Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.961
Filter
Add more filters

Publication year range
1.
Cell ; 184(26): 6299-6312.e22, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34861190

ABSTRACT

The NACHT-, leucine-rich-repeat- (LRR), and pyrin domain-containing protein 3 (NLRP3) is emerging to be a critical intracellular inflammasome sensor of membrane integrity and a highly important clinical target against chronic inflammation. Here, we report that an endogenous, stimulus-responsive form of full-length mouse NLRP3 is a 12- to 16-mer double-ring cage held together by LRR-LRR interactions with the pyrin domains shielded within the assembly to avoid premature activation. Surprisingly, this NLRP3 form is predominantly membrane localized, which is consistent with previously noted localization of NLRP3 at various membrane organelles. Structure-guided mutagenesis reveals that trans-Golgi network dispersion into vesicles, an early event observed for many NLRP3-activating stimuli, requires the double-ring cages of NLRP3. Double-ring-defective NLRP3 mutants abolish inflammasome punctum formation, caspase-1 processing, and cell death. Thus, our data uncover a physiological NLRP3 oligomer on the membrane that is poised to sense diverse signals to induce inflammasome activation.


Subject(s)
Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amino Acid Sequence , Animals , Cell Membrane/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Mice , Models, Biological , Models, Molecular , Mutation/genetics , NIMA-Related Kinases/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/isolation & purification , NLR Family, Pyrin Domain-Containing 3 Protein/ultrastructure , Nigericin/pharmacology , Protein Binding , Protein Domains , Protein Multimerization , trans-Golgi Network/metabolism
2.
Proc Natl Acad Sci U S A ; 121(12): e2312252121, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38466845

ABSTRACT

The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of "social" and "solitary" inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species' context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.


Subject(s)
Carnivora , Social Behavior , Animals , Carnivora/physiology
3.
Proc Natl Acad Sci U S A ; 120(12): e2216218120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36927152

ABSTRACT

The concept of fitness is central to evolution, but it quantifies only the expected number of offspring an individual will produce. The actual number of offspring is also subject to demographic stochasticity-that is, randomness associated with birth and death processes. In nature, individuals who are more fecund tend to have greater variance in their offspring number. Here, we develop a model for the evolution of two types competing in a population of nonconstant size. The fitness of each type is determined by pairwise interactions in a prisoner's dilemma game, and the variance in offspring number depends upon its mean. Although defectors are preferred by natural selection in classical population models, since they always have greater fitness than cooperators, we show that sufficiently large offspring variance can reverse the direction of evolution and favor cooperation. Large offspring variance produces qualitatively new dynamics for other types of social interactions, as well, which cannot arise in populations with a fixed size or with a Poisson offspring distribution.


Subject(s)
Cooperative Behavior , Game Theory , Humans , Population Dynamics , Population Density , Selection, Genetic
4.
Proc Natl Acad Sci U S A ; 120(38): e2308338120, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37695919

ABSTRACT

Allostery is a major driver of biological processes requiring coordination. Thus, it is one of the most fundamental and remarkable phenomena in nature, and there is motivation to understand and manipulate it to a multitude of ends. Today, it is often described in terms of two phenomenological models proposed more than a half-century ago involving only T(tense) or R(relaxed) conformations. Here, methyl-based NMR provides extensive detail on a dynamic T to R switch in the classical dimeric allosteric protein, yeast chorismate mutase (CM), that occurs in the absence of substrate, but only with the activator bound. Switching of individual subunits is uncoupled based on direct observation of mixed TR states in the dimer. This unique finding excludes both classic models and solves the paradox of a coexisting hyperbolic binding curve and highly skewed substrate-free T-R equilibrium. Surprisingly, structures of the activator-bound and effector-free forms of CM appear the same by NMR, providing another example of the need to account for dynamic ensembles. The apo enzyme, which has a sigmoidal activity profile, is shown to switch, not to R, but to a related high-energy state. Thus, the conformational repertoire of CM does not just change as a matter of degree depending on the allosteric input, be it effector and/or substrate. Rather, the allosteric model appears to completely change in different contexts, which is only consistent with modern ensemble-based frameworks.


Subject(s)
Motivation , Polymers , Saccharomyces cerevisiae
5.
Proc Natl Acad Sci U S A ; 120(14): e2221103120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36996108

ABSTRACT

In many organs, small openings across capillary endothelial cells (ECs) allow the diffusion of low-molecular weight compounds and small proteins between the blood and tissue spaces. These openings contain a diaphragm composed of radially arranged fibers, and current evidence suggests that a single-span type II transmembrane protein, plasmalemma vesicle-associated protein-1 (PLVAP), constitutes these fibers. Here, we present the three-dimensional crystal structure of an 89-amino acid segment of the PLVAP extracellular domain (ECD) and show that it adopts a parallel dimeric alpha-helical coiled-coil configuration with five interchain disulfide bonds. The structure was solved using single-wavelength anomalous diffraction from sulfur-containing residues (sulfur SAD) to generate phase information. Biochemical and circular dichroism (CD) experiments show that a second PLVAP ECD segment also has a parallel dimeric alpha-helical configuration-presumably a coiled coil-held together with interchain disulfide bonds. Overall, ~2/3 of the ~390 amino acids within the PLVAP ECD adopt a helical configuration, as determined by CD. We also determined the sequence and epitope of MECA-32, an anti-PLVAP antibody. Taken together, these data lend strong support to the model of capillary diaphragms formulated by Tse and Stan in which approximately ten PLVAP dimers are arranged within each 60- to 80-nm-diameter opening like the spokes of a bicycle wheel. Passage of molecules through the wedge-shaped pores is presumably determined both by the length of PLVAP-i.e., the long dimension of the pore-and by the chemical properties of amino acid side chains and N-linked glycans on the solvent-accessible faces of PLVAP.


Subject(s)
Diaphragm , Endothelial Cells , Diaphragm/metabolism , Endothelial Cells/metabolism , Carrier Proteins/metabolism , Endothelium, Vascular/metabolism , Disulfides/metabolism , Circular Dichroism
6.
Proc Natl Acad Sci U S A ; 120(41): e2310910120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37782780

ABSTRACT

Enzymes are known to sample various conformations, many of which are critical for their biological function. However, structural characterizations of enzymes predominantly focus on the most populated conformation. As a result, single-point mutations often produce structures that are similar or essentially identical to those of the wild-type enzyme despite large changes in enzymatic activity. Here, we show for mutants of a histone deacetylase enzyme (HDAC8) that reduced enzymatic activities, reduced inhibitor affinities, and reduced residence times are all captured by the rate constants between intrinsically sampled conformations that, in turn, can be obtained independently by solution NMR spectroscopy. Thus, for the HDAC8 enzyme, the dynamic sampling of conformations dictates both enzymatic activity and inhibitor potency. Our analysis also dissects the functional role of the conformations sampled, where specific conformations distinct from those in available structures are responsible for substrate and inhibitor binding, catalysis, and product dissociation. Precise structures alone often do not adequately explain the effect of missense mutations on enzymatic activity and drug potency. Our findings not only assign functional roles to several conformational states of HDAC8 but they also underscore the paramount role of dynamics, which will have general implications for characterizing missense mutations and designing inhibitors.


Subject(s)
Mutation, Missense , Protein Conformation , Nuclear Magnetic Resonance, Biomolecular/methods , Catalysis
7.
Proc Natl Acad Sci U S A ; 119(24): e2112496119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35671421

ABSTRACT

Thermodynamic preferences to form non-native conformations are crucial for understanding how nucleic acids fold and function. However, they are difficult to measure experimentally because this requires accurately determining the population of minor low-abundance (<10%) conformations in a sea of other conformations. Here, we show that melting experiments enable facile measurements of thermodynamic preferences to adopt nonnative conformations in DNA and RNA. The key to this "delta-melt" approach is to use chemical modifications to render specific minor non-native conformations the major state. The validity and robustness of delta-melt is established for four different non-native conformations under various physiological conditions and sequence contexts through independent measurements of thermodynamic preferences using NMR. Delta-melt is faster relative to NMR, simple, and cost-effective and enables thermodynamic preferences to be measured for exceptionally low-populated conformations. Using delta-melt, we obtained rare insights into conformational cooperativity, obtaining evidence for significant cooperativity (1.0 to 2.5 kcal/mol) when simultaneously forming two adjacent Hoogsteen base pairs. We also measured the thermodynamic preferences to form G-C+ and A-T Hoogsteen and A-T base open states for nearly all 16 trinucleotide sequence contexts and found distinct sequence-specific variations on the order of 2 to 3 kcal/mol. This rich landscape of sequence-specific non-native minor conformations in the DNA double helix may help shape the sequence specificity of DNA biochemistry. Thus, melting experiments can now be used to access thermodynamic information regarding regions of the free energy landscape of biomolecules beyond the native folded and unfolded conformations.


Subject(s)
DNA , Nucleic Acid Conformation , RNA , Base Sequence , DNA/chemistry , Freezing , RNA/chemistry , Thermodynamics , Ultraviolet Rays
8.
Proc Natl Acad Sci U S A ; 119(24): e2202679119, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35687672

ABSTRACT

Following a brief review of the management of environmental externalities under strategic interactions in the traditional temporal domain, results are extended to the spatiotemporal domain. Conditions for spatial open-loop and feedback Nash equilibria, along with conditions for the benchmark cooperative solution, are presented and compared. A simplified numerical example illustrates the spatial patterns emerging at a steady state under Fickian diffusion and dispersal kernels, and the inefficiency of spatially flat emission taxes. This conceptual framework could provide new research areas.

9.
Proc Natl Acad Sci U S A ; 119(26): e2201800119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35737836

ABSTRACT

Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low-molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structurepresents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function.


Subject(s)
Escherichia coli Proteins , Phosphoprotein Phosphatases , Protein-Tyrosine Kinases , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Phosphoprotein Phosphatases/chemistry , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Tyrosine Phosphatases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Tyrosine/metabolism
10.
Nano Lett ; 24(5): 1579-1586, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38284987

ABSTRACT

Engineering room-temperature strong coupling of few-exciton in transition-metal dichalcogenides (TMDCs) with plasmons promises to construct compact and high-performance quantum optical devices. But it remains unimplemented due to their in-plane excitons. Here, we demonstrate the strong coupling of few-exciton within 10 in monolayer WS2 with the plasmonic mode with a large tangential component of the electric field tightly trapped around the sharp corners of an Au@Ag nanocuboid, the fewest number of excitons observed in the TMDC family so far. Furthermore, we for the first time report a significant deviation with a relative difference of up to 100.6% between the spectrum and eigenlevel splitting dispersions, which increases with decreasing coupling strength. It is also shown that the coupling strength obtained by the conventional concept of both being equal to the measured spectrum splitting is markedly overestimated. Our work enriches the understanding of strong light-matter interactions at room temperature.

11.
Nano Lett ; 24(7): 2257-2263, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38346272

ABSTRACT

High quality factor optical nanostructures provide a great opportunity to enhance nonlinear optical processes such as third harmonic generation. However, the field enhancement in these high quality factor structures is typically accompanied by optical mode nonlocality. As a result, the enhancement of nonlinear processes comes at the cost of their local control as needed for nonlinear wavefront shaping, imaging, and holography. Here we show simultaneous strong enhancement and spatial control over third harmonic generation with a local high-Q metasurface relying on higher-order Mie resonant modes. Our results demonstrate third harmonic generation at an efficiency of up to 3.25 × 10-5, high quality wavefront shaping as illustrated by a third harmonic metalens, and a flatband, angle independent, third harmonic response up to ±11° incident angle. The demonstrated high level of local control and efficient frequency conversion offer promising prospects for realizing novel nonlinear optical devices.

12.
Nano Lett ; 24(2): 708-714, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38165767

ABSTRACT

Angle-dependent next-generation displays have potential applications in 3D stereoscopic and head-mounted displays, image combiners, and encryption for augmented reality (AR) and security. Metasurfaces enable such exceptional functionalities with groundbreaking achievements in efficient displays over the past decades. However, limitations in angular dispersion control make them unfit for numerous nanophotonic applications. Here, we propose a spin-selective angle-dependent all-dielectric metasurface with a unique design strategy to manifest distinct phase information at different incident angles of light. As a proof of concept, the phase masks of two images are encoded into the metasurface and projected at the desired focal plane under different angles of left circularly polarized (LCP) light. Specifically, the proposed multifunctional metasurface generates two distinct holographic images under LCP illumination at angles of +35 and -35°. The presented holographic displays may provide a feasible route toward multifunctional meta-devices for potential AR displays, encrypted imaging, and information storage applications.

13.
J Bacteriol ; 206(4): e0009524, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38564677

ABSTRACT

Bacterial communities exhibit complex self-organization that contributes to their survival. To better understand the molecules that contribute to transforming a small number of cells into a heterogeneous surface biofilm community, we studied acellular aggregates, structures seen by light microscopy in Pseudomonas aeruginosa colony biofilms using light microscopy and chemical imaging. These structures differ from cellular aggregates, cohesive clusters of cells important for biofilm formation, in that they are visually distinct from cells using light microscopy and are reliant on metabolites for assembly. To investigate how these structures benefit a biofilm community we characterized three recurrent types of acellular aggregates with distinct geometries that were each abundant in specific areas of these biofilms. Alkyl quinolones (AQs) were essential for the formation of all aggregate types with AQ signatures outside the aggregates below the limit of detection. These acellular aggregates spatially sequester AQs and differentiate the biofilm space. However, the three types of aggregates showed differing properties in their size, associated cell death, and lipid content. The largest aggregate type co-localized with spatially confined cell death that was not mediated by Pf4 bacteriophage. Biofilms lacking AQs were absent of localized cell death but exhibited increased, homogeneously distributed cell death. Thus, these AQ-rich aggregates regulate metabolite accessibility, differentiate regions of the biofilm, and promote survival in biofilms.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen with the ability to cause infection in the immune-compromised. It is well established that P. aeruginosa biofilms exhibit resilience that includes decreased susceptibility to antimicrobial treatment. This work examines the self-assembled heterogeneity in biofilm communities studying acellular aggregates, regions of condensed matter requiring alkyl quinolones (AQs). AQs are important to both virulence and biofilm formation. Aggregate structures described here spatially regulate the accessibility of these AQs, differentiate regions of the biofilm community, and despite their association with autolysis, correlate with improved P. aeruginosa colony biofilm survival.


Subject(s)
Pseudomonas Infections , Quinolones , Humans , Quinolones/metabolism , Biofilms , Pseudomonas Infections/microbiology , Virulence , Pseudomonas aeruginosa/metabolism
14.
J Biol Chem ; 299(9): 105159, 2023 09.
Article in English | MEDLINE | ID: mdl-37579948

ABSTRACT

Members of the FK506-binding protein (FKBP) family regulate a range of important physiological processes. Unfortunately, current therapeutics such as FK506 and rapamycin exhibit only modest selectivity among these functionally distinct proteins. Recent progress in developing selective inhibitors has been reported for FKBP51 and FKBP52, which act as mutual antagonists in the regulation of steroid hormone signaling. Two structurally similar inhibitors yield distinct protein conformations at the binding site. Localized conformational transition in the binding site of the unliganded FK1 domain of FKBP51 is suppressed by a K58T mutation that also suppresses the binding of these inhibitors. Here, it is shown that the changes in amide hydrogen exchange kinetics arising from this K58T substitution are largely localized to this structural region. Accurate determination of the hydroxide-catalyzed exchange rate constants in both the wildtype and K58T variant proteins impose strong constraints upon the pattern of amide exchange reactivities within either a single or a pair of transient conformations that could give rise to the differences between these two sets of measured rate constants. Poisson-Boltzmann continuum dielectric calculations provide moderately accurate predictions of the structure-dependent hydrogen exchange reactivity for solvent-exposed protein backbone amides. Applying such calculations to the local protein conformations observed in the two inhibitor-bound FKBP51 domains demonstrated that the experimentally determined exchange rate constants for the wildtype domain are robustly predicted by a population-weighted sum of the experimental hydrogen exchange reactivity of the K58T variant and the predicted exchange reactivities in model conformations derived from the two inhibitor-bound protein structures.


Subject(s)
Tacrolimus Binding Proteins , Tacrolimus , Protein Conformation , Tacrolimus Binding Proteins/metabolism , Binding Sites , Amides
15.
J Biol Chem ; 299(4): 103037, 2023 04.
Article in English | MEDLINE | ID: mdl-36806683

ABSTRACT

The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded ß-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.


Subject(s)
Bacteria , Bacterial Proteins , Cell Cycle Proteins , Lipids , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Magnetic Resonance Spectroscopy , Bacteria/cytology , Cell Division
16.
Proteins ; 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221646

ABSTRACT

The spindle checkpoint complex is a key surveillance mechanism in cell division that prevents premature separation of sister chromatids. Mad2 is an integral component of this spindle checkpoint complex that recognizes cognate substrates such as Mad1 and Cdc20 in its closed (C-Mad2) conformation by fastening a "seatbelt" around short peptide regions that bind to the substrate recognition site. Mad2 is also a metamorphic protein that adopts not only the fold found in C-Mad2, but also a structurally distinct open conformation (O-Mad2) which is incapable of binding substrates. Here, we show using chemical exchange saturation transfer (CEST) and relaxation dispersion (CPMG) NMR experiments that Mad2 transiently populates three other higher free energy states with millisecond lifetimes, two in equilibrium with C-Mad2 (E1 and E2) and one with O-Mad2 (E3). E1 is a mimic of substrate-bound C-Mad2 in which the N-terminus of one C-Mad2 molecule inserts into the seatbelt region of a second molecule of C-Mad2, providing a potential pathway for autoinhibition of C-Mad2. E2 is the "unbuckled" conformation of C-Mad2 that facilitates the triage of molecules along competing fold-switching and substrate binding pathways. The E3 conformation that coexists with O-Mad2 shows fluctuations at a hydrophobic lock that is required for stabilizing the O-Mad2 fold and we hypothesize that E3 represents an early intermediate on-pathway towards conversion to C-Mad2. Collectively, the NMR data highlight the rugged free energy landscape of Mad2 with multiple low-lying intermediates that interlink substrate-binding and fold-switching, and also emphasize the role of molecular dynamics in its function.

17.
J Biomol NMR ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918317

ABSTRACT

Solution NMR spectroscopy is a particularly powerful technique for characterizing the functional dynamics of biomolecules, which is typically achieved through the quantitative characterization of chemical exchange processes via the measurement of spin relaxation rates. In addition to the conventional nuclei such as 15N and 13C, which are abundant in biomolecules, fluorine-19 (19F) has recently garnered attention and is being widely used as a site-specific spin probe. While 19F offers the advantages of high sensitivity and low background, it can be susceptible to artifacts in quantitative relaxation analyses due to a multitude of dipolar and scalar coupling interactions with nearby 1H spins. In this study, we focused on the ribose 2'-19F spin probe in nucleic acids and investigated the effects of 1H-19F spin interactions on the quantitative characterization of slow exchange processes on the millisecond time scale. We demonstrated that the 1H-19F dipolar coupling can significantly affect the interpretation of 19F chemical exchange saturation transfer (CEST) experiments when 1H decoupling is applied, while the 1H-19F interactions have a lesser impact on Carr-Purcell-Meiboom-Gill relaxation dispersion applications. We also proposed a modified CEST scheme to alleviate these artifacts along with experimental verifications on self-complementary RNA systems. The theoretical framework presented in this study can be widely applied to various 19F spin systems where 1H-19F interactions are operative, further expanding the utility of 19F relaxation-based NMR experiments.

18.
J Biomol NMR ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083133

ABSTRACT

A transverse relaxation optimized spectroscopy (TROSY) approach is described for the optimal detection of NH2 groups in asparagine and glutamine side chains of proteins. Specifically, we have developed NMR experiments for isolating the slow-relaxing 15N and 1H components of NH2 multiplets. Although even modest sensitivity gains in 2D NH2-TROSY correlation maps compared to their decoupled NH2-HSQC counterparts can be achieved only occasionally, substantial improvements in resolution of the NMR spectra are demonstrated for asparagine and glutamine NH2 sites of a buried cavity mutant, L99A, of T4 lysozyme at 5 ºC. The NH2-TROSY approach is applied to CPMG relaxation dispersion measurements at the side chain NH2 positions of the L99A T4 lysozyme mutant - a model system for studies of the role of protein dynamics in ligand binding.

19.
J Comput Chem ; 45(27): 2284-2293, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38847601

ABSTRACT

Mechanistic investigations at the density functional theory level of organic and organometallic reactions in solution are now broadly accessible and routinely implemented to complement experimental investigations. The selection of an appropriate functional among the plethora of developed ones is the first challenge on the way to reliable energy barrier calculations. To provide guidelines for the choice of an initial and reliable computational level, the performances of commonly used non-empirical (PBE, PBE0, PBE0-DH) and empirical density functionals (BLYP, B3LYP, B2PLYP) were evaluated relative to experimental activation enthalpies. Most reactivity databases to assess density functional performances are primarily based on high level calculations, here a set of experimental activation enthalpies of organic and organometallic reactions performed in solution were selected from the literature. As a general trend, the non-empirical functionals outperform the empirical ones. The most accurate energy barriers are obtained with hybrid PBE0 and double-hybrid PBE0-DH density functionals, both providing similar performance. Regardless of the functional under consideration, the addition of the GD3-BJ empirical dispersion correction does not enhance the accuracy of computed energy barriers.

20.
J Comput Chem ; 45(12): 827-833, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38135482

ABSTRACT

The Superatom Molecular Orbitals (SAMO) in fullerene derivatives are of great interests which gives a wide basement for many electronic applications. In this work, the Density Functional Theory reveals the SAMO states of endohedrally doped C80 derivatives with Li, Sc, Mn, Ti, Ca, Fe, and Co atoms in molecular and periodic structures. The choice and position of metal atoms in endohedrally doped C80 derivatives largely affects the orientation of SAMO energies and wavefunction distributions. Among various derivatives, the Co-substituted C80 constitutes the lowest SAMO energy. The charge transfer study infers the influence of metal atoms inside the cage on SAMO energies. At higher energies, pz-, 2s-, and pxy- SAMO bands have been overlapped with higher dispersion bands which depict the increased intermolecular interaction in delocalized bands causing a larger dispersion. These results give new insights for future studies on lowering SAMO energy nearly to the fermi level in higher fullerenes.

SELECTION OF CITATIONS
SEARCH DETAIL