Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 589
Filter
Add more filters

Publication year range
1.
Small ; : e2403422, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152940

ABSTRACT

Conventional drug delivery techniques face challenges related to targeting and adverse reactions. Recent years have witnessed significant advancements in nanoparticle-based drug carriers. Nevertheless, concerns persist regarding their safety and insufficient metabolism. Employing cells and their derivatives, such as cell membranes and extracellular vesicles (EVs), as drug carriers effectively addresses the challenges associated with nanoparticle carriers. However, an essential hurdle remains in efficiently loading drugs into these carriers. With the advancement of microfluidic technology and its advantages in precise manipulation at the micro- and nanoscales, as well as minimal sample loss, it has found extensive application in the loading of drugs using cells and their derivatives, thereby fostering the development of drug-loading techniques. This paper outlines the characteristics and benefits of utilizing cells and their derivatives as drug carriers and provides an overview of current drug-loading techniques, particularly those rooted in microfluidic technology. The significant potential for microfluidic technology in targeted disease therapy through drug delivery systems employing cells and their derivatives, is foreseen.

2.
Mol Pharm ; 21(5): 2327-2339, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38576375

ABSTRACT

In the present study, we investigated the role of lipid composition of camptothecin (CPT)-loaded liposomes (CPT-Lips) to adjust their residence time, drug distribution, and therefore the toxicities and antitumor activity. The CPT was loaded into liposomes using a click drug loading method, which utilized liposomes preloaded with GSH and then exposed to CPT-maleimide. The method produced CPT-Lips with a high encapsulation efficiency (>95%) and sustained drug release. It is shown that the residence times of CPT-Lips in the body were highly dependent on lipid compositions with an order of non-PEGylated liposomes of unsaturated lipids < non-PEGylated liposomes of saturated lipids < PEGylated liposomes of saturated lipids. Interestingly, the fast clearance of CPT-Lips resulted in significantly decreased toxicities but did not cause a significant decrease in their in vivo antitumor activity. These results suggested that the lipid composition could effectively adjust the residence time of CPT-Lips in the body and further optimize their therapeutic index, which would guide the development of a liposomal formulation of CPT.


Subject(s)
Camptothecin , Lipids , Liposomes , Camptothecin/chemistry , Camptothecin/administration & dosage , Camptothecin/pharmacokinetics , Camptothecin/pharmacology , Liposomes/chemistry , Animals , Mice , Lipids/chemistry , Humans , Drug Liberation , Drug Delivery Systems/methods , Polyethylene Glycols/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Antineoplastic Agents, Phytogenic/pharmacology , Female , Click Chemistry/methods , Mice, Inbred BALB C
3.
Macromol Rapid Commun ; : e2400503, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212311

ABSTRACT

To overcome the poor targeting of conventional chemotherapeutic drugs and the defects of low drug-loading capacity of conventional drug delivery systems, novel drug delivery systems with high drug-loading capacity are developed. Herein, the high drug-loaded mPEG79-GFLGDDD-DOX copolymer is first synthesized via an amide reaction, which can bond multiplex DOX. After PEGylation, the drug can resist the adsorption of proteins in the plasma in blood circulation, avoid being rapidly cleared out of the body, and prolong the circulation time of the drug in the blood, which is conducive to the enrichment of micelles in tumor tissues through the EPR effect. In tumor tissues, the peptide Glycine- Phenylalanine- Leucine- Glycine (GFLG) is recognized and sheared by overexpressed cathepsin B, which stripped the outer layer of methoxy polyethylene glycol (mPEG) and made it more readily available for uptake by tumor cells. After entering the tumor cells, the bonded DOX and the physically encapsulated DOX in the micelles played a synergistic role, realizing the killing of tumor cells, thus effectively enhancing the therapeutic effect on tumors. The findings in this work suggest that a high drug-loading drug delivery system has great potential in the clinical treatment of tumors.

4.
Acta Pharmacol Sin ; 45(3): 646-659, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37845342

ABSTRACT

Higher drug loading employed in nanoscale delivery platforms is a goal that researchers have long sought after. But such viewpoint remains controversial because the impacts that nanocarriers bring about on bodies have been seriously overlooked. In the present study we investigated the effects of drug loading on the in vivo performance of PEGylated liposomal doxorubicin (PLD). We prepared PLDs with two different drug loading rates: high drug loading rate, H-Dox, 12.9% w/w Dox/HSPC; low drug loading rate, L-Dox, 2.4% w/w Dox/HSPC (L-Dox had about 5 folds drug carriers of H-Dox at the same Dox dose). The pharmaceutical properties and biological effects of H-Dox and L-Dox were compared in mice, rats or 4T1 subcutaneous tumor-bearing mice. We showed that the lowering of doxorubicin loading did not cause substantial shifts to the pharmaceutical properties of PLDs such as in vitro and in vivo stability (stable), anti-tumor effect (equivalent effective), as well as tissue and cellular distribution. Moreover, it was even more beneficial for mitigating the undesired biological effects caused by PLDs, through prolonging blood circulation and alleviating cutaneous accumulation in the presence of pre-existing anti-PEG Abs due to less opsonins (e.g. IgM and C3) deposition on per particle. Our results warn that the effects of drug loading would be much more convoluted than expected due to the complex intermediation between nanocarriers and bodies, urging independent investigation for each individual delivery platform to facilitate clinical translation and application.


Subject(s)
Doxorubicin , Polyethylene Glycols , Mice , Rats , Animals , Cell Line, Tumor , Doxorubicin/pharmacology , Polyethylene Glycols/pharmacology , Drug Carriers
5.
J Nanobiotechnology ; 22(1): 221, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724958

ABSTRACT

Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.


Subject(s)
Flavonoids , Macrophages , Metal-Organic Frameworks , Osteoarthritis , Reactive Oxygen Species , Metal-Organic Frameworks/chemistry , Osteoarthritis/drug therapy , Animals , Flavonoids/pharmacology , Flavonoids/chemistry , Macrophages/drug effects , Macrophages/metabolism , Mice , Reactive Oxygen Species/metabolism , RAW 264.7 Cells , Antioxidants/pharmacology , Antioxidants/chemistry , Drug Delivery Systems/methods , Folic Acid/chemistry , Male , Rats , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley
6.
Skin Res Technol ; 30(2): e13599, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38279569

ABSTRACT

BACKGROUND: Small extracellular vesicles from adipose-derived stem cells (ASC-sEVs) have gained remarkable attention for their regenerative and protective properties against skin aging. However, the use of ASC-sEVs to further encapsulate certain natural anti-aging compounds for synergistic effects has not been actively explored. For large-scale production in skincare industry, it is also crucial to standardize cost-effective methods to produce highly pure ASC-sEVs. METHODS: Human ASCs were expanded in serum-free media with different compositions to first optimize the sEV production. ASC-sEVs from different batches were then purified using tangential flow filtration and sucrose cushion ultracentrifugation, followed by extensive characterization for identity and content profiling including proteomics, lipidomics and miRNA sequencing. ASC-sEVs were further loaded with nicotinamide riboside (NR) and resveratrol by sonication-incubation method. The therapeutic effect of ASC-sEVs and loaded ASC-sEVs was tested on human keratinocyte cell line HaCaT exposed to UVB by measuring reactive oxygen species (ROS). The loaded ASC-sEVs were later applied on the hand skin of three volunteers once a day for 8 weeks and skin analysis was performed every 2 weeks. RESULTS: Our standardized workflow produced ASC-sEVs with high yield, high purity and with stable characteristics and consistent biocargo among different batches. The most abundant subpopulations in ASC-sEVs were CD63+ (∼30%) and CD81+ -CD63+ (∼35%). Purified ASC-sEVs could be loaded with NR and resveratrol at the optimized loading efficiency of ∼20%. In UVB-exposed HaCaT cells, loaded ASC-sEVs could reduce ROS by 38.3%, higher than the sEVs (13.3%) or compounds (18.5%) individually. In human trial, application of loaded ASC-sEVs after 8 weeks substantially improved skin texture, increased skin hydration and elasticity by 104% and reduced mean pore volume by 51%. CONCLUSIONS: This study demonstrated a robust protocol to produce ASC-sEVs and exogenously load them with natural compounds. The loaded ASC-sEVs exhibited synergistic effects of both sEVs and anti-aging compounds in photoaging protection and skin rejuvenation.


Subject(s)
Skin Aging , Humans , Reactive Oxygen Species , Rejuvenation , Resveratrol , Stem Cells
7.
J Liposome Res ; : 1-13, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38343137

ABSTRACT

Liposomes have gained prominence as nanocarriers in drug delivery, and the number of products in the market is increasing steadily, particularly in cancer therapeutics. Remote loading of drugs in liposomes is a significant step in the translation and commercialization of the first liposomal product. Low drug loading and drug leakage from liposomes is a translational hurdle that was effectively circumvented by the remote loading process. Remote loading or active loading could load nearly 100% of the drug, which was not possible with the passive loading procedure. A major drawback of conventional remote loading is that only a very small percentage of the drugs are amenable to this method. Therefore, methods for drug loading are still a problem for several drugs. The loading of multiple drugs in liposomes to improve the efficacy and safety of nanomedicine has gained prominence recently with the introduction of a marketed formulation (Vyxeos) that improves overall survival in acute myeloid leukemia. Different strategies for modifying the remote loading process to overcome the drawbacks of the conventional method are discussed here. The review aims to discuss the latest developments in remote loading technology and its implications in liposomal drug delivery.

8.
J Liposome Res ; : 1-15, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459750

ABSTRACT

Recently, metformin (Met) has shown to have antineoplastic properties in cancer treatment by improving hypoxic tumor conditions, and causing reduction in the synthesis of biomolecules, which are vital for cancer growth. However, as an orally administered drug, Met has low bioavailability and rapid renal clearance. Thus, the goal of this study was to vectorize Met inside liposomes in the context of triple negative breast cancer (TNBC), which currently lacks treatment options when compared to other types of breast cancer. Vectorization of Met inside liposomes was done using Bangham method by implementing double design of experiment methodology to increase Met drug loading (minimum-run resolution V characterization design and Box-Behnken design), as it is generally extremely low for hydrophilic molecules. Optimization of Met-loaded liposome synthesis was successfully achieved with drug loading of 190 mg/g (19% w/w). The optimal Met-liposomes were 170 nm in diameter with low PdI (< 0.1) and negative surface charge (-20 mV), exhibiting sustained Met release at pH 7.4. The liposomal Met delivery system was stable over several months, and successfully reduced TNBC cell proliferation due to the encapsulated drug. This study is one the first reports addressing liposome formulation through thin-film hydration using two design of experiment methods aiming to increase drug loading of Met.

9.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000260

ABSTRACT

Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.


Subject(s)
Bacteria , Drug Delivery Systems , Extracellular Vesicles , Plants , Extracellular Vesicles/metabolism , Bacteria/metabolism , Humans , Plants/metabolism , Animals , Drug Delivery Systems/methods , Yeasts/metabolism , Drug Carriers/chemistry
10.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062803

ABSTRACT

This systematic review offers a comprehensive analysis of plant-derived extracellular vesicles (PDEVs) as emerging drug delivery systems, focusing on original research articles published between 2016 and 2024 that exclusively examine the use of PDEVs for drug delivery. After a rigorous search across multiple databases, 20 relevant studies out of 805 initial results were selected for analysis. This review systematically summarizes the critical data on PDEV components, isolation methods, and drug-loading techniques. It highlights the potential of PDEVs to significantly enhance drug safety and efficacy, reduce dosage and toxicity, and align drug development with sustainable and environmentally friendly biotechnological processes. This review also emphasizes the advantages of PDEVs over mammalian-derived vesicles, such as cost-effectiveness, higher yield, and reduced immunogenicity. Additionally, it explores the synergistic potential between encapsulated drugs and bioactive compounds naturally present in PDEVs. This study acknowledges the challenges in standardizing isolation and formulation methods for clinical use. Overall, this review provides valuable insights into the current state and future directions of PDEV-based drug delivery systems, highlighting their promising role in advancing pharmaceutical research and development.


Subject(s)
Drug Delivery Systems , Extracellular Vesicles , Extracellular Vesicles/metabolism , Drug Delivery Systems/methods , Humans , Animals , Plants/metabolism , Drug Carriers/chemistry
11.
Pharm Dev Technol ; : 1-11, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39072404

ABSTRACT

Doxorubicin (DOX) is a chemotherapeutic with considerable efficacy, but its application is limited due to cardiotoxicity. Nanoparticles can improve DOX efficacy and prevent its adverse effects. Herein, DOX-loaded extracellular vesicles (DOX-EVs) were prepared using different loading methods including incubation, electroporation, and sonication in different hydration buffers to permeabilize nanostructures or desalinize DOX for improved entrapment. Different protein:drug (µg:µg) ratios of 1:10, 1:5, and 1:2, and incubation parameters were also investigated. The optimal formulation was characterized by western blotting, electron microscopy, Zetasizer, infrared spectroscopy, and release study. The cellular uptake and efficacy were investigated in MCF-7 spheroids via MTS assay, spheroid formation assay (SFA), confocal microscopy, and flow cytometry. The percentage of entrapment efficiency (EE) of formulations was improved from 1.0 ± 0.1 to 22.0 ± 1.4 using a protein:drug ratio of 1:2 and sonication in Tween 80 (0.1%w/v) containing buffer. Characterization studies verified the vesicles' identity, spherical morphology, and controlled drug release properties. Cellular studies revealed the accumulation and cytotoxicity of DOX-EVs in the spheroids, and SFA and confocal microscopy confirmed the efficacy and cellular localization. Flow cytometry results revealed a comparable and amplified efficacy for DOX-EV formulations with different cell origins. Overall, the EV formulation of DOX can be applied as a promising alternative with potential advantages.

12.
Saudi Pharm J ; 32(6): 102096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757071

ABSTRACT

The aim of the current study was to explore the potential of human plasma-derived exosomes as versatile carriers for drug delivery by employing various active and passive loading methods. Exosomes were isolated from human plasma using differential centrifugation and ultrafiltration method. Drug loading was achieved by employing sonication and freeze thaw methods, facilitating effective drug encapsulation within exosomes for delivery. Each approach was examined for its effectiveness, loading efficiency and ability to preserve membrane stability. Methotrexate (MTX), a weak acid model drug was loaded at a concentration of 2.2 µM to exosomes underwent characterization using various techniques such as particle size analysis, transmission electron microscopy and drug loading capacity. Human plasma derived exosomes showed a mean size of 162.15 ± 28.21 nm and zeta potential of -30.6 ± 0.71 mV. These exosomes were successfully loaded with MTX demonstrated a better drug encapsulation of 64.538 ± 1.54 % by freeze thaw method in comparison 55.515 ± 1.907 % by sonication. In-vitro drug release displayed 60 % loaded drug released within 72 h by freeze thaw method that was significantly different from that by sonication method i.e., 99 % within 72 h (p value 0.0045). Moreover, cell viability of exosomes loaded by freeze thaw method was significantly higher than that by sonication method (p value 0.0091) suggested that there was membrane disruption by sonication method. In conclusion, this study offers valuable insights into the potential of human plasma-derived exosomes loaded by freeze thaw method suggest as a promising carrier for improved drug loading and maintenance of exosomal membrane integrity.

13.
Angew Chem Int Ed Engl ; 63(13): e202318881, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38320963

ABSTRACT

Polymer nanodiscs, especially with stimuli-responsive features, represent an unexplored frontier in the nanomaterial landscape. Such 2D nanomaterials are considered highly promising for advanced biomedicine applications. Herein, we designed a rod-coil copolymer architecture based on an amphiphilic, tadpole-like bottlebrush copolymer, which can directly self-assemble into core-shell nanodiscs in an aqueous environment. As the bottlebrush side chains are made of amorphous, UV-responsive poly(ethyl glyoxylate) (PEtG) chains, they can undergo rapid end-to-end self-immolation upon light irradiation. This triggered nanodisc disassembly can be used to boost small molecule release from the nanodisc core, which is further aided by a morphological change from discs to spheres.

14.
Biochem Biophys Res Commun ; 667: 25-33, 2023 07 30.
Article in English | MEDLINE | ID: mdl-37207561

ABSTRACT

OBJECTIVES: Changes of macrophage in the local immune microenvironment of periodontitis cause alveolar bone resorption. This study aims to investigate the effect of a new drug delivery method of aspirin on the immune microenvironment of periodontitis to promote alveolar bone repair, and to explore mechanism of aspirin's effect on macrophage. METHODS: We isolated extracellular vesicles (EVs) from periodontal stem cells (PDLSCs) and loaded with aspirin by sonication, and then evaluated the treatment efficacy of aspirin-loaded vesicles (EVs-ASP) in periodontitis model in mice. In vitro, we explored the role of EVs-ASP in the regulation of LPS-induced macrophages. The underlying mechanism by which EVs-ASP regulates phenotypic remodeling of macrophages in periodontitis was further investigated. RESULTS: EVs-ASP inhibited the inflammatory environment of LPS-induced macrophage, and promoted anti-inflammatory macrophages formation both in vivo and in vitro, and reduced bone loss in periodontitis models. Moreover, EVs-ASP enhanced oxidative phosphorylation and suppressed glycolysis in macrophages. CONCLUSIONS: Consequently, EVs-ASP improves the periodontal immune microenvironment by enhancing oxidative phosphorylation (OXPHOS) in macrophages, resulting in a certain degree of regeneration of alveolar bone height. Our study provides a new potential strategy for bone repair in periodontitis therapy.


Subject(s)
Extracellular Vesicles , Periodontitis , Mice , Animals , Aspirin/pharmacology , Aspirin/metabolism , Lipopolysaccharides/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Periodontitis/drug therapy , Periodontitis/metabolism , Macrophages/metabolism , Extracellular Vesicles/metabolism , Phenotype
15.
Small ; 19(47): e2302587, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37454336

ABSTRACT

Nanozyme-driven catalytic antibacterial therapy has become a promising modality for bacterial biofilm infections. However, current catalytic therapy of biofilm wounds is severely limited by insufficient catalytic efficiency, excessive inflammation, and deep tissue infection. Drawing from the homing mechanism of natural macrophages, herein, a hollow mesoporous biomimetic single-atomic nanozyme (SAN) is fabricated to actively target inflamed parts, suppress inflammatory factors, and eliminate deeply organized bacteria for enhance biofilm eradication. In the formulation, this biomimetic nanozyme (Co@SAHSs@IL-4@RCM) consists of IL-4-loaded cobalt SANs-embedded hollow sphere encapsulate by RAW 264.7 cell membrane (RCM). Upon accumulation at the infected sites through the specific receptors of RCM, Co@SAHS catalyze the conversion of hydrogen peroxide into hydroxyl radicals and are further amplify by NIR-II photothermal effect and glutathione depletion to permeate and destroy biofilm structure. This behavior subsequently causes the dissociation of RCM shell and the ensuing release of IL-4 that can reprogram macrophages, enabling suppression of oxidative injury and tissue inflammation. The work paves the way to engineer alternative "all-in-one" SANs with an immunomodulatory ability and offers novel insights into the design of bioinspired materials.


Subject(s)
Biomimetics , Interleukin-4 , Humans , Anti-Bacterial Agents/pharmacology , Biofilms , Hydrogen Peroxide , Inflammation
16.
Small ; 19(15): e2207119, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36683222

ABSTRACT

Atomically precise nanoclusters (NCs) have recently emerged as ideal building blocks for constructing self-assembled multifunctional superstructures. The existing structures are based on various non-covalent interactions of the ligands on the NC surface, resulting in inter-NC interactions. Despite recent demonstrations on light-induced reversible self-assembly, long-range reversible self-assembly based on dynamic covalent chemistry on the NC surface has yet to be investigated. Here, it is shown that Au25 NCs containing thiolated umbelliferone (7-hydroxycoumarin) ligands allow [2+2] photocycloaddition reaction-induced self-assembly into colloidal-level toroids. The toroids upon further irradiation undergo inter-toroidal reaction resulting in macroscopic supertoroidal honey-comb frameworks. Systematic investigation using electron microscopy, atomic force microscopy (AFM), and electron tomography (ET) suggest that the NCs initially form spherical aggregates. The spherical structures further undergo fusion resulting in toroid formation. Finally, the toroids fuse into macroscopic honeycomb frameworks. As a proof-of-concept, a cross-photocycloaddition reaction between coumarin-tethered NCs and an anticancer drug (5-fluorouracil) is demonstrated as a model photo-controlled drug release system. The model system allows systematic loading and unloading of the drug during the assembly and disassembly under two different wavelengths. The results suggest that the dynamic covalent chemistry on the NC surface offers a facile route for hierarchical multifunctional frameworks and photocontrolled drug release.

17.
Chemistry ; 29(45): e202301024, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37218025

ABSTRACT

Rapid and scalable self-assembly of an amphiphilic 21-arm star copolymer, (polystyrene-block-polyethylene glycol)21 [(PS-b-PEG)21 ] in aqueous solution has been performed by reverse solvent exchange procedure. Transmission electron microscope (TEM) and nanoparticle tracking analysis (NTA) reveal the formation of nanoparticles with narrow size distribution. Further investigation indicates a kinetically controlled self-assembly mechanism of the copolymers, in which the star topology of the amphiphilic copolymer and deep quenching condition by reverse solvent exchange are key to accelerate intrachain contraction of the copolymer during phase separation. When interchain contraction dominant over interchain association, nanoparticles with low aggregation number could be formed. Thanks to the high hydrophobic contents of the (PS-b-PEG)21 polymers, the resulted nanoparticles could encapsulate a high capacity of hydrophobic cargo up to 19.84 %. The kinetically controlled star copolymer self-assembly process reported here provides a platform for the rapid and scalable fabrication of nanoparticle with high drug loading capacity (LC), which may find broad range of applications in, for example drug delivery, nanopesticide.

18.
Mol Pharm ; 20(4): 2017-2028, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36896581

ABSTRACT

While the effects of nanoparticle properties such as shape and size on cellular uptake are widely studied, influences exerted by drug loading have so far been ignored. In this work, nanocellulose (NC) coated by Passerini reaction with poly(2-hydroxy ethyl acrylate) (PHEA-g-NC) was loaded with various amounts of ellipticine (EPT) by electrostatic interactions. The drug-loading content was determined by UV-vis spectroscopy to range between 1.68 and 8.07 wt %. Dynamic light scattering and small-angle neutron scattering revealed an increased dehydration of the polymer shell with increasing drug-loading content, which led to higher protein adsorption and more aggregation. The nanoparticle with the highest drug-loading content, NC-EPT8.0, displayed reduced cellular uptake in U87MG glioma cells and MRC-5 fibroblasts. This also translated into reduced toxicity in these cell lines as well as the breast cancer MCF-7 and the macrophage RAW264.7 cell lines. Additionally, the toxicity in U87MG cancer spheroids was unfavorable. The nanoparticle with the best performance was found to have intermediate drug-loading content where the cellular uptake was adequately high while each nanoparticle was able to deliver a sufficiently toxic amount into the cells. Medium drug loading did not hinder uptake into cells while maintaining sufficiently toxic drug concentrations. It was concluded that while striving for a high drug-loading content is appropriate when designing clinically relevant nanoparticles, it needs to be considered that the drug can cause changes in the physicochemical properties of the nanoparticles that might cause unfavorable effects.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Polymers/chemistry , Drug Carriers/chemistry , Cell Line , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Macrophages , Nanoparticles/chemistry
19.
Pharm Res ; 40(3): 777-790, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36859747

ABSTRACT

PURPOSE: Plasticizers are commonly used in the preparation of amorphous solid dispersions (ASDs) with the main goal of aiding processability; however, to the best of our knowledge, the impact of plasticizers on drug release has not been explored. The goal of this study was to evaluate diverse plasticizers, including glycerol and citrate derivatives, as additives to increase the drug loading where good drug release could be achieved from copovidone (PVPVA)-based dispersions, focusing on high glass transition (Tg) drugs, atazanavir (ATZ) and ledipasvir (LED). METHODS: ASDs were prepared using the high Tg compounds, atazanavir (ATZ) and ledipasvir (LED), as model drugs. Release was evaluated using surface normalized dissolution testing. Differential scanning calorimetry was used to measure glass transition temperature and water vapor sorption was performed on select samples. RESULTS: The presence of a plasticizer at 5% w/w for ATZ and 10% w/w for LED ASDs, led to improved drug release. For ATZ ASDs, in the absence of plasticizer, release was very poor at drug loadings of 10% w/w and above. Good release was obtained for plasticized ASDs up to a drug loading of 25%. The corresponding improvement for LED was from 5 to 20% DL. Interestingly, for a low Tg compound, ritonavir, relatively smaller improvements in release as a function of drug loading were achieved through plasticizer incorporation. CONCLUSIONS: The use of plasticizers represents a potential new strategy to increase drug loading in ASDs for high Tg compounds with a low tendency to crystallize and may help improve a major limitation of ASD formulations, namely the high excipient burden.


Subject(s)
Benzimidazoles , Plasticizers , Plasticizers/chemistry , Solubility , Atazanavir Sulfate , Drug Liberation , Drug Compounding
20.
Nanotechnology ; 35(5)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37863070

ABSTRACT

Currently, the treatment for acute disease encompasses the use of various biological drugs (BDs). However, the utilisation of BDs is limited due to their rapid clearance and non-specific accumulation in unwanted sites, resulting in a lack of therapeutic efficacy together with adverse effects. While nanoparticles are considered good candidates to resolve this problem, some available polymeric carriers for BDs were mainly designed for long-term sustained release. Thus, there is a need to explore new polymeric carriers for the acute disease phase that requires sustained release of BDs over a short period, for example for thrombolysis and infection. Poly(succinimide)-oleylamine (PSI-OA), a biocompatible polymer with a tuneable dissolution profile, represents a promising strategy for loading BDs for sustained release within a 48-h period. In this work, we developed a two-step nanoprecipitation method to load the model protein (e.g. bovine serum albumin and lipase) on PSI-OA. The characteristics of the nanoparticles were assessed based on various loading parameters, such as concentration, stirring rate, flow rate, volume ratio, dissolution and release of the protein. The optimised NPs displayed a size within 200 nm that is suitable for vasculature delivery to the target sites. These findings suggest that PSI-OA can be employed as a carrier for BDs for applications that require sustained release over a short period.


Subject(s)
Amines , Drug Carriers , Nanoparticles , Humans , Delayed-Action Preparations , Acute Disease , Polymers , Succinimides , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL