Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.019
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39383862

ABSTRACT

Aberrant expression of repeat RNAs in pancreatic ductal adenocarcinoma (PDAC) mimics viral-like responses with implications on tumor cell state and the response of the surrounding microenvironment. To better understand the relationship of repeat RNAs in human PDAC, we performed spatial molecular imaging at single-cell resolution in 46 primary tumors, revealing correlations of high repeat RNA expression with alterations in epithelial state in PDAC cells and myofibroblast phenotype in cancer-associated fibroblasts (CAFs). This loss of cellular identity is observed with dosing of extracellular vesicles (EVs) and individual repeat RNAs of PDAC and CAF cell culture models pointing to cell-cell intercommunication of these viral-like elements. Differences in PDAC and CAF responses are driven by distinct innate immune signaling through interferon regulatory factor 3 (IRF3). The cell-context-specific viral-like responses to repeat RNAs provide a mechanism for modulation of cellular plasticity in diverse cell types in the PDAC microenvironment.

2.
Cell ; 186(17): 3642-3658.e32, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37437570

ABSTRACT

A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.


Subject(s)
Cytological Techniques , Genetic Techniques , RNA , Animals , Biological Transport , Mammals/metabolism , RNA/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viruses/genetics , Molecular Typing , Sequence Analysis, RNA
3.
Cell ; 186(1): 47-62.e16, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608657

ABSTRACT

Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.


Subject(s)
Ecosystem , Genome, Bacterial , Genome, Bacterial/genetics , Phylogeny , Oceans and Seas , Genomics
4.
Cell ; 184(19): 4981-4995.e14, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34464586

ABSTRACT

Poor tumor infiltration, development of exhaustion, and antigen insufficiency are common mechanisms that limit chimeric antigen receptor (CAR)-T cell efficacy. Delivery of pattern recognition receptor agonists is one strategy to improve immune function; however, targeting these agonists to immune cells is challenging, and off-target signaling in cancer cells can be detrimental. Here, we engineer CAR-T cells to deliver RN7SL1, an endogenous RNA that activates RIG-I/MDA5 signaling. RN7SL1 promotes expansion and effector-memory differentiation of CAR-T cells. Moreover, RN7SL1 is deployed in extracellular vesicles and selectively transferred to immune cells. Unlike other RNA agonists, transferred RN7SL1 restricts myeloid-derived suppressor cell (MDSC) development, decreases TGFB in myeloid cells, and fosters dendritic cell (DC) subsets with costimulatory features. Consequently, endogenous effector-memory and tumor-specific T cells also expand, allowing rejection of solid tumors with CAR antigen loss. Supported by improved endogenous immunity, CAR-T cells can now co-deploy peptide antigens with RN7SL1 to enhance efficacy, even when heterogenous CAR antigen tumors lack adequate neoantigens.


Subject(s)
Immunologic Factors/pharmacology , RNA/pharmacology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , DEAD Box Protein 58/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Immunity/drug effects , Immunocompetence , Immunologic Memory , Immunotherapy , Interferons/metabolism , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Peptides/metabolism , Receptors, Pattern Recognition/metabolism , T-Lymphocytes/drug effects
5.
Cell ; 182(4): 1044-1061.e18, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32795414

ABSTRACT

There is an unmet clinical need for improved tissue and liquid biopsy tools for cancer detection. We investigated the proteomic profile of extracellular vesicles and particles (EVPs) in 426 human samples from tissue explants (TEs), plasma, and other bodily fluids. Among traditional exosome markers, CD9, HSPA8, ALIX, and HSP90AB1 represent pan-EVP markers, while ACTB, MSN, and RAP1B are novel pan-EVP markers. To confirm that EVPs are ideal diagnostic tools, we analyzed proteomes of TE- (n = 151) and plasma-derived (n = 120) EVPs. Comparison of TE EVPs identified proteins (e.g., VCAN, TNC, and THBS2) that distinguish tumors from normal tissues with 90% sensitivity/94% specificity. Machine-learning classification of plasma-derived EVP cargo, including immunoglobulins, revealed 95% sensitivity/90% specificity in detecting cancer. Finally, we defined a panel of tumor-type-specific EVP proteins in TEs and plasma, which can classify tumors of unknown primary origin. Thus, EVP proteins can serve as reliable biomarkers for cancer detection and determining cancer type.


Subject(s)
Biomarkers, Tumor/metabolism , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Animals , Biomarkers, Tumor/blood , Cell Line , HSC70 Heat-Shock Proteins/metabolism , Humans , Machine Learning , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Neoplasms/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics/methods , Sensitivity and Specificity , Tetraspanin 29/metabolism , rap GTP-Binding Proteins/metabolism
6.
Annu Rev Cell Dev Biol ; 37: 171-197, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34270326

ABSTRACT

Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health.


Subject(s)
Extracellular Vesicles , Viruses , Extracellular Vesicles/metabolism , Viruses/genetics
7.
Cell ; 177(2): 446-462.e16, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951671

ABSTRACT

Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile. An interactive web-based application (miRDaR) was developed to help investigators select the optimal exRNA isolation method for their studies. miRDar provides comparative statistics for all expressed miRNAs or a selected subset of miRNAs in the desired biofluid for each exRNA isolation method and returns a ranked list of exRNA isolation methods prioritized by complexity, expression level, and reproducibility. These results will improve reproducibility and stimulate further progress in exRNA biomarker development.


Subject(s)
Cell-Free Nucleic Acids/isolation & purification , Circulating MicroRNA/isolation & purification , RNA/isolation & purification , Adult , Body Fluids/chemistry , Cell Line , Extracellular Vesicles/metabolism , Female , Healthy Volunteers , Humans , Male , MicroRNAs/isolation & purification , MicroRNAs/metabolism , RNA/metabolism , Reproducibility of Results , Sequence Analysis, RNA/methods
8.
Cell ; 177(2): 463-477.e15, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951672

ABSTRACT

To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.


Subject(s)
Cell Communication/physiology , RNA/metabolism , Adult , Body Fluids/chemistry , Cell-Free Nucleic Acids/metabolism , Circulating MicroRNA/metabolism , Extracellular Vesicles/metabolism , Female , Humans , Male , Reproducibility of Results , Sequence Analysis, RNA/methods , Software
9.
Cell ; 177(2): 428-445.e18, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30951670

ABSTRACT

The heterogeneity of small extracellular vesicles and presence of non-vesicular extracellular matter have led to debate about contents and functional properties of exosomes. Here, we employ high-resolution density gradient fractionation and direct immunoaffinity capture to precisely characterize the RNA, DNA, and protein constituents of exosomes and other non-vesicle material. Extracellular RNA, RNA-binding proteins, and other cellular proteins are differentially expressed in exosomes and non-vesicle compartments. Argonaute 1-4, glycolytic enzymes, and cytoskeletal proteins were not detected in exosomes. We identify annexin A1 as a specific marker for microvesicles that are shed directly from the plasma membrane. We further show that small extracellular vesicles are not vehicles of active DNA release. Instead, we propose a new model for active secretion of extracellular DNA through an autophagy- and multivesicular-endosome-dependent but exosome-independent mechanism. This study demonstrates the need for a reassessment of exosome composition and offers a framework for a clearer understanding of extracellular vesicle heterogeneity.


Subject(s)
Exosomes/metabolism , Exosomes/physiology , Annexin A1/metabolism , Argonaute Proteins/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cell-Derived Microparticles/metabolism , DNA/metabolism , Exosomes/chemistry , Extracellular Vesicles , Female , Humans , Lysosomes/metabolism , Male , Proteins/metabolism , RNA/metabolism
10.
Cell ; 176(1-2): 113-126.e15, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30633902

ABSTRACT

Here, we describe a novel pathogenic entity, the activated PMN (polymorphonuclear leukocyte, i.e., neutrophil)-derived exosome. These CD63+/CD66b+ nanovesicles acquire surface-bound neutrophil elastase (NE) during PMN degranulation, NE being oriented in a configuration resistant to α1-antitrypsin (α1AT). These exosomes bind and degrade extracellular matrix (ECM) via the integrin Mac-1 and NE, respectively, causing the hallmarks of chronic obstructive pulmonary disease (COPD). Due to both ECM targeting and α1AT resistance, exosomal NE is far more potent than free NE. Importantly, such PMN-derived exosomes exist in clinical specimens from subjects with COPD but not healthy controls and are capable of transferring a COPD-like phenotype from humans to mice in an NE-driven manner. Similar findings were observed for another neutrophil-driven disease of ECM remodeling (bronchopulmonary dysplasia [BPD]). These findings reveal an unappreciated role for exosomes in the pathogenesis of disorders of ECM homeostasis such as COPD and BPD, providing a critical mechanism for proteolytic damage.


Subject(s)
Exosomes/physiology , Neutrophils/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Cells, Cultured , Extracellular Matrix/metabolism , Female , Humans , Inflammation , Integrins , Leukocyte Elastase/metabolism , Lung/metabolism , Lung/physiopathology , Male , Mice , Mice, Inbred C57BL , Neutrophils/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , alpha 1-Antitrypsin/metabolism
11.
Immunity ; 57(8): 1752-1768, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142276

ABSTRACT

Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections. Natural and engineered EVs exhibit the ability to impact innate and adaptive immunity and are entering clinical trials. EVs are likely a component of an optimally functioning immune system, with the potential to serve as immunotherapeutics. Considering the evolving evidence, it is possible that EVs could be the original primordial organic units that preceded the creation of the first cell.


Subject(s)
Extracellular Vesicles , Humans , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Animals , Immunity, Innate/immunology , Adaptive Immunity/immunology , Antigen Presentation/immunology , Immunity
12.
Cell ; 172(1-2): 262-274.e11, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328915

ABSTRACT

Arc/Arg3.1 is required for synaptic plasticity and cognition, and mutations in this gene are linked to autism and schizophrenia. Arc bears a domain resembling retroviral/retrotransposon Gag-like proteins, which multimerize into a capsid that packages viral RNA. The significance of such a domain in a plasticity molecule is uncertain. Here, we report that the Drosophila Arc1 protein forms capsid-like structures that bind darc1 mRNA in neurons and is loaded into extracellular vesicles that are transferred from motorneurons to muscles. This loading and transfer depends on the darc1-mRNA 3' untranslated region, which contains retrotransposon-like sequences. Disrupting transfer blocks synaptic plasticity, suggesting that transfer of dArc1 complexed with its mRNA is required for this function. Notably, cultured cells also release extracellular vesicles containing the Gag region of the Copia retrotransposon complexed with its own mRNA. Taken together, our results point to a trans-synaptic mRNA transport mechanism involving retrovirus-like capsids and extracellular vesicles.


Subject(s)
Cytoskeletal Proteins/metabolism , Gene Products, gag/genetics , Multivesicular Bodies/metabolism , Nerve Tissue Proteins/metabolism , Presynaptic Terminals/metabolism , RNA, Messenger/metabolism , Animals , Biological Transport , Cells, Cultured , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Products, gag/chemistry , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Neuromuscular Junction/metabolism , Neuronal Plasticity , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Presynaptic Terminals/physiology , Protein Binding , Protein Domains , Retroelements/genetics
13.
Cell ; 168(1-2): 252-263.e14, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28017328

ABSTRACT

Signaling receptors dynamically exit cilia upon activation of signaling pathways such as Hedgehog. Here, we find that when activated G protein-coupled receptors (GPCRs) fail to undergo BBSome-mediated retrieval from cilia back into the cell, these GPCRs concentrate into membranous buds at the tips of cilia before release into extracellular vesicles named ectosomes. Unexpectedly, actin and the actin regulators drebrin and myosin 6 mediate ectosome release from the tip of cilia. Mirroring signal-dependent retrieval, signal-dependent ectocytosis is a selective and effective process that removes activated signaling molecules from cilia. Congruently, ectocytosis compensates for BBSome defects as ectocytic removal of GPR161, a negative regulator of Hedgehog signaling, permits the appropriate transduction of Hedgehog signals in Bbs mutants. Finally, ciliary receptors that lack retrieval determinants such as the anorexigenic GPCR NPY2R undergo signal-dependent ectocytosis in wild-type cells. Our data show that signal-dependent ectocytosis regulates ciliary signaling in physiological and pathological contexts.


Subject(s)
Cilia/metabolism , Extracellular Vesicles/metabolism , Receptors, G-Protein-Coupled/metabolism , Actins/metabolism , Animals , Cell Line , Humans , Kidney/cytology , Kidney/metabolism , Mice , Microscopy, Electron, Scanning , Receptors, Somatostatin/metabolism , Signal Transduction
14.
Cell ; 168(1-2): 264-279.e15, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28086093

ABSTRACT

The life cycle of a primary cilium begins in quiescence and ends prior to mitosis. In quiescent cells, the primary cilium insulates itself from contiguous dynamic membrane processes on the cell surface to function as a stable signaling apparatus. Here, we demonstrate that basal restriction of ciliary structure dynamics is established by the cilia-enriched phosphoinositide 5-phosphatase, Inpp5e. Growth induction displaces ciliary Inpp5e and accumulates phosphatidylinositol 4,5-bisphosphate in distal cilia. This change triggers otherwise-forbidden actin polymerization in primary cilia, which excises cilia tips in a process we call cilia decapitation. While cilia disassembly is traditionally thought to occur solely through resorption, we show that an acute loss of IFT-B through cilia decapitation precedes resorption. Finally, we propose that cilia decapitation induces mitogenic signaling and constitutes a molecular link between the cilia life cycle and cell-division cycle. This newly defined ciliary mechanism may find significance in cell proliferation control during normal development and cancer.


Subject(s)
Cell Cycle , Cilia/metabolism , Actins/metabolism , Animals , Kidney/cytology , Kidney/metabolism , Mice , NIH 3T3 Cells , Phosphatidylinositol 4,5-Diphosphate , Phosphoric Monoester Hydrolases/metabolism , Zinc Finger Protein GLI1/metabolism
15.
Immunity ; 50(3): 738-750.e7, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30770248

ABSTRACT

Systemic immunosuppression greatly affects the chemotherapeutic antitumor effect. Here, we showed that CD19+ extracellular vesicles (EVs) from B cells through CD39 and CD73 vesicle-incorporated proteins hydrolyzed ATP from chemotherapy-treated tumor cells into adenosine, thus impairing CD8+ T cell responses. Serum CD19+ EVs were increased in tumor-bearing mice and patients. Patients with fewer serum CD19+ EVs had a better prognosis after chemotherapy. Upregulated hypoxia-inducible factor-1α (HIF-1α) promoted B cells to release CD19+ EVs by inducing Rab27a mRNA transcription. Rab27a or HIF-1α deficiency in B cells inhibited CD19+ EV production and improved the chemotherapeutic antitumor effect. Silencing of Rab27a in B cells by inactivated Epstein-Barr viruses carrying Rab27a siRNA greatly improved chemotherapeutic efficacy in humanized immunocompromised NOD PrkdcscidIl2rg-/- mice. Thus, decreasing CD19+ EVs holds high potential to improve the chemotherapeutic antitumor effect.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Extracellular Vesicles/immunology , Animals , Antigens, CD19/immunology , Cell Line , Cell Line, Tumor , Female , HEK293 Cells , Herpesvirus 4, Human/immunology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , NIH 3T3 Cells , RNA, Messenger/immunology , Transcription, Genetic/immunology , rab27 GTP-Binding Proteins/immunology
16.
Trends Genet ; 40(9): 797-809, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38845265

ABSTRACT

Extracellular vesicles (EVs), emerging as novel mediators between intercellular communication, encapsulate distinct bioactive cargoes to modulate multiple biological events, such as epigenetic remodeling. In essence, EVs and epigenomic profiles are tightly linked and reciprocally regulated. Epigenetic factors, including histone and DNA modifications, noncoding RNAs, and protein post-translational modifications (PTMs) dynamically regulate EV biogenesis to contribute to EV heterogeneity. Alternatively, EVs actively modify DNA, RNA, and histone profiles in recipient cells by delivering RNA and protein cargoes for downstream epigenetic enzyme regulation. Moreover, EVs display great potential as diagnostic markers and drug-delivery vehicles for therapeutic applications. The combination of parental cell epigenomic modification with single EV characterization would be a promising strategy for EV engineering to enhance the epidrug loading efficacy and accuracy.


Subject(s)
Epigenesis, Genetic , Epigenomics , Extracellular Vesicles , Protein Processing, Post-Translational , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Humans , Epigenomics/methods , Protein Processing, Post-Translational/genetics , Histones/genetics , Histones/metabolism , Animals , Cell Communication/genetics , RNA, Untranslated/genetics
17.
EMBO J ; 42(6): e112096, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36734074

ABSTRACT

Mosquito-borne flaviviruses including Zika virus (ZIKV) represent a public health problem in some parts of the world. Although ZIKV infection is predominantly asymptomatic or associated with mild symptoms, it can lead to neurological complications. ZIKV infection can also cause antibody-dependent enhancement (ADE) of infection with similar viruses, warranting further studies of virion assembly and the function of envelope (E) protein-specific antibodies. Although extracellular vesicles (EVs) from flavivirus-infected cells have been reported to transmit infection, this interpretation is challenged by difficulties in separating EVs from flavivirions due to their similar biochemical composition and biophysical properties. In the present study, a rigorous EV-virion separation method combining sequential ultracentrifugation and affinity capture was developed to study EVs from ZIKV-infected cells. We find that these EVs do not transmit infection, but EVs display abundant E proteins which have an antigenic landscape similar to that of virions carrying E. ZIKV E-coated EVs attenuate antibody-dependent enhancement mediated by ZIKV E-specific and DENV-cross-reactive antibodies in both cell culture and mouse models. We thus report an alternative route for Flavivirus E protein secretion. These results suggest that modulation of E protein release via virions and EVs may present a new approach to regulating flavivirus-host interactions.


Subject(s)
Dengue Virus , Dengue , Extracellular Vesicles , Zika Virus Infection , Zika Virus , Animals , Mice , Zika Virus Infection/prevention & control , Viral Proteins , Antibodies, Neutralizing , Antibodies, Viral , Dengue/prevention & control
18.
EMBO J ; 42(24): e113590, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38073509

ABSTRACT

Cells secrete extracellular vesicles (EVs) and non-vesicular extracellular (nano)particles (NVEPs or ENPs) that may play a role in intercellular communication. Tumor-derived EVs have been proposed to induce immune priming of antigen presenting cells or to be immuno-suppressive agents. We suspect that such disparate functions are due to variable compositions in EV subtypes and ENPs. We aimed to characterize the array of secreted EVs and ENPs of murine tumor cell lines. Unexpectedly, we identified virus-like particles (VLPs) from endogenous murine leukemia virus in preparations of EVs produced by many tumor cells. We established a protocol to separate small EVs from VLPs and ENPs. We compared their protein composition and analyzed their functional interaction with target dendritic cells. ENPs were poorly captured and did not affect dendritic cells. Small EVs specifically induced dendritic cell death. A mixed large/dense EV/VLP preparation was most efficient to induce dendritic cell maturation and antigen presentation. Our results call for systematic re-evaluation of the respective proportions and functions of non-viral EVs and VLPs produced by murine tumors and their contribution to tumor progression.


Subject(s)
Endogenous Retroviruses , Extracellular Vesicles , Neoplasms , Animals , Mice , Extracellular Vesicles/metabolism , Cell Line, Tumor , Cell Differentiation , Dendritic Cells , Neoplasms/metabolism
19.
Proc Natl Acad Sci U S A ; 121(17): e2317402121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635632

ABSTRACT

DNA damage and neurodegenerative disorders are intimately linked but the underlying mechanism remains elusive. Here, we show that persistent DNA lesions in tissue-resident macrophages carrying an XPF-ERCC1 DNA repair defect trigger neuroinflammation and neuronal cell death in mice. We find that microglia accumulate dsDNAs and chromatin fragments in the cytosol, which are sensed thereby stimulating a viral-like immune response in Er1Cx/- and naturally aged murine brain. Cytosolic DNAs are packaged into extracellular vesicles (EVs) that are released from microglia and discharge their dsDNA cargo into IFN-responsive neurons triggering cell death. To remove cytosolic dsDNAs and prevent inflammation, we developed targeting EVs to deliver recombinant DNase I to Er1Cx/- brain microglia in vivo. We show that EV-mediated elimination of cytosolic dsDNAs is sufficient to prevent neuroinflammation, reduce neuronal apoptosis, and delay the onset of neurodegenerative symptoms in Er1Cx/- mice. Together, our findings unveil a causal mechanism leading to neuroinflammation and provide a rationalized therapeutic strategy against age-related neurodegeneration.


Subject(s)
Extracellular Vesicles , Microglia , Mice , Animals , Microglia/metabolism , Neuroinflammatory Diseases , Neurons/pathology , DNA Damage
20.
Proc Natl Acad Sci U S A ; 121(10): e2311321121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408251

ABSTRACT

Since their discovery, extracellular vesicles (EVs) have changed our view on how organisms interact with their extracellular world. EVs are able to traffic a diverse array of molecules across different species and even domains, facilitating numerous functions. In this study, we investigate EV production in Euryarchaeota, using the model organism Haloferax volcanii. We uncover that EVs enclose RNA, with specific transcripts preferentially enriched, including those with regulatory potential, and conclude that EVs can act as an RNA communication system between haloarchaea. We demonstrate the key role of an EV-associated small GTPase for EV formation in H. volcanii that is also present across other diverse evolutionary branches of Archaea. We propose the name, ArvA, for the identified family of archaeal vesiculating GTPases. Additionally, we show that two genes in the same operon with arvA (arvB and arvC) are also involved in EV formation. Both, arvB and arvC, are closely associated with arvA in the majority of other archaea encoding ArvA. Our work demonstrates that small GTPases involved in membrane deformation and vesiculation, ubiquitous in Eukaryotes, are also present in Archaea and are widely distributed across diverse archaeal phyla.


Subject(s)
Euryarchaeota , Extracellular Vesicles , Haloferax volcanii , Monomeric GTP-Binding Proteins , Euryarchaeota/genetics , Archaea/genetics , RNA , Haloferax volcanii/genetics , Extracellular Vesicles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL