Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.908
Filter
Add more filters

Publication year range
1.
Cell ; 181(4): 774-783.e5, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32413298

ABSTRACT

A visual cortical prosthesis (VCP) has long been proposed as a strategy for restoring useful vision to the blind, under the assumption that visual percepts of small spots of light produced with electrical stimulation of visual cortex (phosphenes) will combine into coherent percepts of visual forms, like pixels on a video screen. We tested an alternative strategy in which shapes were traced on the surface of visual cortex by stimulating electrodes in dynamic sequence. In both sighted and blind participants, dynamic stimulation enabled accurate recognition of letter shapes predicted by the brain's spatial map of the visual world. Forms were presented and recognized rapidly by blind participants, up to 86 forms per minute. These findings demonstrate that a brain prosthetic can produce coherent percepts of visual forms.


Subject(s)
Blindness/physiopathology , Vision, Ocular/physiology , Visual Perception/physiology , Adult , Electric Stimulation/methods , Electrodes , Female , Humans , Male , Middle Aged , Phosphenes , Visual Cortex/metabolism , Visual Cortex/physiology , Visual Prosthesis
2.
Cell ; 176(5): 1174-1189.e16, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30686580

ABSTRACT

The specific patterns and functional properties of electrical synapses of a nervous system are defined by the neuron-specific complement of electrical synapse constituents. We systematically examined the molecular composition of the electrical connectome of the nematode C. elegans through a genome- and nervous-system-wide analysis of the expression patterns of the invertebrate electrical synapse constituents, the innexins. We observe highly complex combinatorial expression patterns throughout the nervous system and found that these patterns change in a strikingly neuron-type-specific manner throughout the nervous system when animals enter an insulin-controlled diapause arrest stage under harsh environmental conditions, the dauer stage. By analyzing several individual synapses, we demonstrate that dauer-specific electrical synapse remodeling is responsible for specific aspects of the altered locomotory and chemosensory behavior of dauers. We describe an intersectional gene regulatory mechanism involving terminal selector and FoxO transcription factors mediating dynamic innexin expression plasticity in a neuron-type- and environment-specific manner.


Subject(s)
Caenorhabditis elegans/physiology , Electrical Synapses/metabolism , Neuronal Plasticity/physiology , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Connectome/methods , Gene Expression Regulation, Developmental/genetics , Larva/metabolism , Neurons/metabolism , Signal Transduction , Synapses/metabolism , Transcription Factors/metabolism
3.
Cell ; 169(3): 510-522.e20, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28431249

ABSTRACT

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Subject(s)
Heart Conduction System , Macrophages/physiology , Animals , Connexin 43/metabolism , Female , Heart Atria/cytology , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocytes, Cardiac/physiology
4.
Cell ; 168(1-2): 200-209.e12, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086091

ABSTRACT

Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PAPERCLIP.


Subject(s)
Bacillus subtilis/physiology , Biofilms , Electrophysiological Phenomena , Pseudomonas aeruginosa/physiology , Biofilms/classification , Membrane Potentials , Microfluidic Analytical Techniques , Models, Biological , Potassium/metabolism
5.
Proc Natl Acad Sci U S A ; 121(2): e2304135120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38147542

ABSTRACT

Active hydroponic substrates that stimulate on demand the plant growth have not been demonstrated so far. Here, we developed the eSoil, a low-power bioelectronic growth scaffold that can provide electrical stimulation to the plants' root system and growth environment in hydroponics settings. eSoil's active material is an organic mixed ionic electronic conductor while its main structural component is cellulose, the most abundant biopolymer. We demonstrate that barley seedlings that are widely used for fodder grow within the eSoil with the root system integrated within its porous matrix. Simply by polarizing the eSoil, seedling growth is accelerated resulting in increase of dry weight on average by 50% after 15 d of growth. The effect is evident both on root and shoot development and occurs during the growth period after the stimulation. The stimulated plants reduce and assimilate NO3- more efficiently than controls, a finding that may have implications on minimizing fertilizer use. However, more studies are required to provide a mechanistic understanding of the physical and biological processes involved. eSoil opens the pathway for the development of active hydroponic scaffolds that may increase crop yield in a sustainable manner.


Subject(s)
Biological Phenomena , Seedlings , Seedlings/metabolism , Hydroponics/methods , Plant Roots/metabolism
6.
Proc Natl Acad Sci U S A ; 121(34): e2403000121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39136982

ABSTRACT

Electron transport in complex fluids, biology, and soft matter is a valuable characteristic in processes ranging from redox reactions to electrochemical energy storage. These processes often employ conductor-insulator composites in which electron transport properties are fundamentally linked to the microstructure and dynamics of the conductive phase. While microstructure and dynamics are well recognized as key determinants of the electrical properties, a unified description of their effect has yet to be determined, especially under flowing conditions. In this work, the conductivity and shear viscosity are measured for conductive colloidal suspensions to build a unified description by exploiting both recent quantification of the effect of flow-induced dynamics on electron transport and well-established relationships between electrical properties, microstructure, and flow. These model suspensions consist of conductive carbon black (CB) particles dispersed in fluids of varying viscosities and dielectric constants. In a stable, well-characterized shear rate regime where all suspensions undergo self-similar agglomerate breakup, competing relationships between conductivity and shear rate were observed. To account for the role of variable agglomerate size, equivalent microstructural states were identified using a dimensionless fluid Mason number, [Formula: see text], which allowed for isolation of the role of dynamics on the flow-induced electron transport rate. At equivalent microstructural states, shear-enhanced particle-particle collisions are found to dominate the electron transport rate. This work rationalizes seemingly contradictory experimental observations in literature concerning the shear-dependent electrical properties of CB suspensions and can be extended to other flowing composite systems.

7.
Proc Natl Acad Sci U S A ; 121(24): e2400639121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38838018

ABSTRACT

Leaf wounding triggers rapid long-range electrical signaling that initiates systemic defense responses to protect the plants from further attack. In Arabidopsis, this process largely depends on clade three GLUTAMATE RECEPTOR-LIKE (GLR) genes GLR3.3 and GLR3.6. In the cellular context, phloem sieve elements and xylem contact cells where GLRs were mostly present are implicated in the signaling events. In spite of that, the spatial requirements of different leaf cell types for leaf-to-leaf signaling remain poorly investigated. In this study, we dissected cell-type-specific long-distance wound signaling mediated by GLR3s and showed that phloem companion cells are critical in shaping the functions of GLR3.3 and GLR3.6 in the signaling pathway. GLR3.3-mediated response is phloem-specific, during which, GLR3.3 has to be renewed from companion cells to allow its function in sieve elements. GLR3.6 functions dually in ectopic phloem companion cells, in addition to xylem contact cells. Furthermore, the action of GLR3.6 in phloem is independent of its paralog GLR3.3 and probably requires synthesis of GLR3.6 from xylem contact cells. Overall, our work highlights that the phloem companion cell is crucial for both GLRs in controlling leaf-to-leaf electrical signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phloem , Plant Leaves , Signal Transduction , Plant Leaves/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Phloem/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Receptors, Glutamate/metabolism , Xylem/metabolism , Gene Expression Regulation, Plant
8.
Proc Natl Acad Sci U S A ; 121(9): e2316580121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377204

ABSTRACT

Achieving high-performance materials with superior mechanical properties and electrical conductivity, especially in large-sized bulk forms, has always been the goal. However, it remains a grand challenge due to the inherent trade-off between these properties. Herein, by employing nanodiamonds as precursors, centimeter-sized diamond/graphene composites were synthesized under moderate pressure and temperature conditions (12 GPa and 1,300 to 1,500 °C), and the composites consisted of ultrafine diamond grains and few-layer graphene domains interconnected through covalently bonded interfaces. The composites exhibit a remarkable electrical conductivity of 2.0 × 104 S m-1 at room temperature, a Vickers hardness of up to ~55.8 GPa, and a toughness of 10.8 to 19.8 MPa m1/2. Theoretical calculations indicate that the transformation energy barrier for the graphitization of diamond surface is lower than that for diamond growth directly from conventional sp2 carbon materials, allowing the synthesis of such diamond composites under mild conditions. The above results pave the way for realizing large-sized diamond-based materials with ultrahigh electrical conductivity and superior mechanical properties simultaneously under moderate synthesis conditions, which will facilitate their large-scale applications in a variety of fields.

9.
Proc Natl Acad Sci U S A ; 121(10): e2309656121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408254

ABSTRACT

Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.


Subject(s)
Deafness , Hearing Loss , Mice , Animals , Hearing Loss/genetics , Hearing Loss/metabolism , Hair Cells, Auditory/physiology , Deafness/genetics , Hair Cells, Auditory, Inner/metabolism , Cadherins/metabolism , Exons/genetics
10.
Proc Natl Acad Sci U S A ; 121(32): e2316021121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39078679

ABSTRACT

For the human brain to operate, populations of neurons across anatomical structures must coordinate their activity within milliseconds. To date, our understanding of such interactions has remained limited. We recorded directly from the hippocampus (HPC), posteromedial cortex (PMC), ventromedial/orbital prefrontal cortex (OFC), and the anterior nuclei of the thalamus (ANT) during two experiments of autobiographical memory processing that are known from decades of neuroimaging work to coactivate these regions. In 31 patients implanted with intracranial electrodes, we found that the presentation of memory retrieval cues elicited a significant increase of low frequency (LF < 6 Hz) activity followed by cross-regional phase coherence of this LF activity before select populations of neurons within each of the four regions increased high-frequency (HF > 70 Hz) activity. The power of HF activity was modulated by memory content, and its onset followed a specific temporal order of ANT→HPC/PMC→OFC. Further, we probed cross-regional causal effective interactions with repeated electrical pulses and found that HPC stimulations cause the greatest increase in LF-phase coherence across all regions, whereas the stimulation of any region caused the greatest LF-phase coherence between that particular region and ANT. These observations support the role of the ANT in gating, and the HPC in synchronizing, the activity of cortical midline structures when humans retrieve self-relevant memories of their past. Our findings offer a fresh perspective, with high temporal fidelity, about the dynamic signaling and underlying causal connections among distant regions when the brain is actively involved in retrieving self-referential memories from the past.


Subject(s)
Memory, Episodic , Humans , Male , Female , Adult , Hippocampus/physiology , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Brain/physiology , Brain/diagnostic imaging , Mental Recall/physiology , Brain Mapping , Middle Aged , Neurons/physiology , Anterior Thalamic Nuclei/physiology
11.
Proc Natl Acad Sci U S A ; 121(31): e2404669121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39047037

ABSTRACT

Highly concentrated aqueous electrolytes (termed water-in-salt electrolytes, WiSEs) at solid-liquid interfaces are ubiquitous in myriad applications including biological signaling, electrosynthesis, and energy storage. This interface, known as the electrical double layer (EDL), has a different structure in WiSEs than in dilute electrolytes. Here, we investigate how divalent salts [zinc bis(trifluoromethylsulfonyl)imide, Zn(TFSI)2], as well as mixtures of mono- and divalent salts [lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) mixed with Zn(TFSI)2], affect the short- and long-range structure of the EDL under confinement using a multimodal combination of scattering, spectroscopy, and surface forces measurements. Raman spectroscopy of bulk electrolytes suggests that the cation is closely associated with the anion regardless of valency. Wide-angle X-ray scattering reveals that all bulk electrolytes form ion clusters; however, the clusters are suppressed with increasing concentration of the divalent ion. To probe the EDL under confinement, we use a Surface Forces Apparatus and demonstrate that the thickness of the adsorbed layer of ions at the interface grows with increasing divalent ion concentration. Multiple interfacial layers form following this adlayer; their thicknesses appear dependent on anion size, rather than cation. Importantly, all electrolytes exhibit very long electrostatic decay lengths that are insensitive to valency. It is likely that in the WiSE regime, electrostatic screening is mediated by the formation of ion clusters rather than individual well-solvated ions. This work contributes to understanding the structure and charge-neutralization mechanism in this class of electrolytes and the interfacial behavior of mixed-electrolyte systems encountered in electrochemistry and biology.

12.
Proc Natl Acad Sci U S A ; 120(33): e2305704120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549277

ABSTRACT

Biocompatible and morphable hydrogels capable of multimode reprogrammable, and adaptive shape changes are potentially useful for diverse biomedical applications. However, existing morphable systems often rely on complicated structural designs involving cumbersome and energy-intensive fabrication processes. Here, we report a simple electric-field-activated protein network migration strategy to reversibly program silk-protein hydrogels with controllable and reprogrammable complex shape transformations. The application of a low electric field enables the convergence of net negatively charged protein cross-linking networks toward the anode (isoelectric point plane) due to the pH gradient generated in the process, facilitating the formation of a gradient network structure and systems suitable for three-dimensional shape change. These tunable protein networks can be reprogrammed or permanently fixed by control of the polymorphic transitions. We show that these morphing hydrogels are capable of conformally interfacing with biological tissues by programming the shape changes and a bimorph structure consisting of aligned carbon nanotube multilayers and the silk hydrogels was assembled to illustrate utility as an implantable bioelectronic device for localized low-voltage electrical stimulation of the sciatic nerve in a rabbit.


Subject(s)
Hydrogels , Silk , Animals , Rabbits , Silk/chemistry , Hydrogels/chemistry , Isoelectric Point , Biocompatible Materials/chemistry
13.
Proc Natl Acad Sci U S A ; 120(36): e2305609120, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37639598

ABSTRACT

An electronic solid with itinerant carriers and localized magnetic moments represents a paradigmatic strongly correlated system. The electrical transport properties associated with the itinerant carriers, as they scatter off these local moments, have been scrutinized across a number of materials. Here, we analyze the transport characteristics associated with ultraclean PdCrO[Formula: see text]-a quasi-two-dimensional material consisting of alternating layers of itinerant Pd-electrons and Mott-insulating CrO[Formula: see text] layers-which shows a pronounced regime of T-linear resistivity over a wide range of intermediate temperatures. By contrasting these observations to the transport properties in a closely related material PdCoO[Formula: see text], where the CoO[Formula: see text] layers are band-insulators, we can rule out the traditional electron-phonon interactions as being responsible for this interesting regime. We propose a previously ignored electron-magneto-elastic interaction between the Pd-electrons, the Cr local moments and an out-of-plane phonon as the main scattering mechanism that leads to the significant enhancement of resistivity and a T-linear regime in PdCrO[Formula: see text] at temperatures far in excess of the magnetic ordering temperature. We suggest a number of future experiments to confirm this picture in PdCrO[Formula: see text] as well as other layered metallic/Mott-insulating materials.

14.
Proc Natl Acad Sci U S A ; 120(1): e2215484119, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36574683

ABSTRACT

We report the discovery of a dodecagonal quasicrystal Mn72.3Si15.6Cr9.7Al1.8Ni0.6-composed of a periodic stacking of atomic planes with quasiperiodic translational order and 12-fold symmetry along the two directions perpendicular to the planes-accidentally formed by an electrical discharge event in an eolian dune in the Sand Hills near Hyannis, Nebraska, United States. The quasicrystal, coexisting with a cubic crystalline phase with composition Mn68.9Si19.9Ni7.6Cr2.2Al1.4, was found in a fulgurite consisting predominantly of fused and melted sand along with traces of melted conductor metal from a nearby downed power line. The fulgurite may have been created by a lightning strike that combined sand with material from downed power line or from electrical discharges from the downed power line alone. Extreme temperatures of at least 1,710 °C were reached, as indicated by the presence of SiO2 glass in the sample. The dodecagonal quasicrystal is an example of a quasicrystal of any kind formed by electrical discharge, suggesting other places to search for quasicrystals on Earth or in space and for synthesizing them in the laboratory.

15.
Proc Natl Acad Sci U S A ; 120(33): e2300036120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549292

ABSTRACT

While the world is rapidly transforming into a superaging society, pharmaceutical approaches to treat sarcopenia have hitherto not been successful due to their insufficient efficacy and failure to specifically target skeletal muscle cells (skMCs). Although electrical stimulation (ES) is emerging as an alternative intervention, its efficacy toward treating sarcopenia remains unexplored. In this study, we demonstrate a silver electroceutical technology with the potential to treat sarcopenia. First, we developed a high-throughput ES screening platform that can simultaneously stimulate 15 independent conditions, while utilizing only a small number of human-derived primary aged/young skMCs (hAskMC/hYskMC). The in vitro screening showed that specific ES conditions induced hypertrophy and rejuvenation in hAskMCs, and the optimal ES frequency in hAskMCs was different from that in hYskMCs. When applied to aged mice in vivo, specific ES conditions improved the prevalence and thickness of Type IIA fibers, along with biomechanical attributes, toward a younger skMC phenotype. This study is expected to pave the way toward an electroceutical treatment for sarcopenia with minimal side effects and help realize personalized bioelectronic medicine.


Subject(s)
Sarcopenia , Animals , Humans , Mice , Muscle Fibers, Skeletal , Muscle, Skeletal/physiology , Phenotype , Sarcopenia/therapy , Silver
16.
Physiology (Bethesda) ; 39(5): 0, 2024 09 01.
Article in English | MEDLINE | ID: mdl-38713091

ABSTRACT

Insulin-like growth factor-1 (IGF-1) signaling has multiple physiological roles in cellular growth, metabolism, and aging. Myocardial hypertrophy, cell death, senescence, fibrosis, and electrical remodeling are hallmarks of various heart diseases and contribute to the progression of heart failure. This review highlights the critical role of IGF-1 and its cognate receptor in cardiac hypertrophy, aging, and remodeling.


Subject(s)
Insulin-Like Growth Factor I , Signal Transduction , Humans , Insulin-Like Growth Factor I/metabolism , Animals , Signal Transduction/physiology , Receptor, IGF Type 1/metabolism , Myocardium/metabolism , Aging/metabolism , Aging/physiology , Heart/physiology , Cardiomegaly/metabolism , Cardiomegaly/physiopathology
17.
Circ Res ; 133(8): 658-673, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37681314

ABSTRACT

BACKGROUND: Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS: Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS: CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS: Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.


Subject(s)
Connexin 43 , Dextrans , Animals , Guinea Pigs , Dextrans/metabolism , Connexin 43/metabolism , Myocytes, Cardiac/metabolism , Sodium/metabolism , Gap Junctions/metabolism , Albumins/metabolism , Mannitol/pharmacology , Mannitol/metabolism , Action Potentials
18.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37950875

ABSTRACT

We recently showed that transcranial alternating current stimulation of the dorsolateral prefrontal cortex modulates spontaneous bursts of muscle sympathetic nerve activity, heart rate, and blood pressure (Sesa-Ashton G, Wong R, McCarthy B, Datta S, Henderson LA, Dawood T, Macefield VG. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cereb Cortex Comm. 2022:3:2tgac017.). Stimulation was delivered between scalp electrodes placed over the nasion and electroencephalogram (EEG) electrode site F3 (left dorsolateral prefrontal cortex) or F4 (right dorsolateral prefrontal cortex), and therefore the current passed within the anatomical locations underlying the left and right ventromedial prefrontal cortices. Accordingly, we tested the hypothesis that stimulation of the left and right ventromedial prefrontal cortices would also modulate muscle sympathetic nerve activity, although we predicted that this would be weaker than that seen during dorsolateral prefrontal cortex stimulation. We further tested whether stimulation of the right ventromedial prefrontal cortices would cause greater modulation of muscle sympathetic nerve activity, than stimulation of the left ventromedial prefrontal cortices. In 11 individuals, muscle sympathetic nerve activity was recorded via microelectrodes inserted into the right common peroneal nerve, together with continuous blood pressure, electrocardiogram, and respiration. Stimulation was achieved using transcranial alternating current stimulation, +2 to -2 mA, 0.08 Hz, 100 cycles, applied between electrodes placed over the nasion, and EEG electrode site FP1, (left ventromedial prefrontal cortices) or FP2 (right ventromedial prefrontal cortices); for comparison, stimulation was also applied over F4 (right dorsolateral prefrontal cortex). Stimulation of all three cortical sites caused partial entrainment of muscle sympathetic nerve activity to the sinusoidal stimulation, together with modulation of blood pressure and heart rate. We found a significant fall in mean blood pressure of ~6 mmHg (P = 0.039) during stimulation of the left ventromedial prefrontal cortices, as compared with stimulation of the right. We have shown, for the first time, that transcranial alternating current stimulation of the ventromedial prefrontal cortices modulates muscle sympathetic nerve activity and blood pressure in awake humans at rest. However, it is unclear if this modulation occurred through the same brain pathways activated during transcranial alternating current stimulation of the dorsolateral prefrontal cortex.


Subject(s)
Prefrontal Cortex , Transcranial Direct Current Stimulation , Humans , Blood Pressure/physiology , Prefrontal Cortex/physiology , Brain , Electric Stimulation , Muscles
19.
Cereb Cortex ; 34(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39245849

ABSTRACT

Definitions of human pain acknowledge at least two dimensions of pain, affective and sensory, described as separable and thus potentially differentially modifiable. Using electroencephalography, we investigated perceptual and neural changes of emotional pain modulation in healthy individuals. Painful electrical stimuli were applied after presentation of priming emotional pictures (negative, neutral, positive) and followed by pain intensity and unpleasantness ratings. We found that perceptual and neural event-related potential responses to painful stimulation were significantly modulated by emotional valence. Specifically, pain unpleasantness but not pain intensity ratings were increased when pain was preceded by negative compared to neutral or positive pictures. Amplitudes of N2 were higher when pain was preceded by neutral compared to negative and positive pictures, and P2 amplitudes were higher for negative compared to neutral and positive pictures. In addition, a hierarchical regression analysis revealed that P2 alone and not N2, predicted pain perception. Finally, source analysis showed the anterior cingulate cortex and the thalamus as main spatial clusters accounting for the neural changes in pain processing. These findings provide evidence for a separation of the sensory and affective dimensions of pain and open new perspectives for mechanisms of pain modulation.


Subject(s)
Electroencephalography , Emotions , Pain , Humans , Male , Female , Emotions/physiology , Pain/psychology , Pain/physiopathology , Young Adult , Adult , Evoked Potentials/physiology , Pain Perception/physiology , Brain/physiology , Electric Stimulation , Photic Stimulation/methods , Pain Measurement , Brain Mapping
20.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38061695

ABSTRACT

Self-related information is crucial in our daily lives, which has led to the proposal that there is a specific brain mechanism for processing it. Neuroimaging studies have consistently demonstrated that the default mode network (DMN) is strongly associated with the representation and processing of self-related information. However, the precise relationship between DMN activity and self-related information, particularly in terms of neural oscillations, remains largely unknown. We electrically stimulated the superior temporal and fusiform areas, using stereo-electroencephalography to investigate neural oscillations associated with elicited self-related auditory hallucinations. Twenty-two instances of auditory hallucinations were recorded and categorized into self-related and other-related conditions. Comparing oscillatory power changes within the DMN between self-related and other-related auditory hallucinations, we discovered that self-related hallucinations are associated with significantly stronger positive power changes in both alpha and gamma bands compared to other-related hallucinations. To ensure the validity of our findings, we conducted controlled analyses for factors of familiarity and clarity, which revealed that the observed effects within the DMN remain independent of these factors. These results underscore the significance of the functional role of the DMN during the processing of self-related auditory hallucinations and shed light on the relationship between self-related perception and neural oscillatory activity.


Subject(s)
Schizophrenia , Humans , Default Mode Network , Hallucinations/complications , Brain , Electric Stimulation , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL