, oxidase-negative bacterial strains were designated as hw1T, hw8T and hw3T. Strains hw1T, hw8T and hw3T grew at 15-28 °C (optimum, 25 °C), 15-35 °C (optimum, 30 °C) and 4-28 °C (optimum, 20 °C), respectively, and at pH 7.0-12.0 (optimum, pH 9.0), pH 6.0-11.0 (optimum, pH 9.0) and 5.0-12.0 (optimum, pH 7.0), respectively. Additionally, strains hw1T and hw8T only grew when the NaCl concentration was 0 %, while strain hw3T grew at between 0 and 0.5 % (w/v; optimum, 0 %). The average nucleotide identity (ANI) values between strains hw1T, hw8T and the Roseateles type strains ranged from 73.8 to 84.2 %, while the digital DNA-DNA hybridization (dDDH) values ranged from 19.7 to 27.5 %. The ANI values between strain hw3T and the Janthinobacterium type strains ranged from 78.7 to 80.7 %, while dDDH values ranged from 22.3 to 23.0 %. The draft genomes of strains hw1T, hw8T and hw3T consisted of 5.5, 4.4 and 5.9 Mbp, with DNA G+C contents of 61.7, 61.8 and 66.0 mol%, respectively. The results of the dDDH, ANI, phylogenetic, biochemical and physiological analyses indicated that the novel strains were distinct from other members of their genera. Thus, we proposed the names Roseateles albus sp. nov. (type strain hw1T= KACC 22887T= TBRC 16613T), Roseateles koreensis sp. nov. (type strain hw8T= KACC 22885T= TBRC 16614T) and Janthinobacterium fluminis sp. nov. (type strain hw3T= KACC 22886T= TBRC 16615T).


Subject(s)
Comamonadaceae , Oxalobacteraceae , Rivers , Phylogeny , Base Composition , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Fresh Water , Nucleotides
3.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37787389

ABSTRACT

A Gram-stain-negative, aerobic, short rod-shaped and motile bacterial strain, designated MAH-33T, was isolated from rhizospheric soil of eggplant. The colonies were observed to be yellow-coloured, smooth, spherical and 0.1-0.3 mm in diameter when grown on TSA agar medium for 2 days. Strain MAH-33T was found to be able to grow at 10-40 °C, at pH 5.0-10.0 and at 0-3.0 % NaCl (w/v). The strain was found to be positive for both oxidase and catalase tests. The strain was positive for hydrolysis of tyrosine and aesculin. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Sphingobium and to be closely related to Sphingobium quisquiliarum P25T (98.4 % similarity), Sphingobium mellinum WI4T (97.8 %), Sphingobium fuliginis TKPT (97.3 %) and Sphingobium herbicidovorans NBRC 16415T (96.9 %). The novel strain MAH-33T has a draft genome size of 3 908 768 bp (28 contigs), annotated with 3689 protein-coding genes, 45 tRNA and three rRNA genes. The average nucleotide identity and digital DNA-DNA hybridization values between strain MAH-33T and closely related type strains were in the range of 79.8-81.6 % and 23.2-24.5 %, respectively. The genomic DNA G+C content was determined to be 62.2 %. The predominant isoprenoid quinone was ubiquinone 10. The major fatty acids were identified as C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipids identified in strain MAH-33T were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, sphingoglycolipid, phosphatidylcholine; one unknown phospholipid and one unknown lipid. On the basis of digital DNA-DNA hybridization, ANI value, genotypic analysis, chemotaxonomic and physiological data, strain MAH-33T represents a novel species within the genus Sphingobium, for which the name Sphingobium agri sp. nov. is proposed, with MAH-33T (=KACC 19973T = CGMCC 1.16609T) as the type strain.


Subject(s)
Fatty Acids , Solanum melongena , Fatty Acids/chemistry , Solanum melongena/genetics , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , Phylogeny , Bacterial Typing Techniques , Sequence Analysis, DNA , Phospholipids/chemistry , Soil Microbiology
4.
Article in English | MEDLINE | ID: mdl-37755236

ABSTRACT

A Gram-stain-negative, aerobic, short rod-shaped and motile novel bacterial strain, designated MAHUQ-71T, was isolated from the soil of a rice field. The colonies were observed to be milky yellow-coloured, smooth, spherical and 0.1-0.4 mm in diameter when grown on Reasoner's 2A agar medium for 2 days. Strain MAHUQ-71T was found to be able to grow at 15-37 °C, pH 5.0-10.0 and with 0-3.0 % NaCl (w/v). The strain was found to be positive for the catalase test, but negative for the oxidase test. The strain was positive for hydrolysis of aesculin and Tween 20. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Sphingomonas and to be closely related to Sphingomonas chungangi MAH-6T (98.5 % sequence similarity), Sphingomonas polyaromaticivorans B2-7T (98.4 %) and Sphingomonas oligoaromativorans SY-6T (96.6 %). Strain MAHUQ-71T has a draft genome size of 4 255 278 bp (10 contigs), annotated with 4098 protein-coding genes, 47 tRNA and three rRNA genes. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MAHUQ-71T and the closest type strain S. chungangi MAH-6T were in the range of 85.6 and 30.6 %, respectively. The genomic DNA G+C content was determined to be 66.7 mol%. The predominant isoprenoid quinone was ubiquinone 10. The major fatty acids were identified as summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and C14 : 0 2OH. The main polar lipids were phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol and sphingoglycolipid. On the basis of dDDH and ANI values, as well as the results of genotypic, chemotaxonomic and physiological analyses, strain MAHUQ-71T represents a novel species within the genus Sphingomonas, for which the name Sphingomonas oryzagri sp. nov. is proposed, with MAHUQ-71T (=KACC 22252T=CGMCC 1.19065T) as the type strain.

5.
Article in English | MEDLINE | ID: mdl-37000634

ABSTRACT

An actinobacterium strain, designated BH-MK-02T, was isolated from the soil of Lilium brownii. The taxonomic position was determined using a polyphasic approach. Strain BH-MK-02T grew well on International Streptomyces Project series media and formed well-developed, branched substrate hyphae and aerial mycelium that differentiated into straight spore chains with a wrinkled surface. The diagnostic diamino acid was ll-diaminopimelic acid. The major menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannosides, phosphatidylglycerol and unidentified lipid spots. The predominant fatty acids were anteiso-C15 : 0, iso-C16 : 0, C16 : 0 and C16 : 1 ω7c/C16 : 1 ω6c. The phenotypic characteristics of strain BH-MK-02T indicated that it belonged to the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain BH-MK-02T was most closely related to Streptomyces aureus CGMCC 4.1833T (99.7 %). However, the average nucleotide identity and digital DNA-DNA hybridization values between the whole-genome sequences of strain BH-MK-02T and S. aureus CGMCC 4.1833T were 78.1 and 23.2 %, respectively, below the 96.7 and 70 % cut-off points respectively recommended for delineating Streptomyces species. Furthermore, the novel isolate could be distinguished from S. aureus CGMCC 4.1833T by morphological, physiological and biochemical characteristics. Based on all these data, strain BH-MK-02T (=MCCC 1K06237T=JCM 34789T) clearly represents a novel species within the genus Streptomyces, for which the name Streptomyces longhuiensis sp. nov. is proposed.


Subject(s)
Lilium , Streptomyces , Fatty Acids/chemistry , Phospholipids/chemistry , Lilium/genetics , Sequence Analysis, DNA , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil , Staphylococcus aureus/genetics , Base Composition , Bacterial Typing Techniques , DNA, Bacterial/genetics , China
6.
Article in English | MEDLINE | ID: mdl-37224056

ABSTRACT

A Gram-stain-negative, aerobic, short rod-shaped and motile novel bacterial strain, designated MAHUQ-52T, was isolated from the rhizospheric soil of a banana plant. Colonies grew at 10-35 °C (optimum, 28 °C), pH 6.0-9.5 (optimum, pH 7.0-7.5), and in the presence of 0-1.0 % NaCl (optimum 0 %). The strain was positive for catalase and oxidase tests, as well as hydrolysis of gelatin, casein, starch and Tween 20. Based on the results of phylogenetic analysis using 16S rRNA gene and genome sequences, strain MAHUQ-52T clustered together within the genus Massilia. Strain MAHUQ-52T was closely related to Massilia soli R798T (98.6 %) and Massilia polaris RP-1-19T (98.3 %). The novel strain MAHUQ-52T has a draft genome size of 4 677 454 bp (25 contigs), annotated with 4193 protein-coding genes, 64 tRNA and 19 rRNA genes. The genomic DNA G+C content was 63.0 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MAHUQ-52T and closely related type strains were ≤88.4 and 35.8 %, respectively. The only respiratory quinone was ubiquinone-8. The major fatty acids were identified as C16 : 0 and summed feature 3 (C15 : 0 iso 2-OH and/or C16 : 1 ω7c). Strain MAHUQ-52T contained phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol as the major polar lipids. On the basis of dDDH and ANI values, as well as genotypic, chemotaxonomic and physiological data, strain MAHUQ-52T represents a novel species within the genus Massilia, for which the name Massilia agrisoli sp. nov. is proposed, with MAHUQ-52T (=KACC 21999T=CGMCC 1.18577T) as the type strain.


Subject(s)
Musa , Oxalobacteraceae , Base Composition , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Nucleotides
7.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37937829

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped, non-motile and non-flagellated novel bacterial strain, designated MAH-24T, was isolated from the rhizospheric soil of a pine garden. The colonies were observed to be orange-coloured, smooth, spherical and 0.4-0.8 mm in diameter when grown on Reasoner's 2A agar medium for 2 days. Strain MAH-24T was found to be able to grow at 10-35 °C, at pH 6.0-9.0 and in the presence of 0-1.0 % NaCl (w/v). The strain was found to be positive for the catalase and oxidase tests. The strain was positive for hydrolysis of aesculin and l-tyrosine. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Pinibacter and to be closely related to Pinibacter aurantiacus MAH-26T (99.2 % sequence similarity). The novel strain MAH-24T has a draft genome size of 5 918 133 bp (13 contigs), annotated with 4613 protein-coding genes, 47 tRNA and three rRNA genes. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MAH-24T and the closest type strain P. aurantiacus MAH-26T were in the range of 85.3 and 29.9 %, respectively. In silico genome mining revealed that both novel strain MAH-24T and P. aurantiacus MAH-26T have a significant potential for the production of novel natural products in the future. The genomic DNA G+C content was determined to be 41.0 mol%. The predominant isoprenoid quinone was menaquinone-7. The major fatty acids were identified as C15:0 iso, C15:1 iso G and C17:0 iso 3OH. On the basis of dDDH, ANI, genotypic, chemotaxonomic and physiological data, strain MAH-24T represents a novel species within the genus Pinibacter, for which the name Pinibacter soli sp. nov. is proposed, with MAH-24T (=KACC 19747T=CGMCC 1.13659T) as the type strain.


Subject(s)
Fatty Acids , Soil Microbiology , Fatty Acids/chemistry , Bacterial Typing Techniques , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , Phylogeny , Sequence Analysis, DNA , Multigene Family
8.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37991223

ABSTRACT

A Gram-stain-negative, facultatively anaerobic, motile, curved-rod-shaped flagellated bacterium, designated DSL-7T, was isolated from the intestine of Chanodichthys dabryi in the Yangtze river, PR China. The strain grew optimally in tryptone soy broth medium at 37 °C, pH 7.0 and with 1 % (w/v) NaCl. Strain DSL-7T showed less than 96.2 % 16S rRNA gene sequence similarity to type strains of the genus Vibrio. Phylogenetic analysis based on genomes indicated that strain DSL-7T belonged to the genus Vibrio and formed a subclade with Vibrio mimicus NCTC 11435T, Vibrio metoecus OP3HT, Vibrio cholerae ATCC 14035T, Vibrio albensis ATCC14547T, Vibrio paracholerae OP3HEDC-792T and Vibrio tarriae 2521-89T. The average nucleotide identity (ANI) and in digital DNA-DNA hybridization (dDDH) values between DSL-7T and closely related type strains were below the accepted threshold to delineate a new species of 95 and 70 %, respectively. The major cellular fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C14 : 0. The genomic DNA G+C content was 47.6 mol%. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain DSL-7T represents a novel species of the genus Vibrio, for which the name Vibrio chanodichtyis sp. nov. is proposed, with strain DSL-7T (=KCTC 92851T=CCTCC AB 2022396T) as the type strain.


Subject(s)
Fatty Acids , Vibrio , Fatty Acids/chemistry , Phospholipids/chemistry , Sequence Analysis, DNA , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Intestines
9.
Article in English | MEDLINE | ID: mdl-36748493

ABSTRACT

Two Legionella-like strains isolated from hot water distribution systems in 2012 have been characterized phenotypically, biochemically and genomically in terms of DNA relatedness. Both strains, HCPI-6T and EUR-108, exhibited biochemical phenotypic profiles typical of Legionella species. Cells were Gram-negative motile rods which grew on BCYEα agar but not on blood agar and displayed phenotypic characteristics typical of the family Legionellaceae, including a requirement for l-cysteine and testing catalase positive. Both strains were negative for oxidase, urease, nitrate reduction and hippurate negative, and non-fermentative. The major ubiquinone was Q12 (59.4 % HCPI-6T) and the dominant fatty acids were C16 : 1 ω7c (28.4 % HCPI-6T, ≈16 % EUR-108), C16 : 0 iso (≈22.5 % and ≈13 %) and C15 : 0 anteiso (19.5 % and ≈23.5 %, respectively). The percent G+C content of genomic DNA was determined to be 39.3 mol %. The 16S rRNA gene, mip sequence and comparative genome sequence-based analyses (average nucleotide identity, ANI; digital DNA-DNA hybridization, dDDH; and phylogenomic treeing) demonstrated that the strains represent a new species of the genus Legionella. The analysis based on the 16S rRNA gene sequences showed that the sequence similarities for both strains ranged from 98.8-90.1 % to other members of the genus. The core genome-based phylogenomic tree (protein-concatemer tree based on concatenation of 418 proteins present in single copy) revealed that these two strains clearly form a separate cluster within the genus Legionella. ANI and dDDH values confirmed the distinctiveness of the strains. Based on the genomic, genotypic and phenotypic findings from a polyphasic study, the isolates are considered to represent a single novel species, for which the name Legionella maioricensis sp. nov. is proposed. The type strain is HCPI-6T (=CCUG 75071T=CECT 30569T).


Subject(s)
Hospitals , Legionella , Phylogeny , Water Microbiology , Water Supply , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
10.
Article in English | MEDLINE | ID: mdl-36920987

ABSTRACT

A Gram-stain-negative, spiral bacterium (PAGU 1991T) was isolated from the blood of a patient with diffuse large B-cell lymphoma. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate was very closely related to Helicobacter equorum LMG 23362T (99.1 % similarity), originally isolated from a faecal sample from a healthy horse. PAGU 1991T was also very closely related to PAGU 1750 in our strain library (=CCUG 41437) with 99.7 % similarity. Additional phylogenetic analyses based on the 23S rRNA gene sequence and GyrA amino acid sequence further supported the close relationship between the two human isolates (PAGU 1991T and PAGU 1750) and the horse strain. However, a phylogenetic analysis based on 16S rRNA showed that the two human isolates formed a lineage that was distinct from the horse strain (less than 99.2 % similarity). In silico whole-genome comparisons based on digital DNA-DNA hybridization, average nucleotide identity based on blast and orthologous average nucleotide identity using usearch between the two human isolates and the type strain of H. equorum showed values of less than 52.40, 93.47, and 93.50 %, respectively, whereas those between the two human isolates were 75.8, 97.2, and 97.2 %, respectively. These data clearly demonstrated that the two human isolates formed a single species, distinct from H. equorum. Morphologically, the human isolates could be distinguished by the type of flagella; the human isolates showed a bipolar sheathed flagellum, whereas that of H. equorum was monopolar. Biochemically, the human isolate was characterized by growth at 42 °C under microaerobic conditions and nitrate reduction unability. We conclude that the two human isolates, obtained from geographically and temporally distinct sources, were a novel species, for which we propose the name Helicobacter kumamotonensis sp. nov., with the type strain PAGU 1991T (=GTC 16810T=CCUG 75774T).


Subject(s)
Fatty Acids , Helicobacter , Humans , Animals , Horses , Bacterial Typing Techniques , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Fatty Acids/chemistry , DNA, Bacterial/genetics , Base Composition , Nucleic Acid Hybridization
11.
Antonie Van Leeuwenhoek ; 116(11): 1113-1121, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37640969

ABSTRACT

The taxonomic status of 43 Psychrobacter species was examined based upon the genome sequences of their type strains. Three groups of type strains were found to be conspecific, Psychrobacter salsus Shivaji et al. (Syst Appl Microbiol 27:628-635, 2004. 10.1078/0723202042369956) and Psychrobacter submarinus Romanenko et al. (Int J Syst Evol Microbiol 52:1291-1297, 2002. 10.1099/00207713-52-4-1291); Psychrobacter oceani Matsuyama et al. (Int J Syst Evol Microbiol 65:1450-1455, 2015. 10.1099/ijs.0.000118) and Psychrobacter pacificensis Maruyama et al. (Int J Syst Evol Microbiol 50:835-846, 2000. 10.1099/00207713-50-2-835); and Psychrobacter proteolyticus Denner et al. (Syst Appl Microbiol 24:44-53, 2001. 10.1078/0723-2020-00006), Psychrobacter marincola Romanenko et al. (Int J Syst Evol Microbiol 52:1291-1297, 2002. 10.1099/00207713-52-4-1291) and Psychrobacter adeliensis Shivaji et al. (Syst Appl Microbiol 27:628-635, 2004. 10.1078/0723202042369956). For all three groups, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values are > 97.69% and > 80.2%, respectively. This conclusion is supported by similarities in morphology, growth properties, and fatty acid compositions. Based on this evidence, we propose the reclassification of Psychrobacter salsus Shivaji et al. (Syst Appl Microbiol 27:628-635, 2004. 10.1078/0723202042369956) as a later heterotypic synonym of Psychrobacter submarinus Romanenko et al. (Int J Syst Evol Microbiol 52:1291-1297, 2002. 10.1099/00207713-52-4-1291); Psychrobacter oceani Matsuyama et al. (Int J Syst Evol Microbiol 65:1450-1455, 2015. 10.1099/ijs.0.000118) as a later heterotypic synonym of Psychrobacter pacificensis Maruyama et al. (Int J Syst Evol Microbiol 50:835-846, 2000. 10.1099/00207713-50-2-835), and Psychrobacter marincola Romanenko et al. (Int J Syst Evol Microbiol 52:1291-1297, 2002. 10.1099/00207713-52-4-1291) and Psychrobacter adeliensis Shivaji et al. (Syst Appl Microbiol 27:628-635, 2004. 10.1078/0723202042369956) as later heterotypic synonyms of Psychrobacter proteolyticus Denner et al. (Syst Appl Microbiol 24:44-53, 2001. 10.1078/0723-2020-00006).


Subject(s)
Psychrobacter , Psychrobacter/genetics , Phylogeny , DNA, Bacterial/genetics
12.
Antonie Van Leeuwenhoek ; 116(12): 1345-1357, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37837564

ABSTRACT

An auxin-producing bacterial strain, CC-SYL302T, was isolated from paddy soil in Taiwan and identified using a polyphasic taxonomic approach. The cells were observed to be aerobic, non-motile, non-spore-forming rods, and tested positive for catalase and oxidase. Produced carotenoid but flexirubin-type pigments were absent. Optimal growth of strain CC-SYL302T was observed at 25 °C, pH 7.0, and with 2% (w/v) NaCl present. Based on analysis of 16S rRNA gene sequences, it was determined that strain CC-SYL302T belongs to the genus Flavobacterium of the Flavobacteriaceae family. The closest known relatives of this strain are F. tangerinum YIM 102701-2 T (with 93.3% similarity) and F. cucumis R2A45-3 T (with 93.1% similarity). Digital DNA-DNA hybridization (dDDH) values were calculated to assess the genetic distance between strain CC-SYL302T and its closest relatives, with mean values of 21.3% for F. tangerinum and 20.4% for F. cucumis. Strain CC-SYL302T exhibited the highest orthologous average nucleotide identity (OrthoANI) values with members of the Flavobacterium genus, ranging from 67.2 to 72.1% (n = 22). The dominating cellular fatty acids (> 5%) included iso-C14:0, iso-C15:0, iso-C16:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C16:1 ω6c/C16:1 ω7c and C16:0 10-methyl/iso-C17:1 ω9c. The polar lipid profile consisted of phosphatidylethanolamine, an unidentified aminolipid, an unidentified aminophospholipid, and nine unidentified polar lipids. The genome (2.7 Mb) contained 33.6% GC content, and the major polyamines were putrescine and sym-homospermidine. Strain CC-SYL302T exhibits distinct phylogenetic, phenotypic, and chemotaxonomic characteristics, as well as unique results in comparative analysis of 16S rRNA gene sequence, OrthoANI, dDDH, and phylogenomic placement. Therefore, it is proposed that this strain represents a new species of the Flavobacterium genus, for which the name Flavobacterium agricola sp. nov. is proposed. The type strain is CC-SYL302T (= BCRC 81320 T = JCM 34764 T).


Subject(s)
Flavobacteriaceae , Flavobacterium , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Flavobacteriaceae/genetics , DNA , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Vitamin K 2/chemistry
13.
Plant Dis ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723957

ABSTRACT

Bacterial leaf streak (BLS) of barley is caused by the Gram-negative bacterial pathogen Xanthomonas translucens (Sapkota et al. 2020). In 2021, we observed multiple hill plots with BLS symptomatic plants in a barley stripe rust nursery in Vancouver, BC, Canada. We collected 29 leaf samples showing typical BLS symptoms (e.g. necrotic lesions; Fig. S1) and stored at 4 oC until bacterial isolation. Samples were surface-sterilized in 10% NaOCl for 20 sec and rinsed twice. About 1 cm2 of leaf tissue containing BLS characteristic lesions was macerated in 200 µL sterile H2O on a petri dish, incubated for 15 min, and 10 µl of the homogenates was streaked onto Wilbrink's - Boric Acid - Cephalexin (WBC) agar medium. Plates were incubated at 28-30 oC for 48 hrs. Four single colonies were obtained: BC10-1-2a (USask BC10-2a), BC10-1-2b (USask BC10-2b), UBC026 and UBC028. Colonies were grown in WBC broth and gDNA was extracted using E.Z.N.A. Bacterial DNA Kit (Omega Bio-Tek) or DNeasy Plant Pro Kit® (Qiagen) following manufacturer protocols. Genus-level identification was achieved using 16S rRNA sequencing with 27F/1492R primers (Lane 1991) of UBC026 (1,399 bp; NCBI # OP327375) and UBC028 (1,415 bp; NCBI #OP327376). Complete 16S rRNA sequences (1,533bp) of BC10-2a and BC10-2b (1,533 bp) were extracted from the draft whole-genome sequences (WGS) generated in this study. The 16S rRNA sequence homology values of 99.0-100% were recorded between the 4 strains. BLAST analyses of the 16S rRNA sequences to GenBank entries exhibited 99.5-100% similarity values (100% coverage) with the pathotype strains of Xtt DSM 18974T (LT604072) and X. translucens pv. undulosa (Xtu) CFBP 2055 (CP074361). Whole genomes of BC10-2a (JANUQY01) and BC10-2b (JANUQZ01) were sequenced (150-bp; reads 33.1 million; mean coverage 2125x) using NovaSeq Illumina, assembled (Unicycler v0.4.8; Wick et al. 2017) and analyzed to identify the strains to the species-level (Tambong et al. 2021). WGS of strains USask BC10-2a and USask BC10-2b exhibited genome-based DNA-DNA hybridization (dDDH; Meier-Kolthoff et al. 2013) and BLAST-based average nucleotide identity (ANIb; Richter et al. 2015) of 100%. The two strains also showed dDDH and ANIb of 90.4% (species-leel cut-off of 70%) and 98.780% and 98.80% (cut-off of 96%), respectively, with Xtt DSM 18974T (LT604072). In contrast, the WGS of BC10-2a and BC10-2b exhibited only 78.2% dDDH homology values with Xtu CFBP 2055T, suggesting that the strains are genetically more similar to Xtt. The assignment of these strains to Xtt is corroborated by phylogenomic analysis (Fig. S2; Meier-Kolthoff and Göker 2019) that showed the two strains clustering together (100% bootstrap) with the type strain DSM 18974T. These data suggest that these strains are taxonomically members of Xtt. Identification was also confirmed to the genus-level by LAMP assay using published X. translucens primers (Langlois et al. 2017). Pathovar-level identification was confirmed using a cbsA and S8.pep multiplex PCR diagnostic assay (Roman-Reyna et al. 2022). Koch's postulates were verified by greenhouse inoculation via leaf infiltration of UBC026 and UBC028 on 21-day old barley plants (line HB522) using an inoculum of 108 CFU ml-1 followed by re-isolation of the bacteria on WBC. The inoculated plants showed typical BLS symptoms similar to those observed in the field (Fig. S1). Water-inoculated plants had no symptoms. To our knowledge, this is the first published report of BLS of barley in British Columbia.

14.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36256565

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped and non-motile novel bacterial strain, designated MAHUQ-58T, was isolated from soil sample of a rice field. The colonies were observed to be light pink-coloured, smooth, spherical and 0.6-1.0 mm in diameter when grown on nutrient agar (NA) medium for 2 days. Strain MAHUQ-58T was found to be able to grow at 15-40 °C, at pH 5.5-10.0 and with 0-1.0 % NaCl (w/v). Cell growth occurred on tryptone soya agar, Luria-Bertani agar, NA, MacConkey agar and Reasoner's 2A agar. The strain was found to be positive for both oxidase and catalase tests. The strain was positive for hydrolysis of Tween 20 and l-tyrosine. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Pseudomonas and to be closely related to Pseudomonas oryzae WM-3T (98.9 % similarity), Pseudomonas linyingensis LYBRD3-7T (97.7 %), Pseudomonas sagittaria JCM 18195 T (97.6 %) and Pseudomonas guangdongensis SgZ-6T (97.2 %). The novel strain MAHUQ-58T has a draft genome size of 4 536 129 bp (46 contigs), annotated with 4064 protein-coding genes, 60 tRNA genes and four rRNA genes. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MAHUQ-58T and four closely related type strains were in the range of 85.5-89.5 % and 29.5-38.0 %, respectively. The genomic DNA G+C content was determined to be 67.0 mol%. The predominant isoprenoid quinone was ubiquinone 9. The major fatty acids were identified as C16:0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). On the basis of dDDH and ANI values, genotypic results, and chemotaxonomic and physiological data, strain MAHUQ-58T represents a novel species within the genus Pseudomonas, for which the name Pseudomonas oryzagri sp. nov. is proposed, with MAHUQ-58T (=KACC 22005T=CGMCC 1.18518T) as the type strain.


Subject(s)
Oryza , RNA, Ribosomal, 16S/genetics , Base Composition , Soil , DNA, Bacterial/genetics , Phylogeny , Agar , Sodium Chloride , Polysorbates , Catalase/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Fatty Acids/chemistry , Pseudomonas , Quinones , Nucleotides , Terpenes , Tyrosine
15.
Article in English | MEDLINE | ID: mdl-35258449

ABSTRACT

A polyhydroxybutyrate (PHB)-degrading actinomycete, strain SFB5AT, was identified as a species of Streptomyces based on its membrane fatty acid profile and the presence of ll-diaminopimelic acid in the cell wall. It formed sporulating mycelia on most agar media, but flat or wrinkled, moist colonies on trypticase soy agar. Spores were smooth, cylindrical, and borne on long, straight to flexuous chains. It produced a light brown diffusible pigment, but not melanin. Comparison of genomic digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values indicated that strain SFB5AT was related to Streptomyces litmocidini JCM 4394T, Streptomyces vietnamensis GIMV4.0001T, Streptomyces nashvillensis JCM 4498T and Streptomyces tanashiensis JCM 4086T, plus 11 other species. However, the dDDH and ANI values were well below the species differentiation thresholds of <70 and <95 %, respectively; also, multilocus sequence analysis distances exceeded the species threshold of 0.007. Moreover, strain SFB5AT differed from the other species in pigmentation and its ability to catabolize arabinose. Strain SFB5AT and 11 of its 15 closest relatives degraded PHB and have genes for extracellular, short-chain-length denatured polyhydroxyalkanoate depolymerases. These enzymes from strain SFB5AT and its closest relatives had a type 1 catalytic domain structure, while those from other relatives had a type 2 structure, which differs from type one in the position of a consensus histidine in the active site. Thus, phenotypic and genotypic differences suggest that strain SFB5AT represents a new species of Streptomyces, for which we propose the name Streptomyces nymphaeiformis sp. nov. The type strain is SFB5AT (=NRRL B-65520T=DSM 112030T).


Subject(s)
Fatty Acids , Streptomyces , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptomyces/genetics
16.
Article in English | MEDLINE | ID: mdl-35442877

ABSTRACT

A Gram-stain-negative, aerobic and non-spore-forming bacterial strain, designated 20TX0172T, was isolated from a rotting onion bulb in Texas, USA. The results of phylogenetic analysis based on the 16S rRNA sequence indicated that the novel strain represented a member of the genus Pseudomonas and had the greatest sequence similarities with Pseudomonas kilonensis 520-20T (99.3 %), Pseudomonas corrugata CFBP 2431T (99.2 %), and Pseudomonas viciae 11K1T (99.2 %) but the 16S rRNA phylogenetic tree displayed a monophyletic clade with Pseudomonas mediterranea CFBP 5447T. In the phylogenetic trees based on sequences of four housekeeping genes (gap1, gltA, gyrB and rpoD), the novel strain formed a separate branch, indicating that the strain was distinct phylogenetically from known species of the genus Pseudomonas. The genome-sequence-derived average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the novel isolate and P. mediterranea DSM 16733T were 86.7 and 32.7 %, respectively. These values were below the accepted species cutoff threshold of 96 % ANI and 70 % dDDH, affirming that the strain represented a novel species. The genome size of the novel species was 5.98 Mbp with a DNA G+C content of 60.8 mol%. On the basis of phenotypic and genotypic characteristics, strain 20TX0172T represents a novel species of the genus Pseudomonas. The name Pseudomonas uvaldensis sp. nov. is proposed. The type strain is 20TX0172T (=NCIMB 15426T=CIP 112022T).


Subject(s)
Genes, Bacterial , Onions , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Onions/microbiology , Phylogeny , Pseudomonas , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
17.
Article in English | MEDLINE | ID: mdl-34252019

ABSTRACT

A Gram-stain-negative, aerobic, motile and rod-shaped novel bacterial strain, designated MAH-29T, was isolated from rhizospheric soil of a persimmon tree. The colonies were light pink coloured, smooth, spherical and 0.1-0.8 mm in diameter when grown on Reasoner's 2A (R2A) agar for 2 days. Strain MAH-29T was able to grow at 20-37 °C, at pH 5.0-8.5 and at 0-2.0 % NaCl. Cell growth occurred on nutrient agar and R2A agar. The strain was positive in both oxidase and catalase tests. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Niastella and was closely related to Niastella vici DJ57T (97.7 % similarity), Niastella koreensis GR20-10T (97.1 %) and Niastella yeongjuensis GR20-13T (97.0 %). Strain MAH-29T has a draft genome size of 8 876 333 bp (31 contigs), annotated with 6920 protein-coding genes, 61 tRNA and four rRNA genes. The average nucleotide identity and digital DNA-DNA hybridization values between strain MAH-29T and three closely related type strains were in the range of 78.2-83.2 % and 22.1-27.0 %, respectively. The genomic DNA G+C content was 43.8 mol%. The predominant isoprenoid quinone was menaquinone 7. The major fatty acids were identified as iso-C15:0, iso-C15:1 G and iso-C17:0 3OH. On the basis of DNA-DNA hybridization results, genotypic analysis and chemotaxonomic and physiological data, strain MAH-29T represents a novel species within the genus Niastella, for which the name Niastella soli sp. nov. is proposed, with MAH-29T (=KACC 19969T=CGMCC 1.16606T) as the type strain.


Subject(s)
Bacteroidetes/classification , Diospyros/microbiology , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Bacteroidetes/isolation & purification , Base Composition , DNA, Bacterial/genetics , Fatty Acids/metabolism , Nucleic Acid Hybridization , Pigmentation , RNA, Ribosomal, 16S/genetics , Rhizosphere , Trees/microbiology , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
18.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Article in English | MEDLINE | ID: mdl-34919040

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped and non-motile novel bacterial strain, designated MAH-13T, was isolated from a soil sample. The colonies were observed to be yellow-coloured, smooth, spherical and 1.8-3.0 mm in diameter when grown on nutrient agar medium for 2 days. Strain MAH-13T was found to be able to grow at 20-40 °C, at pH 5.0-10.0 and with 0-1.0% NaCl (w/v). Cell growth occurred on tryptone soya agar, Luria-Bertani agar, nutrient agar and Reasoner's 2A agar. The strain was found to be positive for both oxidase and catalase tests. The strain was positive for hydrolysis of casein, starch, DNA and l-tyrosine. According to 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Frateuria and to be closely related to Frateuria terrea DSM 26515T (98.2% similarity), Dyella thiooxydans ATSB10T (98.2 %), Frateuria defendens HyOGT (97.9 %), Rhodanobacter glycinis MO64T (97.8 %) and Frateuria aurantia DSM 6220T (97.8 %). The novel strain MAH-13T has a draft genome size of 3 682 848 bp (40 contigs), annotated with 3172 protein-coding genes, 49 tRNA genes and three rRNA genes. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MAH-13T and five closely related type strains were in the range of 73.7-85.5 % and 20.7-30.1%, respectively. The genomic DNA G+C content was determined to be 68.0 mol%. The predominant isoprenoid quinone was ubiquinone 8. The major fatty acids were identified as iso-C15:0, iso-C16:0 and summed feature 9 (iso-C17 : 1 ω9c and/or C16:0 10-methyl). On the basis of dDDH and ANI values, genotypic analysis, and chemotaxonomic and physiological data, strain MAH-13T represents a novel species within the genus Frateuria, for which the name Frateuria flava sp. nov. is proposed, with MAH-13T (=KACC 19743T=CGMCC 1.13655T) as the type strain.


Subject(s)
Gammaproteobacteria/classification , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gammaproteobacteria/isolation & purification , Nucleic Acid Hybridization , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
19.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-34797211

ABSTRACT

A study on the polyphasic taxonomic classification of an Arcobacter strain, R-73987T, isolated from the rectal mucus of a porcine intestinal tract, was performed. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain could be assigned to the genus Arcobacter and suggested that strain R-73987T belongs to a novel undescribed species. Comparative analysis of the rpoB gene sequence confirmed the findings. Arcobacter faecis LMG 28519T was identified as its closest neighbour in a multigene analysis based on 107 protein- encoding genes. Further, whole-genome sequence comparisons by means of average nucleotide identity and in silico DNA-DNA hybridization between the genome of strain R-73987T and the genomes of validly named Arcobacter species resulted in values below 95-96 and 70  %, respectively. In addition, a phenotypic analysis further corroborated the conclusion that strain R-73987T represents a novel Arcobacter species, for which the name Arcobacter vandammei sp. nov. is proposed. The type strain is R-73987T (=LMG 31429T=CCUG 75005T). This appears to be the first Arcobacter species recovered from porcine intestinal mucus.


Subject(s)
Arcobacter , Phylogeny , Rectum/microbiology , Sus scrofa/microbiology , Animals , Arcobacter/classification , Arcobacter/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Mucus/microbiology , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Swine
20.
Article in English | MEDLINE | ID: mdl-34236299

ABSTRACT

Deinococcus species are widely studied due to their utility in bioremediation of sites contaminated with radioactive elements. In the present study, we re-evaluated the taxonomic placement of two species of the genus Deinococcus namely D. swuensis DY59T and D. radiopugnans ATCC 19172T based on whole genome analyses. The 16S rRNA gene analysis revealed a 99.58% sequence similarity between this species pair that is above the recommended threshold value for species delineation. These two species also clustered together in both the 16S rRNA gene and core genome based phylogenies depicting their close relatedness. Furthermore, more than 98% of genes were shared between D. swuensis DY59T and D. radiopugnans ATCC 19172T. Interestingly, D. swuensis DY59T and D. radiopugnans ATCC 19172T shared high genome similarity in different genomic indices. They displayed an average nucleotide identity value of 97.63%, an average amino acid identity value of 97% and a digital DNA-DNA hybridization value equal to 79.50%, all of which are well above the cut-off for species delineation. Altogether, based on these evidences, D. swuensis DY59T and D. radiopugnans ATCC 19172T constitute a single species. Hence, as per the priority of publication, we propose that Deinococcus swuensis Lee et al. 2015 should be reclassified as a later heterotypic synonym of Deinococcus radiopugnans.


Subject(s)
Deinococcus/classification , Phylogeny , Bacterial Typing Techniques , DNA, Bacterial/genetics , Genomics , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL