Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37466194

ABSTRACT

Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite-disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision-recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases.


Subject(s)
Algorithms , Neural Networks, Computer , Humans , Reproducibility of Results
2.
Med Image Anal ; 90: 102959, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37757644

ABSTRACT

Annotated images for rare disease diagnosis are extremely hard to collect. Therefore, identifying rare diseases under a few-shot learning (FSL) setting is significant. Existing FSL methods transfer useful and global knowledge from base classes with abundant training samples to enrich features of novel classes with few training samples, but still face difficulties when being applied to medical images due to the complex lesion characteristics and large intra-class variance. In this paper, we propose a dynamic feature splicing (DNFS) framework for few-shot rare disease diagnosis. Under DNFS, both low-level features (i.e., the output of three convolutional blocks) and high-level features (i.e., the output of the last fully connected layer) of novel classes are dynamically enriched. We construct the position coherent DNFS (P-DNFS) module to perform low-level feature splicing, where a lesion-oriented Transformer is designed to detect lesion regions. Thus, novel-class channels are replaced by similar base-class channels within the detected lesion regions to achieve disease-related feature enrichment. We also devise a semantic coherent DNFS (S-DNFS) module to perform high-level feature splicing. It explores cross-image channel relations and selects base-class channels with semantic consistency for explicit knowledge transfer. Both low-level and high-level feature splicings are performed dynamically and iteratively. Consequently, abundant spliced features are generated for disease diagnosis, leading to more accurate decision boundary and improved diagnosis performance. Extensive experiments have been conducted on three medical image classification datasets. Our results suggest that the proposed DNFS achieves superior performance against state-of-the-art approaches.

SELECTION OF CITATIONS
SEARCH DETAIL