Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 300(5): 107291, 2024 May.
Article in English | MEDLINE | ID: mdl-38636661

ABSTRACT

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Subject(s)
Ceramides , Receptors, Adiponectin , Retina , Animals , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Mice , Ceramides/metabolism , Retina/metabolism , Retina/pathology , Mice, Knockout , Fatty Acids, Unsaturated/metabolism , Retinal Pigment Epithelium/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/genetics
2.
J Lipid Res ; 65(7): 100551, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39002195

ABSTRACT

Intestinal disease is one of the earliest manifestations of cystic fibrosis (CF) in children and is closely tied to deficits in growth and nutrition, both of which are directly linked to future mortality. Patients are treated aggressively with pancreatic enzyme replacement therapy and a high-fat diet to circumvent fat malabsorption, but this does not reverse growth and nutritional defects. We hypothesized that defects in chylomicron production could explain why CF body weights and nutrition are so resistant to clinical treatments. We used gold standard intestinal lipid absorption and metabolism approaches, including mouse mesenteric lymph cannulation, in vivo chylomicron secretion kinetics, transmission electron microscopy, small intestinal organoids, and chylomicron metabolism assays to test this hypothesis. In mice expressing the G542X mutation in cystic fibrosis transmembrane conductance regulator (CFTR-/- mice), we find that defective FFA trafficking across the epithelium into enterocytes drives a chylomicron formation defect. Furthermore, G542X mice secrete small, triglyceride-poor chylomicrons into the lymph and blood. These defective chylomicrons are cleared into extraintestinal tissues at ∼10-fold faster than WT chylomicrons. This defect in FFA absorption resulting in dysfunctional chylomicrons cannot be explained by steatorrhea or pancreatic insufficiency and is maintained in primary small intestinal organoids treated with micellar lipids. These studies suggest that the ultrahigh-fat diet that most people with CF are counselled to follow may instead make steatorrhea and malabsorption defects worse by overloading the absorptive capacity of the CF small intestine.


Subject(s)
Chylomicrons , Cystic Fibrosis , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis/genetics , Animals , Chylomicrons/metabolism , Mice , Fatty Acids, Nonesterified/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Exocrine Pancreatic Insufficiency/metabolism , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/pathology , Biological Transport , Humans , Intestinal Mucosa/metabolism
3.
J Lipid Res ; 65(1): 100481, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38008260

ABSTRACT

In addition to its antiatherogenic role, HDL reportedly modulates energy metabolism at the whole-body level. HDL functionality is associated with its structure and composition, and functional activities can differ between HDL subclasses. Therefore, we studied if HDL2 and HDL3, the two major HDL subclasses, are able to modulate energy metabolism of skeletal muscle cells. Differentiated mouse and primary human skeletal muscle myotubes were used to investigate the influences of human HDL2 and HDL3 on glucose and fatty uptake and oxidation. HDL-induced changes in lipid distribution and mRNA expression of genes related to energy substrate metabolism, mitochondrial function, and HDL receptors were studied with human myotubes. Additionally, we examined the effects of apoA-I and discoidal, reconstituted HDL particles on substrate metabolism. In mouse myotubes, HDL subclasses strongly enhanced glycolysis upon high and low glucose concentrations. HDL3 caused a minor increase in ATP-linked respiration upon glucose conditioning but HDL2 improved complex I-mediated mitochondrial respiration upon fatty acid treatment. In human myotubes, glucose metabolism was attenuated but fatty acid uptake and oxidation were markedly increased by both HDL subclasses, which also increased mRNA expression of genes related to fatty acid metabolism and HDL receptors. Finally, both HDL subclasses induced incorporation of oleic acid into different lipid classes. These results, demonstrating that HDL subclasses enhance fatty acid oxidation in human myotubes but improve anaerobic metabolism in mouse myotubes, support the role of HDL as a circulating modulator of energy metabolism. Exact mechanisms and components of HDL causing the change, require further investigation.


Subject(s)
Muscle Fibers, Skeletal , Muscle, Skeletal , Humans , Animals , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Energy Metabolism , Fatty Acids/metabolism , Glucose/metabolism , RNA, Messenger/metabolism
4.
J Lipid Res ; 65(3): 100516, 2024 03.
Article in English | MEDLINE | ID: mdl-38320654

ABSTRACT

The gold-standard diagnostic test for peroxisomal disorders (PDs) is plasma concentration analysis of very long-chain fatty acids (VLCFAs). However, this method's time-consuming nature and limitations in cases which present normal VLCFA levels necessitates alternative approaches. The analysis of C26:0-lysophosphatydylcholine (C26:0-LPC) in dried blood spot samples by tandem-mass spectrometry (MS/MS) has successfully been implemented in certain newborn screening programs to diagnose X-linked adrenoleukodystrophy (ALD). However, the diagnostic potential of very long-chain LPCs concentrations in plasma remains poorly understood. This study sought to evaluate the diagnostic performance of C26:0-LPC and other very long-chain LPCs, comparing them to VLCFA analysis in plasma. The study, which included 330 individuals affected by a peroxisomal ß-oxidation deficiency and 407 control individuals, revealed that C26:0- and C24:0-LPC concentrations demonstrated the highest diagnostic accuracy (98.8% and 98.4%, respectively), outperforming VLCFA when C26:0/C22:0 and C24:0/C22:0 ratios were combined (98.1%). Combining C24:0- and C26:0-LPC gave the highest sensitivity (99.7%), with ALD females exhibiting notably higher sensitivity compared with the VLCFA ratio combination (98.7% vs. 93.5%, respectively). In contrast, C22:0-LPC exhibited suboptimal performance, primarily due to its low sensitivity (75%), but we identified a potential use to help distinguish between ALD and Zellweger spectrum disorders. In summary, MS/MS analysis of plasma C24:0- and C26:0-LPC concentrations represents a rapid and straightforward approach to diagnose PDs, demonstrating superior diagnostic accuracy, particularly in ALD females, compared with conventional VLCFA biomarkers. We strongly recommend integrating very-long chain LPC plasma analysis in the diagnostic evaluation of individuals suspected of having a PD.


Subject(s)
Adrenoleukodystrophy , Lysophosphatidylcholines , Infant, Newborn , Female , Humans , Tandem Mass Spectrometry , Adrenoleukodystrophy/diagnosis , Neonatal Screening/methods , Biomarkers , Fatty Acids, Nonesterified , Fatty Acids
5.
J Lipid Res ; : 100646, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303981

ABSTRACT

Lipid droplets (LDs) are organelles associated with lipid storage and energy metabolism, thus their morphology and quantity are of significant research interest. While commercially available BODIPY dye effectively labels LDs in various cell types, it also labels lysosome-related organelles (LROs) in C. elegans, leading to non-specific LD quantification. Here, we report that the fluorescent signals of BODIPY exhibit distinct fluorescence lifetime patterns for LROs and LDs, which can be captured, visualized, and filtered by fluorescence lifetime imaging microscopy. Furthermore, we proposed and validated a method based on fluorescence lifetime that can improve the accuracy of fat storage quantification in BODIPY vital-staining worms, which holds broad applications, including rapid and accurate LD quantification in forward genetic screening. Additionally, our method enables observing dynamic LD-LRO interactions in living worms, a unique capability of BODIPY vital-staining. Our findings highlight distinct BODIPY fluorescence lifetime characteristics of LDs and LROs, providing a valuable tool for future research on LDs, LROs, or their interactions.

6.
J Biol Chem ; 299(3): 102910, 2023 03.
Article in English | MEDLINE | ID: mdl-36642182

ABSTRACT

Lipids are important nutrients for Mycobacterium tuberculosis (Mtb) to support bacterial survival in mammalian tissues and host cells. Fatty acids and cholesterol are imported across the Mtb cell wall via the dedicated Mce1 and Mce4 transporters, respectively. It is thought that the Mce1 and Mce4 transporters are comprised of subunits that confer substrate specificity and proteins that couple lipid transport to ATP hydrolysis, similar to other bacterial ABC transporters. However, unlike canonical bacterial ABC transporters, Mce1 and Mce4 appear to share a single ATPase, MceG. Previously, it was established that Mce1 and Mce4 are destabilized when key transporter subunits are rendered nonfunctional; therefore, we investigated here the role of MceG in Mce1 and Mce4 protein stability. We determined that key residues in the Walker B domain of MceG are required for the Mce1- and Mce4-mediated transport of fatty acids and cholesterol. Previously, it has been established that Mce1 and Mce4 are destabilized and/or degraded when key transporter subunits are rendered nonfunctional, thus we investigated a role for MceG in stabilizing Mce1 and Mce4. Using an unbiased quantitative proteomic approach, we demonstrate that Mce1 and Mce4 proteins are specifically degraded in mutants lacking MceG. Furthermore, bacteria expressing Walker B mutant variants of MceG failed to stabilize Mce1 and Mce4, and we show that deleting MceG impacts the fitness of Mtb in the lungs of mice. Thus, we conclude that MceG represents an enzymatic weakness that can be potentially leveraged to disable and destabilize both the Mce1 and Mce4 transporters in Mtb.


Subject(s)
Bacterial Proteins , Mycobacterium tuberculosis , Animals , Mice , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cholesterol/genetics , Cholesterol/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Membrane Transport Proteins/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Proteomics
7.
Mol Microbiol ; 120(2): 194-209, 2023 08.
Article in English | MEDLINE | ID: mdl-37429596

ABSTRACT

Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.


Subject(s)
Diet , Lipid Droplets , Lipid Droplets/metabolism , Lipid Metabolism
8.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G202-G216, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38915276

ABSTRACT

Fatty acid transport protein (FATP)4 was thought to mediate intestinal lipid absorption, which was disputed by a study using keratinocyte-Fatp4-rescued Fatp4-/- mice. These knockouts when fed with a Western diet showed elevated intestinal triglyceride (TG) and fatty acid levels. To investigate a possible role of FATP4 on intestinal lipid processing, ent-Fatp4 (KO) mice were generated by Villin-Cre-specific inactivation of the Fatp4 gene. We aimed to measure circulating and intestinal lipids in control and KO mice after acute or chronic fat intake or during aging. Remarkably, ent-Fatp4 mice displayed an approximately 30% decrease in ileal behenic, lignoceric, and nervonic acids, ceramides containing these FA, as well as, ileal sphingomyelin, phosphatidylcholine, and phosphatidylinositol levels. Such decreases were concomitant with an increase in jejunal cholesterol ester. After a 2-wk recovery from high lipid overload by tyloxapol and oral-lipid treatment, ent-Fatp4 mice showed an increase in plasma TG and chylomicrons. Upon overnight fasting followed by an oral fat meal, ent-Fatp4 mice showed an increase in plasma TG-rich lipoproteins and the particle number of chylomicrons and very low-density lipoproteins. During aging or after feeding with a high-fat high-cholesterol (HFHC) diet, ent-Fatp4 mice showed an increase in plasma TG, fatty acids, glycerol, and lipoproteins as well as intestinal lipids. HFHC-fed KO mice displayed an increase in body weight, the number of lipid droplets with larger sizes in the ileum, concomitant with a decrease in ileal ceramides and phosphatidylcholine. Thus, enterocyte FATP4 deficiency led to a metabolic shift from polar to neutral lipids in distal intestine rendering an increase in plasma lipids and lipoproteins.NEW & NOTEWORTHY Enterocyte-specific Fatp4 deficiency in mice increased intestinal lipid absorption with elevation of blood lipids during fasting and aging, as well as after an acute oral fat-loading or chronic HFHC feeding. Lipidomics revealed that knockout mice displayed a shift from very long-chain to long-chain fatty acids, and from polar to neutral lipids, predominantly in the ileum. Thus, FATP4 may have a physiological function in the control of blood lipids via metabolic shifts in distal intestine.


Subject(s)
Enterocytes , Fatty Acid Transport Proteins , Lipid Metabolism , Mice, Knockout , Animals , Mice , Enterocytes/metabolism , Fatty Acid Transport Proteins/metabolism , Fatty Acid Transport Proteins/genetics , Intestinal Absorption , Triglycerides/metabolism , Triglycerides/blood , Male , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Lipids/blood , Diet, High-Fat , Ileum/metabolism
9.
Circ Res ; 131(11): 926-943, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36278398

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a growing health problem without effective therapies. Epidemiological studies indicate that diabetes is a strong risk factor for HFpEF, and about 45% of patients with HFpEF are suffering from diabetes, yet the underlying mechanisms remain elusive. METHODS: Using a combination of echocardiography, hemodynamics, RNA-sequencing, molecular biology, in vitro and in vivo approaches, we investigated the roles of SIRT6 (sirtuin 6) in regulation of endothelial fatty acid (FA) transport and HFpEF in diabetes. RESULTS: We first observed that endothelial SIRT6 expression was markedly diminished in cardiac tissues from heart failure patients with diabetes. We then established an experimental mouse model of HFpEF in diabetes induced by a combination of the long-term high-fat diet feeding and a low-dose streptozocin challenge. We also generated a unique humanized SIRT6 transgenic mouse model, in which a single copy of human SIRT6 transgene was engineered at mouse Rosa26 locus and conditionally induced with the Cre-loxP technology. We found that genetically restoring endothelial SIRT6 expression in the diabetic mice ameliorated diastolic dysfunction concurrently with decreased cardiac lipid accumulation. SIRT6 gain- or loss-of-function studies showed that SIRT6 downregulated endothelial FA uptake. Mechanistically, SIRT6 suppressed endothelial expression of PPARγ through SIRT6-dependent deacetylation of histone H3 lysine 9 around PPARγ promoter region; and PPARγ reduction mediated SIRT6-dependent inhibition of endothelial FA uptake. Importantly, oral administration of small molecule SIRT6 activator MDL-800 to diabetic mice mitigated cardiac lipid accumulation and diastolic dysfunction. CONCLUSIONS: The impairment of endothelial SIRT6 expression links diabetes to HFpEF through the alteration of FA transport across the endothelial barrier. Genetic and pharmacological strategies that restored endothelial SIRT6 function in mice with diabetes alleviated experimental HFpEF by limiting FA uptake and improving cardiac metabolism, thus warranting further clinical evaluation.


Subject(s)
Diabetes Mellitus, Experimental , Heart Failure , Sirtuins , Humans , Mice , Animals , Stroke Volume/physiology , Heart Failure/metabolism , PPAR gamma , Disease Models, Animal , Sirtuins/genetics , Lipids
10.
Vet Res ; 55(1): 126, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350238

ABSTRACT

Long-chain fatty acid transport protein 1 (FATP1) is a member of the fatty acid transporter family. It facilitates transmembrane transport of fatty acids and participates in lipid metabolism. Lipids are essential components of the cell and organelle membranes of Trichinella spiralis. The nematode has lost the capacity to synthesise the necessary lipids de novo and has instead evolved to obtain fatty acids and their derivatives from its host. This study aims to ascertain the primary biological characteristics and roles of T. spiralis FATP1 (TsFATP1) in lipid metabolism, larval moulting, and the development of this nematode. The results show that TsFATP1 is highly expressed at enteral T. spiralis stages, mainly localised at the cuticle, the stichosome and the intrauterine embryos of the parasite. The silencing of the TsFATP1 gene by TsFATP1-specific dsRNA significantly decreases the expression levels of TsFATP1 in the worm. It reduces the contents of ATP, triglycerides, total cholesterol, and phospholipids both in vitro and in vivo. RNAi inhibits lipid metabolism, moulting, and the growth of this nematode. The results demonstrate that TsFATP1 plays an essential role in lipid metabolism, moulting, and the development of T. spiralis. It could also be a target candidate for the anti-Trichinella vaccine and drugs.


Subject(s)
Fatty Acid Transport Proteins , Helminth Proteins , Larva , Lipid Metabolism , Trichinella spiralis , Animals , Trichinella spiralis/genetics , Trichinella spiralis/physiology , Trichinella spiralis/metabolism , Trichinella spiralis/growth & development , Fatty Acid Transport Proteins/metabolism , Fatty Acid Transport Proteins/genetics , Larva/growth & development , Larva/metabolism , Helminth Proteins/metabolism , Helminth Proteins/genetics , Molting/physiology , Mice , Female , Trichinellosis/parasitology , Trichinellosis/veterinary
11.
Pharm Res ; 41(8): 1631-1648, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39044044

ABSTRACT

PURPOSE: Alzheimer's disease (AD) is associated with brain accumulation of amyloid-beta (Aß) and neurofibrillary tangle formation, in addition to reduced brain docosahexaenoic acid (DHA) and increased brain iron levels. DHA requires access across the blood-brain barrier (BBB) to enter the brain, and iron has been shown to affect the expression and function of a number of BBB transporters. Therefore, this study aimed to assess the effect of iron on the expression and function of fatty acid binding protein 5 (FABP5) and fatty acid transport protein 1 (FATP1), both which mediate brain endothelial cell trafficking of DHA. METHODS: The mRNA and protein levels of FABP5 and FATP1 in human cerebral microvascular endothelial (hCMEC/D3) cells was assessed by RT-qPCR and Western blot, respectively following ferric ammonium citrate (FAC) treatment (up to 750 µM, 72 h). The function of FABP5 and FATP1 was assessed via uptake and efflux of radiolabelled 3H-oleic acid and 14C-DHA. RESULTS: FAC (500 µM, 72 h) had no impact on the expression of FABP5 at the protein and mRNA level in hCMEC/D3 cells, which was associated with a lack of effect on the uptake of 14C-DHA. FAC led to a 19.7% reduction in FATP1 protein abundance in hCMEC/D3 cells with no impact on mRNA levels, and this was associated with up to a 32.6% reduction in efflux of 14C-DHA. CONCLUSIONS: These studies demonstrate a role of iron in down-regulating FATP1 protein abundance and function at the BBB, which may have implications on fatty acid access to the brain.


Subject(s)
Blood-Brain Barrier , Brain , Endothelial Cells , Fatty Acid Transport Proteins , Fatty Acid-Binding Proteins , Humans , Fatty Acid Transport Proteins/metabolism , Fatty Acid Transport Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Brain/metabolism , Brain/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Fatty Acids/metabolism , Ferric Compounds , Cell Line , Biological Transport/drug effects , Quaternary Ammonium Compounds/pharmacology , Iron/metabolism , Microvessels/metabolism , Microvessels/cytology , Microvessels/drug effects , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , RNA, Messenger/metabolism , RNA, Messenger/genetics , Docosahexaenoic Acids/pharmacology
12.
Mol Biol Rep ; 51(1): 320, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393618

ABSTRACT

BACKGROUND: The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS: A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS: In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.


Subject(s)
Apolipoprotein E4 , Astrocytes , Boron Compounds , Animals , Humans , Rats , Apolipoprotein E4/genetics , Astrocytes/metabolism , Fatty Acid-Binding Proteins , Fatty Acids/metabolism , Hypoxia/metabolism , Ischemia , Neurons/metabolism
13.
Exp Cell Res ; 430(1): 113721, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37437769

ABSTRACT

The hepatitis B Virus X (HBx) protein plays a crucial role in the HBV-induced hepatic steatosis. Fatty acid transport protein 2 (FATP2) is a key protein that is involved in hepatic lipogenesis, and it was found to be highly expressed in various metabolic diseases. However, Whether FATP2 is a key factor in the pathogenesis of HBx-induced hepatic steatosis remains unclear. In this study, we found that FATP2 was up-regulated by HBx in vitro and in vivo and participated in HBx-induced hepatic lipid accumulation. Treatment of HBx-expressing cell lines and mice with FATP2 inhibitor (FATP2i) lipofermata ameliorated HBx-induced lipid accumulation and reduced oxidative stress and inflammation caused by lipid accumulation. Moreover, the liver injury of mouse was restored after FATP2i treatment. In summary, our results reveal that FATP2 is a key driver factor for HBx-induced hepatic lipid accumulation, and inhibition of FATP2 can ameliorates lipid accumulation caused by HBx. This study provides new insights into the mechanism of HBV-induced hepatic steatosis.


Subject(s)
Fatty Liver , Mice , Animals , Up-Regulation , Fatty Liver/metabolism , Cell Line , Lipids , Hepatitis B virus/physiology
14.
Adv Exp Med Biol ; 1460: 73-95, 2024.
Article in English | MEDLINE | ID: mdl-39287849

ABSTRACT

In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.


Subject(s)
Intestinal Absorption , Obesity , Humans , Obesity/metabolism , Animals , Dietary Fats/metabolism , Dietary Fats/adverse effects , Lipid Metabolism , Enterocytes/metabolism , Triglycerides/metabolism , Fatty Acids/metabolism , Fatty Acid-Binding Proteins/metabolism
15.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542532

ABSTRACT

The objective of the study was to assess the expression of proteins responsible for placental lipid transport in term pregnancies complicated by well-controlled gestational (GDM) and type 1 diabetes mellitus (PGDM). A total of 80 placental samples were obtained from patients diagnosed with PGDM (n = 20), GDM treated with diet (GDMG1, n = 20), GDM treated with diet and insulin (GDMG2, n = 20), and a non-diabetic control group (n = 20). Umbilical and uterine artery blood flows were assessed by means of ultrasound in the period prior to delivery and computer-assisted quantitative morphometry of immunostained placental sections was performed to determine the expression of selected proteins. The morphometric analysis performed for the vascular density-matched placental samples demonstrated a significant increase in the expression of fatty acid translocase (CD36), fatty acid binding proteins (FABP1, FABP4 and FABP5), as well as a decrease in the expression of endothelial lipase (EL) and fatty acid transport protein (FATP4) in the PGDM-complicated pregnancies as compared to the GDMG1 and control groups (p < 0.05). No significant differences with regard to the placental expression of lipoprotein lipase (LPL) and FATP6 protein between GDM/PGDM and non-diabetic patients were noted. Maternal pre-pregnancy weight, body mass index, placental weight as well as the expression of LPL and FABP4 were selected by the linear regression model as the strongest contributors to the fetal birth weight. To conclude, in placentas derived from pregnancies complicated by well-controlled PGDM, the expression of several lipid transporters, including EL, CD36, FATP4, FABP1, FABP4 and FABP5, is altered. Nonetheless, only LPL and FABP4 were significant predictors of the fetal birth weight.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes, Gestational , Pregnancy , Humans , Female , Placenta/metabolism , Diabetes, Gestational/metabolism , Diabetes Mellitus, Type 1/metabolism , Birth Weight , Fatty Acid Transport Proteins/genetics , Fatty Acid Transport Proteins/metabolism , Fetal Weight , Lipids , Fatty Acid-Binding Proteins/metabolism
16.
J Lipid Res ; 64(6): 100386, 2023 06.
Article in English | MEDLINE | ID: mdl-37172691

ABSTRACT

Levels of circulating fatty acid binding protein 4 (FABP4) protein are strongly associated with obesity and metabolic disease in both mice and humans, and secretion is stimulated by ß-adrenergic stimulation both in vivo and in vitro. Previously, lipolysis-induced FABP4 secretion was found to be significantly reduced upon pharmacological inhibition of adipose triglyceride lipase (ATGL) and was absent from adipose tissue explants from mice specifically lacking ATGL in their adipocytes (ATGLAdpKO). Here, we find that upon activation of ß-adrenergic receptors in vivo, ATGLAdpKO mice unexpectedly exhibited significantly higher levels of circulating FABP4 as compared with ATGLfl/fl controls, despite no corresponding induction of lipolysis. We generated an additional model with adipocyte-specific deletion of both FABP4 and ATGL (ATGL/FABP4AdpKO) to evaluate the cellular source of this circulating FABP4. In these animals, there was no evidence of lipolysis-induced FABP4 secretion, indicating that the source of elevated FABP4 levels in ATGLAdpKO mice was indeed from the adipocytes. ATGLAdpKO mice exhibited significantly elevated corticosterone levels, which positively correlated with plasma FABP4 levels. Pharmacological inhibition of sympathetic signaling during lipolysis using hexamethonium or housing mice at thermoneutrality to chronically reduce sympathetic tone significantly reduced FABP4 secretion in ATGLAdpKO mice compared with controls. Therefore, activity of a key enzymatic step of lipolysis mediated by ATGL, per se, is not required for in vivo stimulation of FABP4 secretion from adipocytes, which can be induced through sympathetic signaling.


Subject(s)
Lipase , Lipolysis , Animals , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Lipase/genetics , Lipase/metabolism , Lipolysis/physiology
17.
J Biol Chem ; 298(4): 101735, 2022 04.
Article in English | MEDLINE | ID: mdl-35181339

ABSTRACT

Dihydroceramide is a lipid molecule generated via the action of (dihydro)ceramide synthases (CerSs), which use two substrates, namely sphinganine and fatty acyl-CoAs. Sphinganine is generated via the sequential activity of two integral membrane proteins located in the endoplasmic reticulum. Less is known about the source of the fatty acyl-CoAs, although a number of cytosolic proteins in the pathways of acyl-CoA generation modulate ceramide synthesis via direct or indirect interaction with the CerSs. In this study, we demonstrate, by proteomic analysis of immunoprecipitated proteins, that fatty acid transporter protein 2 (FATP2) (also known as very long-chain acyl-CoA synthetase) directly interacts with CerS2 in mouse liver. Studies in cultured cells demonstrated that other members of the FATP family can also interact with CerS2, with the interaction dependent on both proteins being catalytically active. In addition, transfection of cells with FATP1, FATP2, or FATP4 increased ceramide levels although only FATP2 and 4 increased dihydroceramide levels, consistent with their known intracellular locations. Finally, we show that lipofermata, an FATP2 inhibitor which is believed to directly impact tumor cell growth via modulation of FATP2, decreased de novo dihydroceramide synthesis, suggesting that some of the proposed therapeutic effects of lipofermata may be mediated via (dihydro)ceramide rather than directly via acyl-CoA generation. In summary, our study reinforces the idea that manipulating the pathway of fatty acyl-CoA generation will impact a wide variety of down-stream lipids, not least the sphingolipids, which utilize two acyl-CoA moieties in the initial steps of their synthesis.


Subject(s)
Ceramides , Coenzyme A Ligases , Sphingosine N-Acyltransferase , Acyl Coenzyme A/metabolism , Animals , Ceramides/biosynthesis , Liver/metabolism , Mice , Oxidoreductases/metabolism , Proteomics , Sphingosine N-Acyltransferase/metabolism
18.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G389-G403, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36881564

ABSTRACT

Newborns with FATP4 mutations exhibit ichthyosis prematurity syndrome (IPS), and adult patients show skin hyperkeratosis, allergies, and eosinophilia. We have previously shown that the polarization of macrophages is altered by FATP4 deficiency; however, the role of myeloid FATP4 in the pathogenesis of nonalcoholic steatohepatitis (NASH) is not known. We herein phenotyped myeloid-specific Fatp4-deficient (Fatp4M-/-) mice under chow and high-fat, high-cholesterol (HFHC) diet. Bone-marrow-derived macrophages (BMDMs) from Fatp4M-/- mice showed significant reduction in cellular sphingolipids in males and females, and additionally phospholipids in females. BMDMs and Kupffer cells from Fatp4M-/- mice exhibited increased LPS-dependent activation of proinflammatory cytokines and transcription factors PPARγ, CEBPα, and p-FoxO1. Correspondingly, these mutants under chow diet displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. After HFHC feeding, Fatp4M-/- mice showed increased MCP-1 expression in livers and subcutaneous fat. Plasma MCP-1, IL4, and IL13 levels were elevated in male and female mutants, and female mutants additionally showed elevation of IL5 and IL6. After HFHC feeding, male mutants showed an increase in hepatic steatosis and inflammation, whereas female mutants showed a greater severity in hepatic fibrosis associated with immune cell infiltration. Thus, myeloid-FATP4 deficiency led to steatotic and inflammatory NASH in males and females, respectively. Our work offers some implications for patients with FATP4 mutations and also highlights considerations in the design of sex-targeted therapies for NASH treatment.NEW & NOTEWORTHY FATP4 deficiency in BMDMs and Kupffer cells led to increased proinflammatory response. Fatp4M-/- mice displayed thrombocytopenia, splenomegaly, and elevated liver enzymes. In response to HFHC feeding, male mutants were prone to hepatic steatosis, whereas female mutants showed exaggerated fibrosis. Our study provides insights into a sex-dimorphic susceptibility to NASH by myeloid-FATP4 deficiency.


Subject(s)
Fatty Acid Transport Proteins , Non-alcoholic Fatty Liver Disease , Animals , Female , Male , Mice , Cholesterol/metabolism , Diet, High-Fat , Fatty Acid Transport Proteins/genetics , Fatty Acid Transport Proteins/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/complications , Splenomegaly/complications , Splenomegaly/metabolism , Splenomegaly/pathology
19.
Biochem Biophys Res Commun ; 687: 149161, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37931418

ABSTRACT

Evidence from mice with global deletion of fatty-acid transport protein4 (FATP4) indicates its role on ß-oxidation and triglycerides (TG) metabolism. We reported that plasma glycerol and free fatty acids (FA) were increased in liver-specific Fatp4 deficient (L-FATP4-/-) mice under dietary stress. We hypothesized that FATP4 may mediate hepatocellular TG lipolysis. Here, we demonstrated that L-FATP4-/- mice showed an increase in these blood lipids, liver TG, and subcutaneous fat weights. We therefore studied TG metabolism in response to oleate treatment in two experimental models using FATP4-knockout HepG2 (HepKO) cells and L-FATP4-/- hepatocytes. Both FATP4-deificient liver cells showed a significant decrease in ß-oxidation products by ∼30-35% concomitant with marked upregulation of CD36, FATP2, and FATP5 as well as lipoprotein microsomal-triglyceride-transfer protein genes. By using 13C3D5-glycerol, HepKO cells displayed an increase in metabolically labelled TG species which were further increased with oleate treatment. This increase was concomitant with a step-wise elevation of TG in cells and supernatants as well as the secretion of cholesterol very low-density and high-density lipoproteins. Upon analyzing TG lipolytic enzymes, both mutant liver cells showed marked upregulated expression of hepatic lipase, while that of hormone-sensitive lipase and adipose-triglyceride lipase was downregulated. Lipolysis measured by extracellular glycerol and free FA was indeed increased in mutant cells, and this event was exacerbated by oleate treatment. Taken together, FATP4 deficiency in liver cells led to a metabolic shift from ß-oxidation towards lipolysis-directed TG and lipoprotein secretion, which is in line with an association of FATP4 polymorphisms with blood lipids.


Subject(s)
Lipolysis , Oleic Acid , Mice , Animals , Lipolysis/physiology , Triglycerides/metabolism , Oleic Acid/metabolism , Glycerol/metabolism , Hepatocytes/metabolism , Liver/metabolism , Lipoproteins/metabolism
20.
Chembiochem ; 24(15): e202300156, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37170829

ABSTRACT

Bacterial acquisition of metabolites is largely facilitated by transporters with unique substrate scopes. The tripartite ATP-independent periplasmic (TRAP) transporters comprise a large family of bacterial proteins that facilitate the uptake of a variety of small molecules. It has been reported that some TRAP systems encode a fourth protein, the T component. The T-component, or TatT, is predicted to be a periplasmic-facing lipoprotein that enables the uptake of metabolites from the outer membrane. However, no substrates were revealed for any TatT and their functional role(s) remained enigmatic. We recently identified a homolog in Methylococcus capsulatus that binds to sterols, and herein, we report two additional homologs that demonstrate a preference for long-chain fatty acids. Our bioinformatics, quantitative analyses of protein-ligand interactions, and high-resolution crystal structures suggest that TatTs might facilitate the trafficking of hydrophobic or lipophilic substrates and represent a new class of bacterial lipid and fatty acid transporters.


Subject(s)
Bacteria , Membrane Transport Proteins , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Bacteria/metabolism , Bacterial Proteins/metabolism , Biological Transport , Fatty Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL