Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Development ; 149(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36341494

ABSTRACT

Nymphalid butterfly species often have a different number of eyespots in forewings and hindwings, but how the hindwing identity gene Ultrabithorax (Ubx) drives this asymmetry is not fully understood. We examined a three-gene regulatory network for eyespot development in the hindwings of Bicyclus anynana butterflies and compared it with the same network previously described for forewings. We also examined how Ubx interacts with each of these three eyespot-essential genes. We found similar genetic interactions between the three genes in fore- and hindwings, but we discovered three regulatory differences: Antennapedia (Antp) merely enhances spalt (sal) expression in the eyespot foci in hindwings, but is not essential for sal activation, as in forewings; Ubx upregulates Antp in all hindwing eyespot foci but represses Antp outside these wing regions; and Ubx regulates sal in a wing sector-specific manner, i.e. it activates sal expression only in the sectors that have hindwing-specific eyespots. We propose a model for how the regulatory connections between these four genes evolved to produce wing- and sector-specific variation in eyespot number.


Subject(s)
Butterflies , Animals , Wings, Animal/metabolism , Gene Regulatory Networks , Pigmentation/genetics
2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389682

ABSTRACT

Algae are key contributors to global carbon fixation and form the basis of many food webs. In nature, their growth is often supported or suppressed by microorganisms. The bacterium Pseudomonas protegens Pf-5 arrests the growth of the green unicellular alga Chlamydomonas reinhardtii, deflagellates the alga by the cyclic lipopeptide orfamide A, and alters its morphology [P. Aiyar et al., Nat. Commun. 8, 1756 (2017)]. Using a combination of Raman microspectroscopy, genome mining, and mutational analysis, we discovered a polyyne toxin, protegencin, which is secreted by P. protegens, penetrates the algal cells, and causes destruction of the carotenoids of their primitive visual system, the eyespot. Together with secreted orfamide A, protegencin thus prevents the phototactic behavior of C. reinhardtii A mutant of P. protegens deficient in protegencin production does not affect growth or eyespot carotenoids of C. reinhardtii Protegencin acts in a direct and destructive way by lysing and killing the algal cells. The toxic effect of protegencin is also observed in an eyeless mutant and with the colony-forming Chlorophyte alga Gonium pectorale These data reveal a two-pronged molecular strategy involving a cyclic lipopeptide and a conjugated tetrayne used by bacteria to attack select Chlamydomonad algae. In conjunction with the bloom-forming activity of several chlorophytes and the presence of the protegencin gene cluster in over 50 different Pseudomonas genomes [A. J. Mullins et al., bioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.03.05.433886v1 (Accessed 17 April 2021)], these data are highly relevant to ecological interactions between Chlorophyte algae and Pseudomonadales bacteria.


Subject(s)
Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Chlamydomonas reinhardtii/drug effects , Pseudomonas/metabolism , Carotenoids , Coculture Techniques , Genome, Bacterial
3.
Plant Dis ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37018214

ABSTRACT

Along with barley and wheat, oats (Avena sativa) are cultivated as winter crops in Korea, and the total area for oat cultivation is 103 ha in 2021. From late March to early April 2021, sharp eyespot symptoms on oat (cv. Choyang) leaf sheaths and straws were observed in two commercial fields located in Haenam (N34°38'35.04588/E126°38'31.00668) and Gangjin (N34°38'9.46788/E126°37'19.44984), Jeollanam-do, Korea. The incidence was 5% and 7%, respectively. Small brown spots were irregular circles that began to appear on the lower sheaths, and the spots gradually enlarged in the upper part of the sheaths. The center of each lesion turned whitish-brown with dark brown margins, resulting in a blight of the sheaths. Three plants displaying typical sharp eyespot lesions were collected from each of two individual regions, Haenam and Gangjin. To isolate the causal pathogen, two infected tissues (5  5 mm) from the collected plants were surface-sterilized by treating them with 70% ethanol for 1 min and 1% NaClO for 1 min immediately after being treated with 95% ethanol for 1 min. Subsequently, the samples were rinsed three times with distilled water, dried with sterile filter paper, transferred to 1.5% water agar supplemented with 100 ppm streptomycin, and then incubated in the dark at 25°C. Hyphae emerging from the randomly selected three independent tissues from each location were subcultured on potato dextrose agar (PDA, Sparks, MD 21152, USA), resulting in three independent isolates (HNO-1, HNO-2, HNO-3) from Haenam and three (KJO1-1, KJO1-2, KJO1-3) from Ganjin after single-hypha-tip purification. Colonies on the PDA were pigmented white at first and subsequently changed to light brown after 2 weeks. All collected isolates formed globose and irregular dark brown to black sclerotia on PDA after 2 weeks. Binuclear hyphae were white to dark brown in color, branched at right angles with a septum near the branch, and multinucleate cells, suggesting that these isolates belonged to Ceratobasidium cereale (Boerema et al., 1977; Burpee, 1980; Sharon et al.,2008). For molecular identification, the ITS (GenBank accession nos. MW691851-53 for HNO-1 to HNO-3; MW691857-59 for KJO1-1 to KJO1-3), LSU (OQ397530-35), rpb2 (OQ409878-83), tef1 (OQ409884-89), and atp6 (OQ409890-95) regions of six isolates were amplified using the primer pairs ITS4/5 (White et al., 1990), LROR/LR5 (Vilgalys and Hester, 1990), bRPB2-6F/bRPB2-7.1R (Matheny, 2005; Reeb et al., 2004), TEF1-F/TEF1-R (Litvintseva et al., 2006), and ATP61/ATP62 (Kretzer and Bruns, 1999), respectively. The sequences of ITS region showed 99.7% identity with C. cereale strain WK137-56 (KY379365) and 99.8% with Ceratobasidium sp. AG-D (KP171639). Using the MEGA X program (Kumar et al. 2018), a maximum likelihood phylogenetic analysis based on the concatenated ITS-LSU, rpb2, tef1 and atp6 sequences placed the six isolates within a clade comprising C. cereale (Gónzalez et al.,2016; Ji et al., 2017; Tomioka et al., 2021; Li et al., 2014). Two representative isolate, HNO-1 and KJO1-1, were deposited in the Korean Agriculture Culture Collection (Accession No. KACC 49887 and 410268, respectively). For pathogenicity, the six isolates were cultured on sterilized ray grains at 25°C in the dark for 3 weeks as the inoculum. Five oat (cv. Choyang) seeds were sown per pot containing 80 g of the infected ray grains mixed with 150 g of composite soil and 150 ml of water (Baroker Garden Soil, Seoul Bio Co., LTD). The control was treated with 80 g of the sterilized ray grains mixed with 150 g of composite soil and 150 ml of water. All inoculated and control pots were placed in a 20°C growth chamber with a 12-h photoperiod and 65% humidity. Typical sharp eyespot symptoms were observed on the oat sheath of seedlings three weeks post-inoculation. No symptoms were observed in the control seedlings. The infection assays were repeated thrice, with similar results. The pathogen was successfully re-isolated, and its identity was confirmed via morphological and molecular analyses. In Korea, few etiological studies have been conducted on oats because they are less economical than barley and wheat. Sharp eyespot disease caused by C. cereale has already been reported in barley and wheat (Kim et al., 1991); however, this is the first report of this disease in oats in Korea.

4.
Plant Dis ; 107(8): 2446-2452, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36724097

ABSTRACT

Sharp eyespot, a soil-borne disease of wheat (Triticum aestivum L.), is one of the most devastating diseases and severely affects grain production. The most efficient and economical method of controlling the disease is the utilization of genetic resistance. In this study, the wheat-Psathyrostachys huashanica introgression line H83 processed the enhanced resistance to Rhizoctonia cerealis isolate R0301 than its wheat parent 7182. A resistance locus in the 600 to 800 Mb interval of chromosome 2BL was screened using 244 segregation population F2 plants of H83×Huixianhong with bulked segregant analysis and wheat axiom 660K genotyping array. Furthermore, by using 12 kompetitive allele-specific PCR markers, a major resistance gene, designated as Qse.xn-2BL, was identified in a secondary segregating population with 138 F3:4 lines and initially mapped to a 765.6 to 775.5 Mb interval on chromosome 2BL. Molecular cytology analysis revealed that H83 probably has an alien introgression at the distal of chromosome 2BL, where it overlapped with the mapping target gene. Above all, H83 showed great potential to improve wheat resistance to sharp eyespot and can be expected to improve resistance in wheat breeding.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Disease Resistance/genetics , Poaceae/genetics , Alleles
5.
Plant Dis ; 107(4): 1139-1150, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36190299

ABSTRACT

Wheat sharp eyespot is a serious disease caused by the phytopathogens Rhizoctonia cerealis and R. solani. Some species in the genus Streptomyces have been identified as potential biocontrol agents against phytopathogens. In this investigation, the physiological, biochemical, phylogenetic, and genomic characteristics of strain HU2014 indicate that it is a novel Streptomyces sp. most closely related to Streptomyces albireticuli. Strain HU2014 exhibited strong antifungal activity against R. cerealis G11 and R. solani YL-3. Ultraperformance liquid chromatography-mass spectrometry on the four extracts from the extracellular filtrate of strain HU2014 identified 10 chemical constituents in the Natural Products Atlas with high match levels (more than 90%). In an antifungal efficiency test on wheat sharp eyespot, two extracts significantly reduced the lesion areas on bean leaves infected by R. solani YL-3. The drenching of wheat in pots with spore suspension of strain HU2014 demonstrated a control efficiency of 65.1% against R. cerealis G11 (compared with 66.9% when treated by a 30% hymexazol aqueous solution). Additionally, in vitro and pot experiments demonstrated that strain HU2014 can produce indoleacetic acid, siderophores, extracellular enzymes, and solubilized phosphate, and it can promote plant growth. We conclude that strain HU2014 could be a valuable microbial resource for growth promotion of wheat and biological control of wheat sharp eyespot.


Subject(s)
Rhizoctonia , Streptomyces , Rhizoctonia/physiology , Triticum/microbiology , Antifungal Agents , Phylogeny , Plant Diseases/microbiology , Plant Extracts
6.
Plant Dis ; 107(3): 820-825, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35961017

ABSTRACT

Wheat sharp eyespot (SES), caused by the soilborne pathogen Rhizoctonia cerealis Van der Hoeven (teleomorph: Ceratobasidium cereale), is a common stem disease of wheat globally. The disease caused a severe and extensive epidemic throughout the Willamette Valley of Oregon in 2014 and has remained one of the most important wheat diseases in this region. However, little was known about the genetics of host resistance to this disease. A recombinant inbred line (RIL) population with 257 lines developed from a cross of Einstein × Tubbs was used to study SES resistance of wheat. The phenotyping was conducted at two locations and in 3 years. Genotyping by sequencing was done by using Illumina HiSeq 3000. Low broad-sense heritability across four environments was obtained. The results of analysis of variance demonstrated that disease severity was significantly different among RILs for the data combined over environments and for one of the individual environments. Four SES resistance quantitative trait loci (QTL) were detected, including QSES-1A, QSES-2B, QSES-6A, and QSES-7A, and explained 5.9, 5.9, 8.8, and 8.3%, respectively, of the phenotypic variance. All four QTL overlapped or are in close proximity with one or more plant defense genes, and could lay the foundation for marker-assisted breeding.


Subject(s)
Basidiomycota , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Triticum/genetics , Plant Breeding , Basidiomycota/genetics
7.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902488

ABSTRACT

Sharp eyespot and Fusarium crown rot, mainly caused by soil-borne fungi Rhizoctonia cerealis and Fusarium pseudograminearum, are destructive diseases of major cereal crops including wheat (Triticum aestivum). However, the mechanisms underlying wheat-resistant responses to the two pathogens are largely elusive. In this study, we performed a genome-wide analysis of wall-associated kinase (WAK) family in wheat. As a result, a total of 140 TaWAK (not TaWAKL) candidate genes were identified from the wheat genome, each of which contains an N-terminal signal peptide, a galacturonan binding domain, an EGF-like domain, a calcium binding EGF domain (EGF-Ca), a transmembrane domain, and an intracellular Serine/Threonine protein kinase domain. By analyzing the RNA-sequencing data of wheat inoculated with R. cerealis and F. pseudograminearum, we found that transcript abundance of TaWAK-5D600 (TraesCS5D02G268600) on chromosome 5D was significantly upregulated, and that its upregulated transcript levels in response to both pathogens were higher compared with other TaWAK genes. Importantly, knock-down of TaWAK-5D600 transcript impaired wheat resistance against the fungal pathogens R. cerealis and F. pseudograminearum, and significantly repressed expression of defense-related genes in wheat, TaSERK1, TaMPK3, TaPR1, TaChitinase3, and TaChitinase4. Thus, this study proposes TaWAK-5D600 as a promising gene for improving wheat broad resistance to sharp eyespot and Fusarium crown rot (FCR) in wheat.


Subject(s)
Fusarium , Triticum , Triticum/genetics , Fusarium/genetics , Epidermal Growth Factor/metabolism , Chromosomes , Base Sequence , Plant Diseases/microbiology
8.
J Integr Plant Biol ; 65(7): 1814-1825, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36912577

ABSTRACT

Fusarium crown rot (FCR) and sharp eyespot (SE) are serious soil-borne diseases in wheat and its relatives that have been reported to cause wheat yield losses in many areas. In this study, the expression of a cell wall invertase gene, TaCWI-B1, was identified to be associated with FCR resistance through a combination of bulk segregant RNA sequencing and genome resequencing in a recombinant inbred line population. Two bi-parental populations were developed to further verify TaCWI-B1 association with FCR resistance. Overexpression lines and ethyl methanesulfonate (EMS) mutants revealed TaCWI-B1 positively regulating FCR resistance. Determination of cell wall thickness and components showed that the TaCWI-B1-overexpression lines exhibited considerably increased thickness and pectin and cellulose contents. Furthermore, we found that TaCWI-B1 directly interacted with an alpha-galactosidase (TaGAL). EMS mutants showed that TaGAL negatively modulated FCR resistance. The expression of TaGAL is negatively correlated with TaCWI-B1 levels, thus may reduce mannan degradation in the cell wall, consequently leading to thickening of the cell wall. Additionally, TaCWI-B1-overexpression lines and TaGAL mutants showed higher resistance to SE; however, TaCWI-B1 mutants were more susceptible to SE than controls. This study provides insights into a FCR and SE resistance gene to combat soil-borne diseases in common wheat.


Subject(s)
Fusarium , Triticum , Triticum/genetics , Fusarium/physiology , beta-Fructofuranosidase/genetics , Cell Wall , Plant Diseases/genetics , Disease Resistance/genetics
9.
J Basic Microbiol ; 62(10): 1169-1178, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35778815

ABSTRACT

Light plays a crucial role in photosynthesis, photoperiodism, and photomorphogenesis. Algae have a specialized visual system to perceive the light signal known as eyespot. A typical eyespot is an orange-colored, membranous structure packed with pigmented granules. In algae, the eyespot membrane bears a specialized type of photoreceptors, which shows similarity with animal rhodopsin photoreceptors. This light-sensing receptor is responsible for the photo-mobility response known as phototaxis. In this, light acts as a signal for onset and cascade of downstream signal transduction pathway leading to a conformational change in photoreceptor. This induces the continuous influx of calcium ions through the opening of calcium ion channels leading to membrane depolarization, and beating of flagella which is responsible for phototaxis. Mutational studies have assisted the discovery of eyespot genes, which are involved in eyespot development, assembly, size control, and functioning in Chlamydomonas. These genes belong to photoreceptors (cop1-12, acry, pcry, cry-dash1, cry-dash2, phot, uvr8), eyeless mutants (eye2, eye3), miniature-eyespot mutants (min1, min2), multiple eyespot mutants (mlt1, mlt2). This review discusses the structural biology of eyespots with special reference to Chlamydomonas, molecular insights, related genes, and proteins responsible for its proper functioning.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , Animals , Calcium/metabolism , Calcium Channels/metabolism , Chlamydomonas/genetics , Chlamydomonas/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Light , Rhodopsin/metabolism
10.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897784

ABSTRACT

Dwarfing is important for the production of wheat (Triticumaestivum L.). In model plants, receptor-like kinases have been implicated in signal transduction, immunity, and development. However, functional roles of lectin receptor-like kinases in wheat are poorly understood. In this study, we identified an L-type lectin receptor-like kinase gene in wheat, designated as TaLecRK-IV.1, and revealed its role in plant height. Real time quantitative PCR analyses indicated that TaLecRK-IV.1 transcript level was lower in a dwarf wheat line harboring the Rht-D1b gene compared to its transcript level detected in a taller wheat line CI12633. Importantly, the virus-induced gene silencing results showed that silencing of TaLecRK-IV.1 in the wheat line CI12633 led to dwarf plants. The results of the disease resistance test performed after the gene silencing experiment suggest no significant role of TaLecRK-IV.1 in the resistance reaction of wheat line CI12633 to sharp eyespot. Gene expression analysis revealed that the transcript abundance of TaLecRK-IV.1 was more up-regulated after the exogenous application of gibberellic acid and auxin, two development-related phytohormones, compared to the gene transcript levels detected in the control plants (mock treatment). These findings support the potential implication of TaLecRK-IV.1 in the pathway controlling plant height rather than the disease resistance role, and suggest that TaLecRK-IV.1 may be a positive regulator of plant height through the gibberellic acid and auxin-signaling pathways.


Subject(s)
Disease Resistance , Triticum , Disease Resistance/genetics , Indoleacetic Acids/metabolism , Lectins/metabolism , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Triticum/metabolism
11.
Plant J ; 101(5): 1091-1102, 2020 03.
Article in English | MEDLINE | ID: mdl-31630463

ABSTRACT

Carotenoids are the most universal and most widespread pigments in nature. They have played pivotal roles in the evolution of photosensing mechanisms in microbes and of vision in animals. Several groups of phytoflagellates developed a photoreceptive organelle called the eyespot apparatus (EA) consisting of two separable components: the eyespot, a cluster of carotenoid-rich globules that acts as a reflector device, and actual photoreceptors for photobehaviors. Unlike other algal eyespots, the eyespot of Euglenophyta lacks reflective properties and is generally considered to act as a shading device for the photoreceptor (paraflagellar body, PFB) for major photomovements. However, the function of the eyespot of Euglenophyta has not yet been fully proven. Here, we report that the blocking carotenoid biosynthesis in Euglena gracilis by suppressing the phytoene synthase gene (crtB) caused a defect in eyespot function resulting in a loss of phototaxis. Raman spectroscopy and transmission electron microscopy suggested that EgcrtB-suppressed cells formed eyespot globules but had a defect in the accumulation of carotenoids in those packets. Motion analysis revealed the loss of phototaxis in EgcrtB-suppressed cells: a defect in the initiation of turning movements immediately after a change in light direction, rather than a defect in the termination of cell turning at the appropriate position due to a loss of the shading effect on the PFB. This study revealed that carotenoids are essential for light perception by the EA for the initiation of phototactic movement by E. gracilis, suggesting one possible photosensory role of carotenoids in the EA for the phototaxis.


Subject(s)
Carotenoids/metabolism , Euglena gracilis/physiology , Phototaxis/radiation effects , Euglena gracilis/radiation effects , Euglena gracilis/ultrastructure , Light , Microscopy, Electron, Transmission , Organelles/metabolism , Organelles/ultrastructure
12.
J Phycol ; 57(2): 510-527, 2021 04.
Article in English | MEDLINE | ID: mdl-33150600

ABSTRACT

The gametes of chlorophytes can be divided into two morphological types (types α and ß) based on the position of the mating structure relative to the flagella and eyespot. To elucidate the relationship between the morphological types and the sexes, we studied spatial relationships between the flagellar apparatus-eyespot-mating structures in biflagellate male and female gametes and their fate after fertilization in the anisogamous (Monostroma angicava) and the slightly anisogamous species (Collinsiella cava) using field emission scanning electron microscopy and transmission electron microscopy. The smaller male and larger female gametes of M. angicava had two basal bodies arranged at a 180° angle and the cell surface coated with square-shaped body scales, except for the flagella and mating structures. The mating structure of the female gamete was located on the same side of the flagellar beat plane as the eyespot (type ß), whereas that of the male gamete was located on the opposite side (type α). This mating structure arrangement was also confirmed in C. cava. The initial fusion when male and female gametes were mixed involved the mating structures. In a fusing pair of gametes, each flagellum of one gamete lay alongside one flagellum of the other gamete. As fusion proceeded, the gamete pair transformed into a quadriflagellate planozygote, in which the four basal bodies were arranged in a cruciate pattern. The eyespots were positioned side-by-side on the same side of the cell. These results suggest that the two morphological types of gametes are intimately correlated with the particular sexes.


Subject(s)
Chlorophyta , Kava , Female , Flagella , Germ Cells , Male , Reproduction
13.
Adv Exp Med Biol ; 1293: 21-33, 2021.
Article in English | MEDLINE | ID: mdl-33398805

ABSTRACT

Channelrhodopsins (ChRs) are the light-gated ion channels that have opened the research field of optogenetics. They were originally identified in the green alga Chlamydomonas reinhardtii, a biciliated unicellular alga that inhabits in freshwater, swims with the cilia, and undergoes photosynthesis. It has various advantages as an experimental organism and is used in a wide range of research fields including photosynthesis, cilia, and sexual reproduction. ChRs function as the primary photoreceptor for the cell's photo-behavioral responses, seen as changes in the manner of swimming after photoreception. In this chapter, we will introduce C. reinhardtii as an experimental organism and explain our current understanding of how the cell senses light and shows photo-behavioral responses.


Subject(s)
Channelrhodopsins/metabolism , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/radiation effects , Light , Channelrhodopsins/radiation effects , Chlamydomonas reinhardtii/cytology , Cilia/physiology , Optogenetics/methods , Photosynthesis
14.
Plant Dis ; 105(4): 997-1005, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33200970

ABSTRACT

Wheat sharp eyespot, a disease mainly caused by soilborne fungus Rhizoctonia cerealis, is a threat to world wheat production. Wheat's genetic resistance to sharp eyespot is a potential approach to reducing the application of fungicides and farming practice inputs. To identify the genetic basis of sharp eyespot resistance in Niavt14, a recombinant inbred line population comprising 215 F8 lines from Niavt14 × Xuzhou25, was developed. An earlier linkage map (148 simple sequence repeat markers) was updated with 5,792 polymorphic Affymetrix Axiom 55K single-nucleotide polymorphisms to a new map of 5,684.2 centimorgans with 1,406 nonredundant markers. The new linkage map covered all 21 chromosomes of common wheat and showed a good collinearity with the IWGSC RefSeq v1.0 genome. We conducted quantitative trait locus (QTL) mapping for sharp eyespot resistance using the adult plant response data from the field of five consecutive growing seasons and one greenhouse test. Two stable QTL on chromosomes 2B and 7D that were identified in the previous study were confirmed, and three novel, stable QTL, explaining 4.0 to 17.5% phenotypic variation, were mapped on 1D, 6D, and 7A, which were independent of QTL for phenology and plant height. The QTL on 1D, 2B, 6D, and 7A showed low frequencies in 384 landraces (0 to 10%) and 269 elite cultivars (5 to 23%) from the southern winter wheat region and the Yellow and Huai River Valley facultative wheat region in China, respectively. These identified QTL could be used in wheat breeding programs for improving sharp eyespot resistance through marker-assisted selection.


Subject(s)
Disease Resistance , Triticum , Basidiomycota , China , Disease Resistance/genetics , Dissection , Humans , Plant Breeding , Plant Diseases/genetics , Seasons , Triticum/genetics
15.
BMC Dev Biol ; 20(1): 6, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32234033

ABSTRACT

BACKGROUND: Eyespot color pattern formation on butterfly wings is sensitive to physical damage and physical distortion as well as physical contact with materials on the surface of wing epithelial tissue at the pupal stage. Contact-mediated eyespot color pattern changes may imply a developmental role of the extracellular matrix in morphogenic signal propagation. Here, we examined eyespot responses to various contact materials, focusing on the hindwing posterior eyespots of the blue pansy butterfly, Junonia orithya. RESULTS: Contact with various materials, including both nonbiological and biological materials, induced eyespot enlargement, reduction, or no change in eyespot size, and each material was characterized by a unique response profile. For example, silicone glassine paper almost always induced a considerable reduction, while glass plates most frequently induced enlargement, and plastic plates generally produced no change. The biological materials tested here (fibronectin, polylysine, collagen type I, and gelatin) resulted in various responses, but polylysine induced more cases of enlargement, similar to glass plates. The response profile of the materials was not readily predictable from the chemical composition of the materials but was significantly correlated with the water contact angle (water repellency) of the material surface, suggesting that the surface physical chemistry of materials is a determinant of eyespot size. When the proximal side of a prospective eyespot was covered with a size-reducing material (silicone glassine paper) and the distal side and the organizer were covered with a material that rarely induced size reduction (plastic film), the proximal side of the eyespot was reduced in size in comparison with the distal side, suggesting that signal propagation but not organizer activity was inhibited by silicone glassine paper. CONCLUSIONS: These results suggest that physical contact with an appropriate hydrophobic surface is required for morphogenic signals from organizers to propagate normally. The binding of the apical surface of the epithelium with an opposing surface may provide mechanical support for signal propagation. In addition to conventional molecular morphogens, there is a possibility that mechanical distortion of the epithelium that is propagated mechanically serves as a nonmolecular morphogen to induce subsequent molecular changes, in accordance with the distortion hypothesis for butterfly wing color pattern formation.


Subject(s)
Butterflies/physiology , Animals , Extracellular Matrix/metabolism , Morphogenesis/genetics , Morphogenesis/physiology , Temperature , Wings, Animal/physiology
16.
Plant Dis ; 104(12): 3192-3196, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33079640

ABSTRACT

Screening methodology of wheat genotypes for resistance to sharp eyespot (caused by Rhizoctonia cerealis) was developed. Disease severity differed among cultivars and between field and greenhouse trials. However, the cultivars Bobtail and Rosalyn had consistently lower severity in field experiments with high sharp eyespot disease pressure. Artificial inoculation was crucial to achieving adequate disease levels for effective screening but planting date had very little effect. Greenhouse inoculation of adult wheat plants was much less successful in categorizing resistance to sharp eyespot. Seedling inoculations in the greenhouse were highly inadequate as a screening method. Selection for resistance to sharp eyespot by artificial inoculation in field trials is feasible in wheat breeding programs.


Subject(s)
Plant Diseases , Triticum , Basidiomycota , Genotype , Mass Screening , Triticum/genetics
17.
Plant Dis ; 104(6): 1662-1667, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32324096

ABSTRACT

Sharp eyespot, caused by Rhizoctonia cerealis, has become one of the most severe diseases affecting global wheat production in recent decades. Quick and efficient screening methods are required to accelerate the development of cultivars for sharp eyespot resistance in wheat breeding. Here, a two-step colonized wheat kernels (TSCWK) method for the inoculation and classification of sharp eyespot resistance in seedlings was established in a greenhouse. After preliminary verification of the reliability of the method in two replicates, 196 wheat cultivars were assessed for sharp eyespot resistance, and significant correlations were identified among the four replicates (r = 0.78 to 0.84; P < 0.01). Furthermore, the 196 cultivars were scored for sharp eyespot resistance at the milk-ripe stage using traditional toothpick inoculation in the field. Correlation and linear regression analysis showed that the application of this approach at the seedling stage showed good consistency with the traditional field method. Moreover, the scoring of 442 cultivars using the TSCWK method indicated that most cultivars from the Huanghuai valley were susceptible to R. cerealis, suggesting an urgent need to improve sharp eyespot resistance in this region. Additionally, the relative resistance index of sharp eyespot decreased in the surveyed cultivars of the region with time. This study offers a rapid and effective approach for the identification of wheat sharp eyespot resistance and provides valuable germplasm for improving sharp eyespot resistance in wheat breeding.


Subject(s)
Seedlings , Triticum , Plant Diseases , Reproducibility of Results , Rhizoctonia
18.
Planta ; 249(1): 31-47, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30470898

ABSTRACT

MAIN CONCLUSION: Hypercarotenogenesis in green algae evolved by mutation of PSY that increased its transcription at high light, disintegration of the eyespot in Dunaliella and acquisition of the capacity to export carotenoids from chloroplasts in Haematococcus. Carotenoids (Car) are lipid-soluble pigments synthesized in plants, algae, bacteria and fungi. Car have strong antioxidative properties and as such are utilized to reduce the danger of different diseases in humans. Two green microalgae are utilized as rich natural sources for Car: Dunaliella salina/bardawil accumulates 10% (w/w) ß-carotene (ßC), which is also pro-vitamin A, and Haematococcus pluvialis accumulates 4% (w/w) astaxanthin (Ast), the strongest antioxidant among Car. D. bardawil accumulates ßC in plastoglobules within the chloroplast, whereas H. pluvialis deposits Ast in cytoplasmic lipid droplets (CLD). In this review we compare the hypercarotenogenic responses (HCR) in Dunaliella and in Haematococcus and try to outline hypothetical evolutionary pathways for its origin. We propose that a mutation in phytoene synthetase that increased its transcription level in response to high light stress had a pivotal role in the evolution of the HCR. Proteomic analyses indicated that in D. bardawil/salina the HCR evolved from dissociation and amplification of eyespot lipid globules. The more robust HCR in algae that accumulate carotenoids in CLD, such as H. pluvialis, required also acquisition of the capacity to export ßC out of the chloroplast and its enzymatic conversion into Ast.


Subject(s)
Carotenoids/metabolism , Chlorophyta/metabolism , Lipid Droplets/metabolism , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism
19.
J Plant Res ; 132(3): 431-438, 2019 May.
Article in English | MEDLINE | ID: mdl-30980216

ABSTRACT

Euglena gracilis has an organelle resembling hematochrome, with an appearance similar to the eyespot and the absorption band spectrally overlapped with that of the carotenoid. To discriminate the hematochrome-like granules and eyespot, scan-free, non-invasive, absorbance spectral imaging A(x, y, λ) microscopy of single live cells, where A(x, y, λ) means absorbance at a position (x, y) on a two-dimensional image at a specific wavelength λ was applied. This technique was demonstrated to be a powerful tool for basic research on intracellular structural analysis. By this method, characteristic absorption spectra specific to the hematochrome-like granule or eyespot were identified among a variety of spectra observed depending on the location inside the organelles. The hematochrome-like granule was dark orange and deep green in its outline and had a characteristic absorption peak at 620 nm as well as at 676 to 698 nm, suggesting that its origin is a component of chloroplast including chlorophyll a. Furthermore, the representative spectra of these organelles were derived by principal component analysis of the absorbance and its position in absorbance image, indicating that they can be distinguished from each other and other regions. It was also confirmed that even in areas where these organelles and chloroplasts overlap, one can distinguish them from each other. The present research clarified the absorption spectra of the eyespot with 1 × 1 µm spatial resolution and those unpublished of hematochrome-like granules of E. gracilis, and indicated that one can statistically distinguish these organelles by this method.


Subject(s)
Euglena gracilis/metabolism , Organelles/metabolism , Animals , Euglena gracilis/physiology , Intravital Microscopy , Microspectrophotometry , Organelles/physiology , Photoreceptor Cells/metabolism , Photoreceptor Cells/physiology
20.
Proc Natl Acad Sci U S A ; 113(19): 5299-304, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27122315

ABSTRACT

The biflagellate green alga Chlamydomonas reinhardtii exhibits both positive and negative phototaxis to inhabit areas with proper light conditions. It has been shown that treatment of cells with reactive oxygen species (ROS) reagents biases the phototactic sign to positive, whereas that with ROS scavengers biases it to negative. Taking advantage of this property, we isolated a mutant, lts1-211, which displays a reduction-oxidation (redox) dependent phototactic sign opposite to that of the wild type. This mutant has a single amino acid substitution in phytoene synthase, an enzyme that functions in the carotenoid-biosynthesis pathway. The eyespot contains large amounts of carotenoids and is crucial for phototaxis. Most lts1-211 cells have no detectable eyespot and reduced carotenoid levels. Interestingly, the reversed phototactic-sign phenotype of lts1-211 is shared by other eyespot-less mutants. In addition, we directly showed that the cell body acts as a convex lens. The lens effect of the cell body condenses the light coming from the rear onto the photoreceptor in the absence of carotenoid layers, which can account for the reversed-phototactic-sign phenotype of the mutants. These results suggest that light-shielding property of the eyespot is essential for determination of phototactic sign.


Subject(s)
Carotenoids/physiology , Cell Movement/physiology , Chlamydomonas reinhardtii/physiology , Photoreceptor Cells, Invertebrate/physiology , Phototaxis/physiology , Animals , Carotenoids/radiation effects , Cell Movement/radiation effects , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/radiation effects , Light , Photoreceptor Cells, Invertebrate/radiation effects , Pigmentation/physiology , Pigmentation/radiation effects , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL