Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(13): 2823-2838.e20, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37236193

ABSTRACT

Mental health profoundly impacts inflammatory responses in the body. This is particularly apparent in inflammatory bowel disease (IBD), in which psychological stress is associated with exacerbated disease flares. Here, we discover a critical role for the enteric nervous system (ENS) in mediating the aggravating effect of chronic stress on intestinal inflammation. We find that chronically elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia that promotes monocyte- and TNF-mediated inflammation via CSF1. Additionally, glucocorticoids cause transcriptional immaturity in enteric neurons, acetylcholine deficiency, and dysmotility via TGF-ß2. We verify the connection between the psychological state, intestinal inflammation, and dysmotility in three cohorts of IBD patients. Together, these findings offer a mechanistic explanation for the impact of the brain on peripheral inflammation, define the ENS as a relay between psychological stress and gut inflammation, and suggest that stress management could serve as a valuable component of IBD care.


Subject(s)
Enteric Nervous System , Inflammatory Bowel Diseases , Humans , Glucocorticoids/pharmacology , Inflammation , Enteric Nervous System/physiology , Stress, Psychological
2.
Physiol Rev ; 103(2): 1487-1564, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36521049

ABSTRACT

Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.


Subject(s)
Enteric Nervous System , Humans , Gastrointestinal Tract , Neurons/physiology , Neuroglia , Signal Transduction/physiology
3.
EMBO Rep ; 24(4): e55789, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36852936

ABSTRACT

Efficient isolation of neurons and glia from the human enteric nervous system (ENS) is challenging because of their rare and fragile nature. Here, we describe a staining panel to enrich ENS cells from the human intestine by fluorescence-activated cell sorting (FACS). We find that CD56/CD90/CD24 co-expression labels ENS cells with higher specificity and resolution than previous methods. Surprisingly, neuronal (CD24, TUBB3) and glial (SOX10) selective markers appear co-expressed by all ENS cells. We demonstrate that this contradictory staining pattern is mainly driven by neuronal fragments, either free or attached to glial cells, which are the most abundant cell types. Live neurons can be enriched by the highest CD24 and CD90 levels. By applying our protocol to isolate ENS cells for single-cell RNA sequencing, we show that these cells can be obtained with high quality, enabling interrogation of the human ENS transcriptome. Taken together, we present a selective FACS protocol that allows enrichment and discrimination of human ENS cells, opening up new avenues to study this complex system in health and disease.


Subject(s)
Enteric Nervous System , Humans , Flow Cytometry , Enteric Nervous System/metabolism , Intestines , Neurons/metabolism , Neuroglia
4.
Glia ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132860

ABSTRACT

Acute gastrointestinal (GI) inflammation induces neuroplasticity that produces long-lasting changes in gut motor function and pain. The endocannabinoid system is an attractive target to correct pain and dysmotility, but how inflammation changes endocannabinoid control over cellular communication in enteric neurocircuits is not understood. Enteric glia modulate gut neurons that control motility and pain and express monoacylglycerol lipase (MAGL) which controls endocannabinoid availability. We used a combination of in situ calcium imaging, chemogenetics, and selective drugs to study how endocannabinoid mechanisms affect glial responses and subsequent enteric neuron activity in health and following colitis in Wnt1Cre;GCaMP5g-tdT;GFAP::hM3Dq mice. Trpv1Cre;GCaMP5gtdT mice were used to study nociceptor sensitivity and Sox10CreERT2;Mgllf/f mice were used to test the role of glial MAGL in visceral pain. The data show that endocannabinoid signaling regulates neuro-glial signaling in gut neurocircuits in a sexually dimorphic manner. Inhibiting MAGL in healthy samples decreased glial responsiveness but this effect was lost in females following colitis and converted to an excitatory effect in males. Manipulating CB1 and CB2 receptors revealed further sex differences amongst neuro-glia signaling that were impacted following inflammation. Inflammation increased gut nociceptor sensitivity in both sexes but only females exhibited visceral hypersensitivity in vivo. Blocking MAGL normalized nociceptor responses in vitro and deleting glial Mgll in vivo rescued visceral hypersensitivity in females. These results show that sex and inflammation impact endocannabinoid mechanisms that regulate intercellular enteric glia-neuron communication. Further, targeting glial MAGL could provide therapeutic benefits for visceral nociception in a sex-dependent manner.

5.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G228-G246, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38147796

ABSTRACT

Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier. Therefore, we hypothesized that the developing EGC network may play an important role in coordinating intestinal barrier repair in neonates. Neonatal and juvenile jejunal mucosa recovering from surgically induced intestinal ischemia was visualized by scanning electron microscopy and the transcriptomic phenotypes were assessed by bulk RNA sequencing. EGC network density and glial activity were examined by Gene Set Enrichment Analysis, three-dimensional (3-D) volume imaging, and Western blot and its function in regulating epithelial restitution was assessed ex vivo in Ussing chamber using the glia-specific inhibitor fluoroacetate (FA), and in vitro by coculture assay. Here we refine and elaborate our translational model, confirming a neonatal phenotype characterized by a complete lack of coordinated reparative signaling in the mucosal microenvironment. Furthermore, we report important evidence that the subepithelial EGC network changes significantly over the early postnatal period and demonstrate that the proximity of a specific functional population of EGC to wounded intestinal epithelium contributes to intestinal barrier restitution following ischemic injury.NEW & NOTEWORTHY This study refines a powerful translational pig model, defining an age-dependent relationship between enteric glia and the intestinal epithelium during intestinal ischemic injury and confirming an important role for enteric glial cell (EGC) activity in driving mucosal barrier restitution. This study suggests that targeting the enteric glial network could lead to novel interventions to improve recovery from intestinal injury in neonatal patients.


Subject(s)
Intestine, Small , Neuroglia , Humans , Animals , Infant, Newborn , Swine , Neuroglia/physiology , Intestines , Intestinal Mucosa , Jejunum , Ischemia
6.
J Neurosci ; 42(46): 8694-8708, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36319118

ABSTRACT

Enteric glia are a unique population of peripheral neuroglia that regulate homeostasis in the enteric nervous system (ENS) and intestinal functions. Despite existing in functionally diverse regions of the gastrointestinal tract, enteric glia have been approached scientifically as a homogeneous group of cells. This assumption is at odds with the functional specializations of gastrointestinal organs and recent data suggesting glial heterogeneity in the brain and ENS. Here, we used calcium imaging in transgenic mice of both sexes expressing genetically encoded calcium sensors in enteric glia and conducted contractility studies to investigate functional diversity among myenteric glia in two functionally distinct intestinal organs: the duodenum and the colon. Our data show that myenteric glia exhibit regionally distinct responses to neuromodulators that require intercellular communication with neurons to differing extents in the duodenum and colon. Glia regulate intestinal contractility in a region-specific and pathway-specific manner, which suggests regionally diverse engagement of enteric glia in local motor patterns through discrete signaling pathways. Further, functional response profiles delineate four unique subpopulations among myenteric glia that are differentially distributed between the colon and duodenum. Our findings support the conclusion that myenteric glia exhibit both intraregional and interregional heterogeneity that contributes to region-specific mechanisms that regulate digestive functions. Glial heterogeneity adds an unexpected layer of complexity in peripheral neurocircuits, and understanding the specific functions of specialized glial subtypes will provide new insight into ENS physiology and pathophysiology.SIGNIFICANCE STATEMENT Enteric glia modulate gastrointestinal functions through intercellular communication with enteric neurons. Whether heterogeneity exists among neuron-glia interactions in the digestive tract is not understood. Here, we show that myenteric glia display regional heterogeneity in their responses to neuromodulators in the duodenum and the colon, which are functionally distinct organs. Glial-mediated control of intestinal motility is region and pathway specific. Four myenteric glial subtypes are present within a given gut region that are differently distributed between gut regions. These data provide functional and regional insights into enteric circuit specificity in the adult enteric nervous system.


Subject(s)
Calcium , Enteric Nervous System , Male , Female , Mice , Animals , Calcium/metabolism , Neuroglia/metabolism , Enteric Nervous System/metabolism , Colon/physiology , Duodenum/metabolism , Neurotransmitter Agents/metabolism , Mice, Transgenic , Myenteric Plexus/metabolism
7.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G196-G206, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36625480

ABSTRACT

The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI functions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential disease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this review, we further outline implications for human disease and highlight research innovations that can lead the field forward.


Subject(s)
Enteric Nervous System , Gastrointestinal Microbiome , Microbiota , Humans , Mice , Animals , Zebrafish , Enteric Nervous System/physiology , Gastrointestinal Tract , Gastrointestinal Microbiome/physiology
8.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G93-G108, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37253656

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been demonstrated to affect several systems of the human body, including the gastrointestinal and nervous systems. The enteric nervous system (ENS) is a division of the autonomic nervous system that extends throughout the gut, regulates gastrointestinal function, and is therefore involved in most gut dysfunctions, including those resulting from many viral infections. Growing evidence highlights enteric neural cells and microbiota as important players in gut inflammation and dysfunction. Furthermore, the ENS and gastrointestinal immune system work together establishing relevant neuroimmune interactions during both health and disease. In recent years, gut-driven processes have also been implicated as players in systemic inflammation and in the initiation and propagation of several central nervous system pathologies, which seem to be hallmarks of COVID-19. In this review, we aim to describe evidence of the gastrointestinal and ENS infection with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss here viral-induced mechanisms, neuroplasticity, and neuroinflammation to call attention to the enteric neuroglial network as a nervous system with a sensitive and crucial position to be not only a target of the new coronavirus but also a way in and trigger of COVID-19-related symptoms.


Subject(s)
COVID-19 , Enteric Nervous System , Humans , SARS-CoV-2 , Enteric Nervous System/physiology , Gastrointestinal Tract/physiology , Inflammation
9.
Am J Physiol Gastrointest Liver Physiol ; 324(2): G115-G130, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36511517

ABSTRACT

Proteolipid protein 1 (Plp1) is highly expressed in enteric glia, labeling cells throughout the mucosa, muscularis, and the extrinsic innervation. Plp1 is a major constituent of myelin in the central and peripheral nervous systems, but the absence of myelin in the enteric nervous system (ENS) suggests another role for Plp1 in the gut. Although the functions of enteric glia are still being established, there is strong evidence that they regulate intestinal motility and permeability. To interrogate the role of Plp1 in enteric glia, we investigated gut motility, secretomotor function and permeability, and evaluated the ENS in mice lacking Plp1. We studied two time points: ∼3 mo (young) and >1 yr (old). Old Plp1 null mice exhibited increased fecal output, decreased fecal water content, faster whole gut transit times, reduced intestinal permeability, and faster colonic migrating motor complexes. Interestingly, in both young and old mice, the ENS exhibited normal glial and neuronal numbers as well as glial arborization density in the absence of Plp1. As Plp1-associated functions involve mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Mapk/Erk1/2) signaling and Mapk/Erk1/2 are reported to have a regulatory role in intestinal motility, we measured protein expression of Erk1/2 and its active form in the small intestine. Old Plp1 null mice had reduced levels of phosphorylated-Erk1/2. Although Plp1 is not required for the normal appearance of enteric glial cells, it has a regulatory role in intestinal motility and barrier function. Our results suggest that functional changes mediated by Plp1-expressing enteric glia may involve Erk1/2 activation.NEW & NOTEWORTHY Here, we describe that Plp1 regulates gut motility and barrier function. The functional effects of Plp1 eradication are only seen in old mice, not young. The effects of Plp1 appear to be mediated through the Erk1/2 pathway.


Subject(s)
Gastrointestinal Motility , Intestinal Mucosa , Myelin Proteolipid Protein , Animals , Mice , Enteric Nervous System/physiology , Gastrointestinal Motility/physiology , Mice, Knockout , Neuroglia/metabolism , Neurons/metabolism , Proteolipids/metabolism , Proteolipids/pharmacology , Myelin Proteolipid Protein/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology
10.
J Neuroinflammation ; 20(1): 255, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941007

ABSTRACT

BACKGROUND: Enteric glia contribute to the pathophysiology of various intestinal immune-driven diseases, such as postoperative ileus (POI), a motility disorder and common complication after abdominal surgery. Enteric gliosis of the intestinal muscularis externa (ME) has been identified as part of POI development. However, the glia-restricted responses and activation mechanisms are poorly understood. The sympathetic nervous system becomes rapidly activated by abdominal surgery. It modulates intestinal immunity, innervates all intestinal layers, and directly interfaces with enteric glia. We hypothesized that sympathetic innervation controls enteric glia reactivity in response to surgical trauma. METHODS: Sox10iCreERT2/Rpl22HA/+ mice were subjected to a mouse model of laparotomy or intestinal manipulation to induce POI. Histological, protein, and transcriptomic analyses were performed to analyze glia-specific responses. Interactions between the sympathetic nervous system and enteric glia were studied in mice chemically depleted of TH+ sympathetic neurons and glial-restricted Sox10iCreERT2/JellyOPfl/+/Rpl22HA/+ mice, allowing optogenetic stimulation of ß-adrenergic downstream signaling and glial-specific transcriptome analyses. A laparotomy model was used to study the effect of sympathetic signaling on enteric glia in the absence of intestinal manipulation. Mechanistic studies included adrenergic receptor expression profiling in vivo and in vitro and adrenergic agonism treatments of primary enteric glial cell cultures to elucidate the role of sympathetic signaling in acute enteric gliosis and POI. RESULTS: With ~ 4000 differentially expressed genes, the most substantial enteric glia response occurs early after intestinal manipulation. During POI, enteric glia switch into a reactive state and continuously shape their microenvironment by releasing inflammatory and migratory factors. Sympathetic denervation reduced the inflammatory response of enteric glia in the early postoperative phase. Optogenetic and pharmacological stimulation of ß-adrenergic downstream signaling triggered enteric glial reactivity. Finally, distinct adrenergic agonists revealed ß-1/2 adrenoceptors as the molecular targets of sympathetic-driven enteric glial reactivity. CONCLUSIONS: Enteric glia act as early responders during post-traumatic intestinal injury and inflammation. Intact sympathetic innervation and active ß-adrenergic receptor signaling in enteric glia is a trigger of the immediate glial postoperative inflammatory response. With immune-activating cues originating from the sympathetic nervous system as early as the initial surgical incision, adrenergic signaling in enteric glia presents a promising target for preventing POI development.


Subject(s)
Enteric Nervous System , Gliosis , Animals , Mice , Adrenergic Agents , Neuroglia , Signal Transduction , Sympathetic Nervous System
11.
Int J Mol Sci ; 24(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37834289

ABSTRACT

The management of abdominal pain in patients affected by inflammatory bowel diseases (IBDs) still represents a problem because of the lack of effective treatments. Acetyl L-carnitine (ALCAR) has proved useful in the treatment of different types of chronic pain with excellent tolerability. The present work aimed at evaluating the anti-hyperalgesic efficacy of ALCAR in a model of persistent visceral pain associated with colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) injection. Two different protocols were applied. In the preventive protocol, ALCAR was administered daily starting 14 days to 24 h before the delivery of DNBS. In the interventive protocol, ALCAR was daily administered starting the same day of DNBS injection, and the treatment was continued for 14 days. In both cases, ALCAR significantly reduced the establishment of visceral hyperalgesia in DNBS-treated animals, though the interventive protocol showed a greater efficacy than the preventive one. The interventive protocol partially reduced colon damage in rats, counteracting enteric glia and spinal astrocyte activation resulting from colitis, as analyzed by immunofluorescence. On the other hand, the preventive protocol effectively protected enteric neurons from the inflammatory insult. These findings suggest the putative usefulness of ALCAR as a food supplement for patients suffering from IBDs.


Subject(s)
Colitis , Visceral Pain , Humans , Rats , Animals , Acetylcarnitine/pharmacology , Acetylcarnitine/therapeutic use , Visceral Pain/drug therapy , Visceral Pain/etiology , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Colitis/chemically induced , Colitis/complications , Colitis/drug therapy , Neuroglia , Central Nervous System
12.
Mol Med ; 28(1): 127, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36303116

ABSTRACT

BACKGROUND: Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS: Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS: In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6,877,002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1ß while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS: The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.


Subject(s)
CD40 Ligand , Sepsis , Humans , Mice , Animals , CD40 Ligand/metabolism , Caco-2 Cells , Occludin/metabolism , S-Nitrosoglutathione/metabolism , RNA, Small Interfering , TNF Receptor-Associated Factor 6/metabolism , Culture Media, Conditioned , Platelet Activation , Sepsis/metabolism , Neuroglia/metabolism , Tight Junction Proteins/metabolism
13.
Mol Med ; 28(1): 137, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36401163

ABSTRACT

BACKGROUND: Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS: Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS: In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6877002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1ß while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS: The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.


Subject(s)
CD40 Ligand , Sepsis , Humans , Mice , Animals , Occludin/metabolism , CD40 Ligand/metabolism , Caco-2 Cells , S-Nitrosoglutathione/metabolism , TNF Receptor-Associated Factor 6/metabolism , RNA, Small Interfering , Culture Media, Conditioned/metabolism , Platelet Activation , Sepsis/metabolism , Neuroglia/metabolism , Tight Junction Proteins/metabolism
14.
Cell Tissue Res ; 389(3): 409-426, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35729372

ABSTRACT

Studied by electron microscopy and morphometry, Auerbach's ganglia comprise nerve cell bodies that occupy ~ 40% of volume; of the neuropil, little over 30% is neural processes (axons, dendrites) and little less than 30% is glia (cell bodies, processes). The amount of surface membrane of neural elements only marginally exceeds that of glia. Glial cells extend laminar processes radially between axons, reaching the ganglion's surface with specialized membrane domains. Nerve cells and glia are tightly associated, eliminating any free space in ganglia. Glia expands maximally its cell membrane with a minimum of cytoplasm, contacting a maximal number of axons, which, with their near-circular profile, have minimal surface for a given volume. Shape of glia is moulded by the neural elements (predominantly concave the first, predominantly convex the second); the glia extends its processes to maximize contact with neural elements. Yet, a majority of axons is not reached by glia and only few are wrapped by it. Despite the large number of cells, the glia is not sufficiently developed to wrap around or just contact many of the neural elements. Mitochondria are markedly fewer in glia than in neurons, indicating a lower metabolic rate. Compactness of ganglia, their near-circular profile, absence of spaces between elements and ability to withstand extensive deformation suggest strong adhesion between the cellular elements, holding them together and keeping them at a fixed distance. Many axonal varicosities, with vesicles and membrane densities, abut on non-specialized areas of glia, suggesting the possibility of neurotransmitters being released outside synaptic sites.


Subject(s)
Myenteric Plexus , Neuroglia , Animals , Axons/metabolism , Ganglia/metabolism , Guinea Pigs , Mitochondria , Myenteric Plexus/metabolism , Neuroglia/metabolism
15.
Cell Mol Neurobiol ; 42(2): 473-481, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33237455

ABSTRACT

Adult neurogenesis has been profusely studied in central nervous system. However, its presence in enteric nervous system remains elusive although it has been recently demonstrated in mice and intimately linked to glial cells. Moreover, primary cilium is an important organelle in central adult neurogenesis. In the present study, we analysed some parallelisms between central and enteric nervous system (ENS) in humans based on ultrastructural and immunohistochemical techniques. Thus, we described the presence of primary cilia in some subtypes of glial cells and Interstitial Cells of Cajal (ICCs) and we performed 3-D reconstructions to better characterise their features. Besides, we studied the expression of several adult neurogenesis-related proteins. Immature neuron markers were found in human ENS, supporting the existence of adult neurogenesis. However, only ICCs showed proliferation markers. Hence, we propose a new paradigm where ICCs would constitute the original neural stem cells which, through asymmetrical cell division, would generate the new-born neurons.


Subject(s)
Cilia , Enteric Nervous System , Animals , Enteric Nervous System/metabolism , Humans , Mice , Neurogenesis/physiology , Neuroglia , Neurons/metabolism
16.
Adv Exp Med Biol ; 1383: 179-190, 2022.
Article in English | MEDLINE | ID: mdl-36587157

ABSTRACT

Peripheral neurons are never found alone and are invariably accompanied by glial cells, with which they are intimately associated in compact, highly deformable structures.Myenteric ganglia of the guinea-pig, examined in situ by electron microscopy, show that in their neuropil (axons and dendrites, and glial cells and processes) the glia constitutes almost half of the volume and almost half of membrane extent.In the glia, the expanse of the cell membrane predominates over that of their cytoplasm, the opposite being the case with the neural elements.The profile of the glial elements is passive and is dictated by the surrounding elements, mainly the axons, and hence it is predominantly concave.The enteric glia is widely developed; however, it is not sufficient to form a full wrapping around all neurons and around all axons (unlike what is found in other autonomic ganglia).Glial processes are radially expanding laminae, irregularly tapering, branching, and penetrating between axons.Some processes have a specialized termination attached to the basal lamina of the ganglion.Mitochondria are markedly more abundant in neural element that in the glia (up to a factor of 2).Many expanded axons, laden with vesicles clustered beneath membrane sites, abut on glial cells and processes, while these show no matching structural specializations.


Subject(s)
Neuroglia , Neurons , Animals , Guinea Pigs , Axons , Intestine, Small
17.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 999-1007, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35880571

ABSTRACT

Gastrointestinal (GI) complications of diabetes mellitus (DM) significantly impact on patients' quality of life. Enteric glial cells (EGC) are the key cell type of enteric nervous system (ENS), which contributes to the destruction of gut homeostasis in DM. Circular RNAs (circRNAs) are a novel type of RNAs abundant in the eukaryotic transcriptome, which form covalently closed continuous loops. In this study, the contribution of circRNAs to EGC damage in DM is investigated. Transcriptome sequencing analysis and functional study show that circVPS13A is significantly down-regulated in hyperglycemia-treated EGC, and circVPS13A overexpression attenuates EGC damage in both in vitro and in vivo DM models. In vitro mechanistic study using dual-luciferase reporter assay, affinity-isolation assay, fluorescence in situ hybridization (FISH) and immunostaining analysis identify that circVPS13A exerts its protective effect by sponging miR-182 and then up-regulates glial cell line-derived neurotrophic factor (GDNF) expression. In addition, in vivo study confirms that the circVPS13A-miR-182-GDNF network regulation can attenuate hyperglycemia-induced EGC damage of duodenum in streptozotocine (STZ)-induced DM mice. The findings of this study may provide novel insights into the protective role of circVPS13A in DM-associated EGC damage and clues for the development of new therapeutic approaches for the prevention of GI complications of DM.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , MicroRNAs , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Glial Cell Line-Derived Neurotrophic Factor/genetics , Hyperglycemia/genetics , Hyperglycemia/metabolism , In Situ Hybridization, Fluorescence , Mice , MicroRNAs/metabolism , Neuroglia , Quality of Life , RNA, Circular/genetics
18.
J Neuroinflammation ; 18(1): 115, 2021 May 16.
Article in English | MEDLINE | ID: mdl-33993886

ABSTRACT

BACKGROUND: Mood and metabolic disorders are interrelated and may share common pathological processes. Autonomic neurons link the brain with the gastrointestinal tract and constitute a likely pathway for peripheral metabolic challenges to affect behaviors controlled by the brain. The activities of neurons along these pathways are regulated by glia, which exhibit phenotypic shifts in response to changes in their microenvironment. How glial changes might contribute to the behavioral effects of consuming a high-fat diet (HFD) is uncertain. Here, we tested the hypothesis that anxiogenic and depressive-like behaviors driven by consuming a HFD involve compromised duodenal barrier integrity and subsequent phenotypic changes to glia and neurons along the gut-brain axis. METHODS: C57Bl/6 male mice were exposed to a standard diet or HFD for 20 weeks. Bodyweight was monitored weekly and correlated with mucosa histological damage and duodenal expression of tight junction proteins ZO-1 and occludin at 0, 6, and 20 weeks. The expression of GFAP, TLR-4, BDNF, and DCX were investigated in duodenal myenteric plexus, nodose ganglia, and dentate gyrus of the hippocampus at the same time points. Dendritic spine number was measured in cultured neurons isolated from duodenal myenteric plexuses and hippocampi at weeks 0, 6, and 20. Depressive and anxiety behaviors were also assessed by tail suspension, forced swimming, and open field tests. RESULTS: HFD mice exhibited duodenal mucosa damage with marked infiltration of immune cells and decreased expression of ZO-1 and occludin that coincided with increasing body weight. Glial expression of GFAP and TLR4 increased in parallel in the duodenal myenteric plexuses, nodose ganglia, and hippocampus in a time-dependent manner. Glial changes were associated with a progressive decrease in BDNF, and DCX expression, fewer neuronal dendritic spines, and anxiogenic/depressive symptoms in HFD-treated mice. Fluorocitrate (FC), a glial metabolic poison, abolished these effects both in the enteric and central nervous systems and prevented behavioral alterations at week 20. CONCLUSIONS: HFD impairs duodenal barrier integrity and produces behavioral changes consistent with depressive and anxiety phenotypes. HFD-driven changes in both peripheral and central nervous systems are glial-dependent, suggesting a potential glial role in the alteration of the gut-brain signaling that occurs during metabolic disorders and psychiatric co-morbidity.


Subject(s)
Brain/metabolism , Brain/pathology , Depression/etiology , Diet, High-Fat/adverse effects , Duodenum/pathology , Mental Disorders/etiology , Neuroglia/metabolism , Animals , Body Weight , Duodenum/metabolism , Male , Mice , Mice, Inbred C57BL , Myenteric Plexus/metabolism , Myenteric Plexus/pathology , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Nodose Ganglion/metabolism , Nodose Ganglion/pathology
19.
FASEB J ; 34(4): 5512-5524, 2020 04.
Article in English | MEDLINE | ID: mdl-32086846

ABSTRACT

The present study was designed to examine the role of enteric glial cells (EGCs) in colonic neuromuscular dysfunctions in a mouse model of high-fat diet (HFD)-induced obesity. C57BL/6J mice were fed with HFD or standard diet (SD) for 1, 2, or 8 weeks. Colonic interleukin (IL)-1ß, IL-6, and malondialdehyde (MDA) levels were measured. Expression of occludin in colonic tissues was examined by western blot. Substance P (SP), S100ß, GFAP, and phosphorylated mitogen-activated protein kinase 1 (pERK) were assessed in whole mount specimens of colonic plexus by immunohistochemistry. Colonic tachykininergic contractions, elicited by electrical stimulation or exogenous SP, were recorded in the presence or absence of fluorocitrate (FC). To mimic exposure to HFD, cultured EGCs were incubated with palmitate (PA) and/or lipopolysaccharide (LPS). SP and IL-1ß levels were assayed in the culture medium by ELISA. HFD mice displayed an increase in colonic IL-1ß and MDA, and a reduction of occludin at week 2. These changes occurred to a greater extent at week 8. In vitro electrically evoked tachykininergic contractions were enhanced in HFD mice after 2 or 8 weeks, and they were blunted by FC. Colonic IL-6 levels as well as substance P and S100ß density in myenteric ganglia of HFD mice were increased at week 8, but not at week 1 or 2. In cultured EGCs, co-incubation with palmitate plus LPS led to a significant increase in both SP and IL-1ß release. HFD-induced obesity is characterized by a hyperactivation of EGCs and is involved in the development of enteric motor disorders through an increase in tachykininergic activity and release of pro-inflammatory mediators.


Subject(s)
Colonic Diseases/pathology , Diet, High-Fat/adverse effects , Disease Models, Animal , Enteric Nervous System/pathology , Gastrointestinal Motility , Neuroglia/pathology , Obesity/complications , Animals , Colonic Diseases/etiology , Male , Mice , Mice, Inbred C57BL
20.
Neurochem Res ; 46(6): 1410-1422, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33656693

ABSTRACT

Propofol and dexmedetomidine are popular used for sedation in ICU, however, inadequate attention has been paid to their effect on gastrointestinal tract (GIT) motility. Present study aimed to compare the effect of propofol and dexmedetomidine on GIT motility at parallel level of sedation and explore the possible mechanism. Male C57BL/6 mice (8-10 weeks) were randomly divided into control, propofol and dexmedetomidine group. After intraperitoneal injection of propofol or dexmedetomidine, comparable sedative level was confirmed by sedative score, physiological parameters and electroencephalogram (EEG). Different segments of GIT motility in vivo (gastric emptying, small intestine transit, distal colon bead expulsion, stool weight and number of fecal pellets, gastrointestinal transit and whole gut transit time) and colonic migrating motor complexes (CMMCs) pattern in vitro were evaluated. The Ca2+ response of primary enteric glia was examined under the treatment of propofol or dexmedetomidine. There is little difference in physiological parameters and composite permutation entropy index (CPEI) between administration of 50 mg/kg propofol and 40 µg/kg dexmedetomidine, indicated that parallel level of sedation was reached. Data showed that propofol and dexmedetomidine had significantly inhibitory effect on GIT motility while dexmedetomidine was stronger. Also, the amplitude (ΔF/F0) of Ca2+ response in primary enteric glia was attenuated after treated with the sedatives while the effect of dexmedetomidine was greater than propofol. These findings demonstrated that dexmedetomidine caused stronger inhibitory effects on GIT motility in sedative mice, which may involve impaired Ca2+ response in enteric glia. Hence, dexmedetomidine should be carefully applied especially for potential GIT dysmotility patient.


Subject(s)
Calcium/metabolism , Dexmedetomidine/pharmacology , Gastrointestinal Motility/drug effects , Hypnotics and Sedatives/pharmacology , Neuroglia/drug effects , Propofol/pharmacology , Animals , Cells, Cultured , Colon/drug effects , Defecation/drug effects , Gastric Emptying/drug effects , Gastrointestinal Transit/drug effects , Intestine, Small/cytology , Intestine, Small/drug effects , Male , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL