Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.282
Filter
Add more filters

Publication year range
1.
Cell ; 176(1-2): 113-126.e15, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30633902

ABSTRACT

Here, we describe a novel pathogenic entity, the activated PMN (polymorphonuclear leukocyte, i.e., neutrophil)-derived exosome. These CD63+/CD66b+ nanovesicles acquire surface-bound neutrophil elastase (NE) during PMN degranulation, NE being oriented in a configuration resistant to α1-antitrypsin (α1AT). These exosomes bind and degrade extracellular matrix (ECM) via the integrin Mac-1 and NE, respectively, causing the hallmarks of chronic obstructive pulmonary disease (COPD). Due to both ECM targeting and α1AT resistance, exosomal NE is far more potent than free NE. Importantly, such PMN-derived exosomes exist in clinical specimens from subjects with COPD but not healthy controls and are capable of transferring a COPD-like phenotype from humans to mice in an NE-driven manner. Similar findings were observed for another neutrophil-driven disease of ECM remodeling (bronchopulmonary dysplasia [BPD]). These findings reveal an unappreciated role for exosomes in the pathogenesis of disorders of ECM homeostasis such as COPD and BPD, providing a critical mechanism for proteolytic damage.


Subject(s)
Exosomes/physiology , Neutrophils/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Cells, Cultured , Extracellular Matrix/metabolism , Female , Humans , Inflammation , Integrins , Leukocyte Elastase/metabolism , Lung/metabolism , Lung/physiopathology , Male , Mice , Mice, Inbred C57BL , Neutrophils/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , alpha 1-Antitrypsin/metabolism
2.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042488

ABSTRACT

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Subject(s)
Leukocyte Elastase , Transcortin , Glycosylation , Hydrocortisone/metabolism , Leukocyte Elastase/metabolism , Polysaccharides , Proteolysis , Transcortin/genetics , Transcortin/chemistry , Transcortin/metabolism , Humans
3.
Arterioscler Thromb Vasc Biol ; 44(7): 1467-1473, 2024 07.
Article in English | MEDLINE | ID: mdl-38924435

ABSTRACT

CLINICAL PROBLEM: Most abdominal aortic aneurysms (AAAs) are small with low rupture risk (<1%/y) when diagnosed but slowly expand to ≥55 mm and undergo surgical repair. Patients and clinicians require medications to limit AAA growth and rupture, but drugs effective in animal models have not translated to patients. RECOMMENDATIONS FOR INCREASING TRANSLATION FROM MOUSE MODELS: Use models that simulate human AAA tissue pathology, growth patterns, and rupture; focus on the clinically relevant outcomes of growth and rupture; design studies with the rigor required of human clinical trials; monitor AAA growth using reproducible ultrasound; and perform studies in both males and females. SUMMARY OF STRENGTHS AND WEAKNESSES OF MOUSE MODELS: The aortic adventitial elastase oral ß-aminopropionitrile model has many strengths including simulating human AAA pathology and modeling prolonged aneurysm growth. The Ang II (angiotensin II) model performed less well as it better simulates acute aortic syndrome than AAA. The elastase plus TGFß (transforming growth factor-ß) blocking antibody model displays a high rupture rate, making prolonged monitoring of AAA growth not feasible. The elastase perfusion and calcium chloride models both display limited AAA growth.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Rupture , Disease Models, Animal , Animals , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/pathology , Humans , Aortic Rupture/prevention & control , Aortic Rupture/diagnostic imaging , Aortic Rupture/pathology , Pancreatic Elastase , Mice , Aorta, Abdominal/pathology , Aorta, Abdominal/drug effects , Aorta, Abdominal/diagnostic imaging , Aorta, Abdominal/metabolism , Female , Disease Progression , Male
4.
Mol Ther ; 32(6): 1628-1642, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38556793

ABSTRACT

Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia. Here, we report the development of a curative therapy for ELANE-CN through inhibition of ELANE mRNA expression by introducing two single-strand DNA breaks at the opposing DNA strands of the ELANE promoter TATA box using CRISPR-Cas9D10A nickases-termed MILESTONE. This editing effectively restored defective neutrophil differentiation of ELANE-CN CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, without affecting the functions of the edited neutrophils. CRISPResso analysis of the edited ELANE-CN CD34+ HSPCs revealed on-target efficiencies of over 90%. Simultaneously, GUIDE-seq, CAST-Seq, and rhAmpSeq indicated a safe off-target profile with no off-target sites or chromosomal translocations. Taken together, ex vivo gene editing of ELANE-CN HSPCs using MILESTONE in the setting of autologous stem cell transplantation could be a universal, safe, and efficient gene therapy approach for ELANE-CN patients.


Subject(s)
CRISPR-Cas Systems , Congenital Bone Marrow Failure Syndromes , Gene Editing , Genetic Therapy , Leukocyte Elastase , Neutropenia , Promoter Regions, Genetic , Gene Editing/methods , Humans , Neutropenia/congenital , Neutropenia/therapy , Neutropenia/genetics , Genetic Therapy/methods , Congenital Bone Marrow Failure Syndromes/therapy , Congenital Bone Marrow Failure Syndromes/genetics , Leukocyte Elastase/genetics , Leukocyte Elastase/metabolism , Animals , Mice , Neutrophils/metabolism , Hematopoietic Stem Cells/metabolism , Mutation , Disease Models, Animal , Granulocyte Colony-Stimulating Factor/genetics , Genetic Diseases, X-Linked/therapy , Genetic Diseases, X-Linked/genetics
5.
Proc Natl Acad Sci U S A ; 119(37): e2208540119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36070343

ABSTRACT

Diversity Oriented Clicking (DOC) is a discovery method geared toward the rapid synthesis of functional libraries. It combines the best attributes of both classical and modern click chemistries. DOC strategies center upon the chemical diversification of core "SuFExable" hubs-exemplified by 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs)-enabling the modular assembly of compounds through multiple reaction pathways. We report here a range of stereoselective Michael-type addition pathways from SASF hubs including reactions with secondary amines, carboxylates, 1H-1,2,3-triazole, and halides. These high yielding conjugate addition pathways deliver unprecedented ß-substituted alkenyl sulfonyl fluorides as single isomers with minimal purification, greatly enriching the repertoire of DOC and holding true to the fundamentals of modular click chemistry. Further, we demonstrate the potential for biological function - a key objective of click chemistry - of this family of SASF-derived molecules as covalent inhibitors of human neutrophil elastase.


Subject(s)
Click Chemistry , Fluorides , Leukocyte Elastase , Proteinase Inhibitory Proteins, Secretory , Sulfinic Acids , Click Chemistry/methods , Fluorides/chemical synthesis , Fluorides/chemistry , Fluorides/pharmacology , Humans , Leukocyte Elastase/antagonists & inhibitors , Proteinase Inhibitory Proteins, Secretory/chemical synthesis , Proteinase Inhibitory Proteins, Secretory/chemistry , Proteinase Inhibitory Proteins, Secretory/pharmacology , Sulfinic Acids/chemical synthesis , Sulfinic Acids/chemistry , Sulfinic Acids/pharmacology
6.
J Biol Chem ; 299(8): 104889, 2023 08.
Article in English | MEDLINE | ID: mdl-37286041

ABSTRACT

Human neutrophil elastase (HNE) plays a pivotal role in innate immunity, inflammation, and tissue remodeling. Aberrant proteolytic activity of HNE contributes to organ destruction in various chronic inflammatory diseases including emphysema, asthma, and cystic fibrosis. Therefore, elastase inhibitors could alleviate the progression of these disorders. Here, we used the systematic evolution of ligands by exponential enrichment to develop ssDNA aptamers that specifically target HNE. We determined the specificity of the designed inhibitors and their inhibitory efficacy against HNE using biochemical and in vitro methods, including an assay of neutrophil activity. Our aptamers inhibit the elastinolytic activity of HNE with nanomolar potency and are highly specific for HNE and do not target other tested human proteases. As such, this study provides lead compounds suitable for the evaluation of their tissue-protective potential in animal models.


Subject(s)
Aptamers, Nucleotide , Leukocyte Elastase , Serine Proteinase Inhibitors , Humans , Cystic Fibrosis/drug therapy , Emphysema/drug therapy , Leukocyte Elastase/antagonists & inhibitors , Neutrophils/drug effects , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Aptamers, Nucleotide/chemical synthesis , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/therapeutic use , Sensitivity and Specificity , Enzyme Activation/drug effects , Proteolysis/drug effects , Cells, Cultured
7.
Int J Exp Pathol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164934

ABSTRACT

Matrix metalloproteinase (MMP)-12 has been reported to have diverse functions, including regulation of immune reactions and anti-inflammatory effects, but the potential roles of MMP-12 in kidney injury have not been fully elucidated. This study aimed to determine whether MMP-12 contributes to tubulointerstitial injury in a unilateral ureteric obstruction (UUO) model. MMP-12-deficient (MMP-12-/-) mice and C57BL/6J mice as controls (MMP-12+/+) were subjected to UUO and analysed 7 days after UUO. To analyse the functions of MMP-12 on monocytes/macrophages, we generated MMP-12-deficient, irradiated, chimeric mice (BM-MMP-12-/-) and performed UUO. Bone marrow-derived macrophages (BMDMs) were isolated from both groups of mice and used for investigations. MMP-12-/- mice showed exacerbation of macrophage accumulation and interstitial fibrosis in the UUO-kidney compared with control mice. BM-MMP-12-/- mice also showed exacerbation of kidney injury. UUO induced accumulation of Ly6C+ macrophages in MMP-12-/- mice compared with control mice. Increases in inflammatory cytokine (tumour necrosis factor α, interleukin [IL]-1ß, IL-6) levels from BMDMs after lipopolysaccharide stimulation were higher in MMP-12-/- mice than in MMP-12+/+ mice. MMP-12 may play protective roles against kidney injury by UUO in mice, decreasing inflammatory cytokines from BMDMs and macrophage accumulation.

8.
J Autoimmun ; 146: 103229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653165

ABSTRACT

Primary sclerosing cholangitis (PSC) is an (auto)immune-mediated cholestatic liver disease with a yet unclear etiology. Increasing evidence points to an involvement of neutrophils in chronic liver inflammation and cirrhosis but also liver repair. Here, we investigate the role of the neutrophil extracellular trap (NET) component myeloperoxidase (MPO) and the therapeutic potential of DNase I and of neutrophil elastase (NE) inhibitor GW311616A on disease outcome in the multidrug resistance 2 knockout (Mdr2-/-) mouse, a PSC animal model. Initially, we observed the recruitment of MPO expressing cells and the formation of NETs in liver biopsies of PSC patients and in Mdr2-/- livers. Furthermore, sera of Mdr2-/- mice contained perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA)-like reactivity similar to PSC patient sera. Also, hepatic NE activity was significantly higher in Mdr2-/- mice than in wild type littermates. Flow cytometry analyses revealed that during disease development a highly active neutrophil subpopulation established specifically in the liver of Mdr2-/- mice. However, absence of their MPO activity, as in MPO-deficient Mdr2-/- mice, showed no effect on hepatobiliary disease severity. In contrast, clearance of extracellular DNA by DNase I reduced the frequency of liver-resident neutrophils, plasmacytoid dendritic cells (pDCs) and CD103+ conventional DCs and decreased cholangiocyte injury. Combination of DNase I with a pDC-depleting antibody was additionally hepatocyte-protective. Most importantly, GW311616A, an orally bioavailable inhibitor of human NE, attenuated hepatobiliary injury in a TNFα-dependent manner and damped hyperproliferation of biliary epithelial cells. Further, hepatic immigration and activity of CD11b+ DCs as well as the secretion of IFNγ by hepatic CD4 and CD8 T cells were reduced. Our findings delineate neutrophils as important participants in the immune cell crosstalk that drives cholestatic liver disease and identify NET components as potential therapeutic targets.


Subject(s)
ATP-Binding Cassette Sub-Family B Member 4 , Cholangitis, Sclerosing , Disease Models, Animal , Extracellular Traps , Mice, Knockout , Neutrophils , Animals , Extracellular Traps/immunology , Extracellular Traps/metabolism , Mice , Humans , Cholangitis, Sclerosing/immunology , Neutrophils/immunology , Neutrophils/metabolism , Cholestasis/immunology , Cholestasis/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/deficiency , ATP Binding Cassette Transporter, Subfamily B/metabolism , Liver/pathology , Liver/immunology , Liver/metabolism , Peroxidase/metabolism , Peroxidase/immunology , Deoxyribonuclease I/metabolism , Leukocyte Elastase/metabolism , Leukocyte Elastase/antagonists & inhibitors , Male , Female
9.
Microvasc Res ; 154: 104682, 2024 07.
Article in English | MEDLINE | ID: mdl-38521153

ABSTRACT

Dysfunctional pericytes and disruption of adherens or tight junctions are related to many microvascular diseases, including diabetic retinopathy. In this context, visualizing retinal vascular architecture becomes essential for understanding retinal vascular disease pathophysiology. Although flat mounts provide a demonstration of the retinal blood vasculature, they often lack a clear view of microaneurysms and capillary architecture. Trypsin and elastase digestion are the two techniques for isolating retinal vasculatures in rats, mice, and other animal models. Our observations in the present study reveal that trypsin digestion impacts the association between pericytes and endothelial cells. In contrast, elastase digestion effectively preserves these features in the blood vessels. Furthermore, trypsin digestion disrupts endothelial adherens and tight junctions that elastase digestion does not. Therefore, elastase digestion emerges as a superior technique for isolating retinal vessels, which can be utilized to collect reliable and consistent data to comprehend the pathophysiology of disorders involving microvascular structures.


Subject(s)
Mice, Inbred C57BL , Pancreatic Elastase , Pericytes , Retinal Vessels , Trypsin , Animals , Pancreatic Elastase/metabolism , Trypsin/metabolism , Retinal Vessels/metabolism , Retinal Vessels/pathology , Pericytes/metabolism , Pericytes/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Tight Junctions/metabolism , Mice , Male
10.
Reprod Biol Endocrinol ; 22(1): 2, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167145

ABSTRACT

BACKGROUND: Chronic inflammation plays a vital role in the development of gestational diabetes mellitus (GDM). Studies in mouse models show that neutrophil serine proteases (NSPs), neutrophil elastase (NE) and proteinase-3 (PR3) are important drivers of chronic inflammation with consequent metabolic disturbances. This study evaluated the association of NE and PR3 with GDM development and adverse fetal outcomes. METHOD(S): This was a prospective cohort study. Serum PR3 and NE concentration was measured in all enrolled pregnant women in the first and the second trimester to determine the connection between NSPs and GDM and adverse fetal outcomes. Logistic regression, spline regression and linear regression analyses were applied to investigate the association of NE or PR3 with GDM development and adverse fetal outcomes. The concentration of NE and PR3 in placental biopsies was evaluated by semi-quantitative analysis of immunohistochemistry staining. RESULT(S): NE or PR3 concentration in the first trimester, rather than the second, increased more significantly in women with GDM than in those without, regardless of pre-pregnancy body mass index and age. There was a stepwise increase in GDM occurrence as well as comprehensive adverse fetal outcomes across tertiles of NE and PR3. NE and PR3 were positively associated with neutrophil count, pre-pregnancy BMI, plasma glucose level and newborn weight. Logistic regression revealed NE or PR3 to be independent risk factors for the development of GDM and comprehensive adverse fetal outcomes. Spline regression showed a significant increased risk of GDM occurrence and comprehensive adverse fetal outcomes when serum NE concentration exceeded 417.60 ng/mL and a similar result for PR3 and GDM occurrence when the latter exceeded 88.52 ng/mL. Immunohistochemistry data confirmed that enriched NE and PR3 content in placental tissue may have contributed to the development of GDM. CONCLUSION(S): This work demonstrates that excessive first-trimester NE and PR3 increase the risk of GDM development and comprehensive adverse fetal outcomes.


Subject(s)
Diabetes, Gestational , Infant, Newborn , Animals , Mice , Pregnancy , Female , Humans , Diabetes, Gestational/epidemiology , Pregnancy Trimester, First , Myeloblastin , Leukocyte Elastase , Prospective Studies , Placenta , Inflammation/complications , Body Mass Index
11.
Pancreatology ; 24(1): 93-99, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38102054

ABSTRACT

BACKGROUND: The indication for surgical resection of intraductal papillary mucinous neoplasms (IPMNs) is defined by imaging features, such as mural nodules. Although carbohydrate antigen (CA) 19-9 was selected as a parameter for worrisome features, no serum biomarkers were considered when deciding on surgical indications in the latest international consensus guideline. In this study, we assessed whether clinical factors, imaging findings, and serum biomarkers are useful in predicting malignant IPMNs. METHODS: A total of 234 resected IPMN cases in Chiba University Hospital from July 2005 to December 2021 were retrospectively analyzed. RESULTS: Among the 234 patients with resected IPMNs diagnosed by preoperative imaging, 117 were diagnosed with malignant pathologies (high-grade dysplasia and invasive IPMNs) according to the histological classification. In the multivariate analysis, cyst diameter ≥30 mm; p = 0.035), enhancing mural nodules on multidetector computed tomography (≥5 mm; p = 0.018), and high serum elastase-1 (≥230 ng/dl; p = 0.0007) were identified as independent malignant predictors, while CA19-9 was not. Furthermore, based on the receiver operator characteristic curve analyses, elastase-1 was superior to CA19-9 for predicting malignant IPMNs. Additionally, high serum elastase-1 levels (≥230 ng/dl; p = 0.0093) were identified as independent predictors of malignant IPMNs in patients without mural nodules on multidetector computed tomography (MDCT) in multivariate analysis. CONCLUSION: The serum elastase-1 level was found to be a potentially useful biomarker for predicting malignant IPMNs.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Retrospective Studies , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreas/pathology , Biomarkers , Pancreatic Elastase
12.
Pulm Pharmacol Ther ; 84: 102283, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38141851

ABSTRACT

BACKGROUND: High dose N acetylcysteine (NAC), a mucolytic, anti-inflammatory and antioxidant agent has been shown to significantly reduce exacerbations, and improve quality of life in placebo controlled, double blind randomised (RCT) studies in patients with COPD, and in an open, randomised study in bronchiectasis. In this pilot, randomised, double-blind, placebo-controlled study, we wished to investigate the feasibility of a larger clinical trial, and the anti-inflammatory and clinical benefits of high dose NAC in bronchiectasis. AIMS: Primary outcome: to assess the efficacy of NAC 2400 mg/day at 6 weeks on sputum neutrophil elastase (NE), a surrogate marker for exacerbations. Secondary aims included assessing the efficacy of NAC on sputum MUC5B, IL-8, lung function, quality of life, and adverse effects. METHODS: Participants were randomised to receive 2400 mg or placebo for 6 weeks. They underwent 3 visits: at baseline, week 3 and week 6 where clinical and sputum measurements were assessed. RESULTS: The study was stopped early due to the COVID pandemic. In total 24/30 patients were recruited, of which 17 completed all aspects of the study. Given this, a per protocol analysis was undertaken: NAC (n = 9) vs placebo (n = 8): mean age 72 vs 62 years; male gender: 44% vs 50%; baseline median FEV11.56 L (mean 71.5 % predicted) vs 2.29L (mean 82.2% predicted). At 6 weeks, sputum NE fell by 47% in the NAC group relative to placebo (mean fold difference (95%CI: 0.53 (0.12,2.42); MUC5B increased by 48% with NAC compared with placebo. Lung function, FVC improved significantly with NAC compared with placebo at 6 weeks (mean fold difference (95%CI): 1.10 (1.00, 1.20), p = 0.045. Bronchiectasis Quality of life measures within the respiratory and social functioning domains demonstrated clinically meaningful improvements, with social functioning reaching statistical significance. Adverse effects were similar in both groups. CONCLUSION: High dose NAC exhibits anti-inflammatory benefits, and improvements in aspects of quality of life and lung function measures. It is safe and well tolerated. Further larger placebo controlled RCT's are now warranted examining its role in reducing exacerbations.


Subject(s)
Acetylcysteine , Bronchiectasis , Adult , Humans , Male , Aged , Acetylcysteine/adverse effects , Quality of Life , Pilot Projects , Bronchiectasis/drug therapy , Inflammation/drug therapy , Anti-Inflammatory Agents/adverse effects , Double-Blind Method
13.
Arterioscler Thromb Vasc Biol ; 43(10): 1900-1920, 2023 10.
Article in English | MEDLINE | ID: mdl-37589142

ABSTRACT

BACKGROUND: Thoracic aortic dissection (TAD) is a life-threatening aortic disease without effective medical treatment. Increasing evidence has suggested a role for NE (neutrophil elastase) in vascular diseases. In this study, we aimed at investigating a causal role for NE in TAD and exploring the molecular mechanisms involved. METHODS: ß-aminopropionitrile monofumarate was administrated in mice to induce TAD. NE deficiency mice, pharmacological inhibitor GW311616A, and adeno-associated virus-2-mediated in vivo gene transfer were applied to explore a causal role for NE and associated target gene in TAD formation. Multiple functional assays and biochemical analyses were conducted to unravel the underlying cellular and molecular mechanisms of NE in TAD. RESULTS: NE aortic gene expression and plasma activity was significantly increased during ß-aminopropionitrile monofumarate-induced TAD and in patients with acute TAD. NE deficiency prevents ß-aminopropionitrile monofumarate-induced TAD onset/development, and GW311616A administration ameliorated TAD formation/progression. Decreased levels of neutrophil extracellular traps, inflammatory cells, and MMP (matrix metalloproteinase)-2/9 were observed in NE-deficient mice. TBL1x (F-box-like/WD repeat-containing protein TBL1x) has been identified as a novel substrate and functional downstream target of NE in TAD. Loss-of-function studies revealed that NE mediated inflammatory cell transendothelial migration by modulating TBL1x-LTA4H (leukotriene A4 hydrolase) signaling and that NE regulated smooth muscle cell phenotype modulation under TAD pathological condition by regulating TBL1x-MECP2 (methyl CpG-binding protein 2) signal axis. Further mechanistic studies showed that TBL1x inhibition decreased the binding of TBL1x and HDAC3 (histone deacetylase 3) to MECP2 and LTA4H gene promoters, respectively. Finally, adeno-associated virus-2-mediated Tbl1x gene knockdown in aortic smooth muscle cells confirmed a regulatory role for TBL1x in NE-mediated TAD formation. CONCLUSIONS: We unravel a critical role of NE and its target TBL1x in regulating inflammatory cell migration and smooth muscle cell phenotype modulation in the context of TAD. Our findings suggest that the NE-TBL1x signal axis represents a valuable therapeutic for treating high-risk TAD patients.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Dissection, Thoracic Aorta , Animals , Humans , Mice , Aminopropionitrile/toxicity , Aortic Aneurysm, Thoracic/chemically induced , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Aortic Dissection/chemically induced , Aortic Dissection/genetics , Leukocyte Elastase/genetics , Leukocyte Elastase/adverse effects
14.
Bioorg Med Chem Lett ; 97: 129544, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37939864

ABSTRACT

Human neutrophil elastase (HNE) overexpression has a crucial role in most acute inflammation and alpha1-antitrypsin deficiency syndromes observed in humans, triggering neutrophil invasion and activation of macrophage inflammatory and proteolytic effects, leading to tissue damage. Manipulating HNE level homeostasis could potentially help treat neutrophilic inflammation. Previous studies have shown that sirtinol (1) has a specific influence on HNE and potently attenuates acute lung injury and hepatic injury mediated by lipopolysaccharide or trauma hemorrhage. Therefore, 1 was chosen as the model structure to obtain more potent anti-HNE agents. In the present study, we synthesized a series of sirtinol analogues and determined their inhibitory effects on HNE. Structure-activity relationship (SAR) studies showed that swapping the imine and methyl groups of the sirtinol scaffold with diazene and carboxyl groups, respectively, enhances the HNE inhibiting potency. Compound 29 exhibited the highest potency in the SAR study and showed dual inhibitory effects on HNE and proteinase 3 with IC50 values of 4.91 and 20.69 µM, respectively. Furthermore, 29 was confirmed to have dual impacts on inhibiting O2•- generation and elastase release in cell-based assays with IC50 values of 0.90 and 1.86 µM, respectively. These findings suggest that 29 is a promising candidate for developing HNE inhibitors in the treatment of neutrophilic inflammatory diseases.


Subject(s)
Benzamides , Inflammation , Humans , Structure-Activity Relationship , Proteinase Inhibitory Proteins, Secretory/pharmacology
15.
Neuroradiology ; 66(5): 825-834, 2024 May.
Article in English | MEDLINE | ID: mdl-38438630

ABSTRACT

PURPOSE: The elastase-induced aneurysm (EIA) model in rabbits has been proposed for translational research; however, the adjustment of aneurysm neck size remains challenging. In this study, the technical feasibility and safety of balloon neck-plasty to create a wide-necked aneurysm in rabbit EIA model were investigated. METHODS: Male New Zealand White rabbits (N = 15) were randomly assigned to three groups: group A, EIA creation without neck-plasty; group B, neck-plasty immediately after EIA creation; group C, neck-plasty 4 weeks after EIA creation. The diameter of balloon used for neck-plasty was determined 1 mm larger than origin carotid artery diameter. All rabbits were euthanized 4 weeks after their final surgery. Aneurysm neck, height, dome-to-neck (D/N) ratio, and histologic parameters were compared among the groups. RESULTS: Aneurysm creation was technically successful in 14 out of 15 rabbits (93.3%), with one rabbit experiencing mortality due to an adverse anesthetic event during the surgery. Saccular and wide-necked aneurysms were successfully created in all rabbits. Aneurysm neck was significantly greater in groups B and C compared to group A (all P < .05). D/N ratio was significantly lower in groups B and C compared to group A (all P < .05). Additionally, tunica media thickness, vessel area, and luminal area were significantly greater in groups B and C compared to group A (all P < .05). These variables were found to be significantly greater in group B compared to group C (all P < .05). CONCLUSION: The creation of a wide-necked aneurysm using balloon neck-plasty after elastase induction in rabbits has been determined to be technically feasible and safe.


Subject(s)
Intracranial Aneurysm , Male , Rabbits , Animals , Intracranial Aneurysm/pathology , Pancreatic Elastase/adverse effects , Disease Models, Animal , Carotid Artery, Common
16.
Appl Microbiol Biotechnol ; 108(1): 57, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38180553

ABSTRACT

With the inappropriate use of antibiotics, antibiotic resistance has emerged as a major dilemma for patients infected with Pseudomonas aeruginosa. Elastase B (LasB), a crucial extracellular virulence factor secreted by P. aeruginosa, has been identified as a key target for antivirulence therapy. Quercetin, a natural flavonoid, exhibits promising potential as an antivirulence agent. We aim to evaluate the impact of quercetin on P. aeruginosa LasB and elucidate the underlying mechanism. Molecular docking and molecular dynamics simulation revealed a rather favorable intermolecular interaction between quercetin and LasB. At the sub-MICs of ≤256 µg/ml, quercetin was found to effectively inhibit the production and activity of LasB elastase, as well as downregulate the transcription level of the lasB gene in both PAO1 and clinical strains of P. aeruginosa. Through correlation analysis, significant positive correlations were shown between the virulence gene lasB and the QS system regulatory genes lasI, lasR, rhlI, and rhlR in clinical strains of P. aeruginosa. Then, we found the lasB gene expression and LasB activity were significantly deficient in PAO1 ΔlasI and ΔlasIΔrhlI mutants. In addition, quercetin significantly downregulated the expression levels of regulated genes lasI, lasR, rhlI, rhlR, pqsA, and pqsR as well as effectively attenuated the synthesis of signaling molecules 3-oxo-C12-HSL and C4-HSL in the QS system of PAO1. Quercetin was also able to compete with the natural ligands OdDHL, BHL, and PQS for binding to the receptor proteins LasR, RhlR, and PqsR, respectively, resulting in the formation of more stabilized complexes. Taken together, quercetin exhibits enormous potential in combating LasB production and activity by disrupting the QS system of P. aeruginosa in vitro, thereby offering an alternative approach for the antivirulence therapy of P. aeruginosa infections. KEY POINTS: • Quercetin diminished the content and activity of LasB elastase of P. aeruginosa. • Quercetin inhibited the QS system activity of P. aeruginosa. • Quercetin acted on LasB based on the QS system.


Subject(s)
Pseudomonas aeruginosa , Quercetin , Humans , Quercetin/pharmacology , Virulence , Pseudomonas aeruginosa/genetics , Molecular Docking Simulation , Pancreatic Elastase
17.
Eur J Pediatr ; 183(5): 2333-2342, 2024 May.
Article in English | MEDLINE | ID: mdl-38430280

ABSTRACT

Cystic fibrosis (CF) is a multisystemic disease in which airway obstruction, infection, and inflammation play a critical role in the pathogenesis and progression of CF lung disease. The carbohydrate-binding protein Galectin-3 is increased in several inflammatory and fibrotic diseases and has recently been forwarded as a biomarker in these diseases. We aimed to define the role of serum Galectin-3 in children with CF by comparison with healthy subjects. This is a cross-sectional, case-control study. 143 CF and 30 healthy subjects were enrolled in the study. Peripheral blood and sputum concentrations of Galectins-3, interleukin (IL)-17A, IL-8, and neutrophil elastase (NE) were determined with commercial ELISA kits. There was no significant difference between the groups in age and gender (p = 0.592, p = 0.613, respectively). Serum Galectin-3 and NE concentrations were higher in the patient group than in healthy controls (p = 0.002, p < 0.001, respectively). There were no significant differences between groups according to IL-17A and IL-8 concentrations. Serum Galectin-3 was correlated with age (r = 0.289, p < 0.001) and body mass index (BMI) (r = 0.493, p < 0.001) in children with CF. Sputum Galectin-3 levels are negatively correlated with percent predictive forced expiratory volume in 1 s (FEV1) (r = - 0.297, p = 0.029), FEV1 z-score, (r = - 0.316, p = 0.020), percent predictive forced vital capacity (FVC) (r = - 0.347, p = 0.010), and FVC z-score (r = - 0.373, p = 0.006).   Conclusion: The study shows that serum Galectin-3 levels increased in clinically stable CF patients, and serum Galectin-3 response may depend on age, gender, and BMI. The sputum Galectin-3 was found to be negatively correlated with patients' lung functions. What is known: • Galectin-3 is a key regulator of chronic inflammation in the lung, liver, kidney, and tumor microenvironment. What is new: • Children with cystic fibrosis (CF) have higher serum Galectin-3 concentrations than healthy children. • Serum Galectin-3 expression influenced by age, BMI, and gender in children with CF.


Subject(s)
Biomarkers , Cystic Fibrosis , Galectin 3 , Humans , Cystic Fibrosis/blood , Cystic Fibrosis/physiopathology , Male , Female , Child , Galectin 3/blood , Cross-Sectional Studies , Case-Control Studies , Biomarkers/blood , Adolescent , Sputum/metabolism , Sputum/chemistry , Galectins/blood , Interleukin-17/blood , Child, Preschool , Leukocyte Elastase/blood , Blood Proteins/analysis , Interleukin-8/blood
18.
J Nanobiotechnology ; 22(1): 442, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068444

ABSTRACT

BACKGROUND: PD-1/PD-L1 blockade has become a powerful method to treat malignant tumors. However, a large proportion of patients still do not benefit from this treatment, due to low tumor immunogenicity and low tumor penetration of the agents. Recently, neutrophil elastase has been shown to induce robust tumor immunogenicity, while the insufficient enzyme activity at the tumor site restricted its anti-tumor application. Here, we designed polyethyleneimine-modified neutrophil elastase (PEI-elastase) loaded with PD-L1small interfering RNA (PD-L1 siRNA) for improving enzymatic activity and delivering siRNA to tumor, which was expected to solve the above-mentioned problems. RESULTS: We first demonstrated that PEI-elastase possessed high enzymatic activity, which was also identified as an excellent gene-delivery material. Then, we synthesized anti-tumor lipopolymer (P-E/S Lip) by encapsulating PEI-elastase and PD-L1siRNA with pH-responsive anionic liposomes. The P-E/S Lip could be rapidly cleaved in tumor acidic environment, leading to exposure of the PEI-elastase/PD-L1 siRNA. Consequently, PEI-elastase induced powerful tumor immunogenicity upon direct tumor killing with minimal toxicity to normal cells. In parallel, PEI-elastase delivered PD-L1siRNA into the tumor and reduced PD-L1 expression. Orthotopic tumor administration of P-E/S Lip not only attenuated primary tumor growth, but also produced systemic anti-tumor immune response to inhibit growth of distant tumors and metastasis. Moreover, intravenous administration of P-E/S Lip into mice bearing subcutaneous tumors leaded to an effective inhibition of established B16-F10 tumor and 4T1 tumor, with histological analyses indicating an absence of detectable toxicity. CONCLUSIONS: In our study, a protease-based nanoplatform was used to cooperatively provoke robust tumor immunogenicity and down-regulate PD-L1 expression, which exhibited great potential as a combination therapy for precisely treating solid tumors.


Subject(s)
B7-H1 Antigen , Immunotherapy , Polyethyleneimine , RNA, Small Interfering , Animals , Polyethyleneimine/chemistry , RNA, Small Interfering/chemistry , B7-H1 Antigen/metabolism , Mice , Immunotherapy/methods , Cell Line, Tumor , Female , Humans , Mice, Inbred BALB C , Liposomes/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Mice, Inbred C57BL , Gene Silencing
19.
Cell Mol Life Sci ; 81(1): 6, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087060

ABSTRACT

Lung disease in alpha-1-antitrypsin deficiency (AATD) mainly results from insufficient control of the serine proteases neutrophil elastase (NE) and proteinase-3 due to reduced plasma levels of alpha-1-antitrypsin (AAT) variants. Mutations in the specificity-determining reactive center loop (RCL) of AAT would be predicted to minimally affect protein folding and secretion by hepatocytes but can impair anti-protease activity or alter the target protease. These properly secreted but dysfunctional 'type-2' variants would not be identified by common diagnostic protocols that are predicated on a reduction in circulating AAT. This has potential clinical relevance: in addition to the dysfunctional Pittsburgh and Iners variants reported previously, several uncharacterized RCL variants are present in genome variation databases. To prospectively evaluate the impact of RCL variations on secretion and anti-protease activity, here we performed a systematic screening of amino acid substitutions occurring at the AAT-NE interface. Twenty-three AAT variants that can result from single nucleotide polymorphisms in this region, including 11 present in sequence variation databases, were expressed in a mammalian cell model. All demonstrated unaltered protein folding and secretion. However, when their ability to form stable complexes with NE was evaluated by western blot, enzymatic assays, and a novel ELISA developed to quantify AAT-NE complexes, substrate-like and NE-binding deficient dysfunctional variants were identified. This emphasizes the ability of the RCL to accommodate inactivating substitutions without impacting the integrity of the native molecule and demonstrates that this class of molecule violates a generally accepted paradigm that equates circulating levels with functional protection of lung tissue.


Subject(s)
Lung Diseases , alpha 1-Antitrypsin Deficiency , Humans , alpha 1-Antitrypsin Deficiency/genetics , Mutation/genetics , Lung , Amino Acid Substitution
20.
J Enzyme Inhib Med Chem ; 39(1): 2402988, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39297697

ABSTRACT

Targeting neutrophil function has gained attention as a propitious therapeutic strategy for diverse inflammatory diseases. Accordingly, a series of enone-based derivatives were developed to inhibit neutrophil-mediated inflammation, showing promise for treating inflammatory diseases. These compounds fall into two clusters with distinct effects: one inhibits neutrophilic superoxide (SO) anion production and elastase release triggered by N-formyl-Met-Leu-Phe (fMLF), with compound 6a being most effective (IC50 values of 1.23 and 1.37 µM, respectively), affecting c-Jun N-terminal kinase (JNK) and Akt phosphorylation. The second cluster suppresses formation of SO anion without affecting elastase levels, surpassed by compound 26a (IC50 of 1.56 µM), which attenuates various mitogen-activated protein kinases (MAPKs) with minimal Akt impact. Notably, none of the tested compounds showed cytotoxicity in human neutrophils, underscoring their potential as therapeutic agents against inflammatory diseases.


Subject(s)
Dose-Response Relationship, Drug , Inflammation , Neutrophils , Proto-Oncogene Proteins c-akt , Neutrophils/drug effects , Neutrophils/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Structure-Activity Relationship , Molecular Structure , Inflammation/drug therapy , Inflammation/metabolism , Drug Discovery , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL