Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 315
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Funct Integr Genomics ; 24(5): 170, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39317784

ABSTRACT

Tubby-like proteins (TLPs) are a group of proteins found in both eukaryotes and prokaryotes. They are significant in various physiological and biochemical processes, especially in plants' response to abiotic stress. However, the role of TLP in foxtail millet (Setaria italica) remains unclear. The millet genome has 16 members of the TLP family with typical Tub domains, which can be sorted into five subgroups based on gene structure, motif, and protein domain distribution. SiTLPs were discovered to be predominantly located in the nucleus and also had extracellular distribution. The interspecific evolutionary analysis indicated that SiTLPs had a closer evolutionary relationship with monocots and were consistent with the morphological classification of foxtail millet. When subjected to salt stress, the abundance of SiTLP was affected, and qRT-PCR results showed that the expression levels of certain SiTLP members were induced by salt stress while others remained unresponsive. Except for SiTLP14, all other SiTLP genes were up-regulated in response to high-temperature stress, implying a potentially crucial role for SiTLP in mitigating high-temperature-induced damage. This study provides valuable insights into understanding the functional significance of the TLP gene family in foxtail millet.


Subject(s)
Plant Proteins , Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Salt Stress , Hot Temperature , Stress, Physiological
2.
BMC Plant Biol ; 24(1): 164, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431546

ABSTRACT

BACKGROUND: ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that crucially influences plant growth, development, and stress response. However, there is minimal research on the ABI5 family in foxtail millet. RESULTS: In this study, 16 ABI5 genes were identified in foxtail millet, and their sequence composition, gene structures, cis-acting elements, chromosome positions, and gene replication events were analyzed. To more thoroughly evaluate the developmental mechanisms of the SiABI5 family during evolution, we selected three dicotyledons (S. lycopersicum, A. thaliana, F. tataricum) and three (Z. mays, O. sativa, S. bicolor) specific representative monocotyledons associated with foxtail millet for comparative homology mapping. The results showed that foxtail millet ABI5 genes had the best homology with maize. A promoter sequence analysis showed that the SiABI5s contain numerous cis-acting elements related to hormone and stress responses, indicating that the regulation of SiABI5 expression was complex. The expression responses of 16 genes in different tissues, seed germination, and ear development were analyzed. A total of six representative genes were targeted from five subfamilies to characterize their gene expression responses to four different abiotic stresses. Overexpression of SiABI5.12 confers tolerance to osmotic stress in transgenic Arabidopsis thaliana, which demonstrated the function of SiABI5 responded to abiotic stress. CONCLUSIONS: In summary, our research results comprehensively characterized the SiABI5 family and can provide a valuable reference for demonstrating the role of SiABI5s in regulating abiotic stress responses in foxtail millet.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Stress, Physiological/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/metabolism , Gene Expression Profiling
3.
Planta ; 260(1): 23, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850310

ABSTRACT

MAIN CONCLUSION: In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.


Subject(s)
Genome, Mitochondrial , Setaria Plant , Setaria Plant/genetics , Genome, Mitochondrial/genetics , Phylogeny , RNA, Transfer/genetics , Genome, Plant/genetics , Codon Usage , RNA, Ribosomal/genetics , Codon/genetics
4.
J Exp Bot ; 75(3): 1098-1111, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37889853

ABSTRACT

Climate change inflicts several stresses on plants, of which dehydration stress severely affects growth and productivity. C4 plants possess better adaptability to dehydration stress; however, the role of epigenetic modifications underlying this trait is unclear. In particular, the molecular links between histone modifiers and their regulation remain elusive. In this study, genome-wide H3K9 acetylation (H3K9ac) enrichment using ChIP-sequencing was performed in two foxtail millet cultivars with contrasting dehydration tolerances (IC403579, cv. IC4-tolerant, and IC480117, cv. IC41-sensitive). It revealed that a histone deacetylase, SiHDA9, was significantly up-regulated in the sensitive cultivar. Further characterization indicated that SiHDA9 interacts with SiHAT3.1 and SiHDA19 to form a repressor complex. SiHDA9 might be recruited through the SiHAT3.1 recognition sequence onto the upstream of dehydration-responsive genes to decrease H3K9 acetylation levels. The silencing of SiHDA9 resulted in the up-regulation of crucial genes, namely, SiRAB18, SiRAP2.4, SiP5CS2, SiRD22, SiPIP1;4, and SiLHCB2.3, which imparted dehydration tolerance in the sensitive cultivar (IC41). Overall, the study provides mechanistic insights into SiHDA9-mediated regulation of dehydration stress response in foxtail millet.


Subject(s)
Dehydration , Setaria Plant , Setaria Plant/genetics , Up-Regulation , Phenotype , Histone Deacetylases/genetics , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Proteins/genetics
5.
Theor Appl Genet ; 137(8): 186, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017920

ABSTRACT

KEY MESSAGE: One hundred and fifty-five QTL for trace element concentrations in foxtail millet were identified using a genome-wide association study, and a candidate gene associated with Ni-Co-Cr concentrations was detected. Foxtail millet (Setaria italica) is an important regional crop known for its rich mineral nutrient content, which has beneficial effects on human health. We assessed the concentrations of ten trace elements (Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn) in the grain of 408 foxtail millet accessions. Significant differences in the concentrations of five elements (Ba, Co, Ni, Sr, and Zn) were observed between two subpopulations of spring- and summer-sown foxtail millet varieties. Moreover, 84.4% of the element pairs exhibited significant correlations. To identify the genetic factors influencing trace element accumulation, a comprehensive genome-wide association study was conducted, identifying 155 quantitative trait locus (QTL) for the ten trace elements across three different environments. Among them, ten QTL were consistently detected in multiple environments, including qZn2.1, qZn4.4, qCr4.1, qFe6.3, qFe6.5, qCo6.1, qPb7.3, qPb7.5, qBa9.1, and qNi9.1. Thirteen QTL clusters were detected for multiple elements, which partially explained the correlations between elements. Additionally, the different concentrations of five elements between foxtail millet subpopulations were caused by the different frequencies of high-concentration alleles associated with important marker-trait associations. Haplotype analysis identified a candidate gene SETIT_036676mg associated with Ni accumulation, with the GG haplotype significantly increasing Ni-Co-Cr concentrations in foxtail millet. A cleaved amplified polymorphic sequence marker (cNi6676) based on the two haplotypes of SETIT_036676mg was developed and validated. Results of this study provide valuable reference information for the genetic research and improvement of trace element content in foxtail millet.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Setaria Plant , Trace Elements , Setaria Plant/genetics , Trace Elements/analysis , Chromosome Mapping , Phenotype , Polymorphism, Single Nucleotide , Genotype
6.
Theor Appl Genet ; 137(4): 84, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493242

ABSTRACT

KEY MESSAGE: Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Plant Breeding , Phenotype , Edible Grain/genetics , Genetic Variation
7.
Phytopathology ; 114(1): 73-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37535821

ABSTRACT

Downy mildew caused by Sclerospora graminicola is a systemic infectious disease affecting foxtail millet production in Africa and Asia. S. graminicola-infected leaves could be decomposed to a state where only the veins remain, resulting in a filamentous leaf tissue symptom. The aim of the present study was to investigate how S. graminicola influences the formation of the filamentous leaf tissue symptoms in hosts at the morphological and molecular levels. We discovered that vegetative hyphae expanded rapidly, with high biomass accumulated at the early stages of S. graminicola infection. In addition, S. graminicola could affect spikelet morphological development at the panicle branch differentiation stage to the pistil and stamen differentiation stage by interfering with hormones and nutrient metabolism in the host, resulting in hedgehog-like panicle symptoms. S. graminicola could acquire high amounts of nutrients from host tissues through secretion of ß-glucosidase, endoglucanase, and pectic enzyme, and destroyed host mesophyll cells by mechanical pressure caused by rapid expansion of hyphae. At the later stages, S. graminicola could rapidly complete sexual reproduction through tryptophan, fatty acid, starch, and sucrose metabolism and subsequently produce numerous oospores. Oospore proliferation and development further damage host leaves via mechanical pressure, resulting in a large number of degraded and extinct mesophyll cells and, subsequently, malformed leaves with only veins left, that is, "filamentous leaf tissue." Our study revealed the S. graminicola expansion characteristics from its asexual to sexual development stages, and the potential mechanisms via which the destructive effects of S. graminicola on hosts occur at different growth stages.


Subject(s)
Oomycetes , Setaria Plant , Hedgehog Proteins/metabolism , Plant Diseases , Plant Leaves
8.
Plant Cell Rep ; 43(10): 243, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340664

ABSTRACT

KEY MESSAGE: The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO3 of the split-root System (Sp.KNO3) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Nitrogen , Plant Roots , Setaria Plant , Signal Transduction , Setaria Plant/genetics , Setaria Plant/metabolism , Nitrogen/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Transcriptome/genetics , Reactive Oxygen Species/metabolism
9.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273232

ABSTRACT

Foxtail millet is one of the oldest crops, and its endosperm contains up to 70% of starch. Grain filling is an important starch accumulation process associated with foxtail millet yield and quality. However, the molecular mechanisms of grain filling in foxtail millet are relatively unclear. Here, we investigate the genes and regulated miRNAs associated with starch synthesis and metabolism in foxtail millet using high-throughput small RNA, mRNA and degradome sequencing. The regulation of starch synthesis and quality is carried out mainly at the 15 DAA to 35 DAA stage during grain filling. The DEGs between waxy and non-waxy foxtail millet were significant, especially for GBSS. Additionally, ptc-miR169i_R+2_1ss21GA, fve-miR396e_L-1R+1, mtr-miR162 and PC-5p-221_23413 regulate the expression of genes associated with the starch synthesis pathway in foxtail millet. This study provides new insights into the molecular mechanisms of starch synthesis and quality formation in foxtail millet.


Subject(s)
Endosperm , Gene Expression Regulation, Plant , MicroRNAs , Setaria Plant , Starch , MicroRNAs/genetics , Setaria Plant/genetics , Setaria Plant/metabolism , Setaria Plant/growth & development , Starch/biosynthesis , Endosperm/genetics , Endosperm/metabolism , Genome, Plant , Gene Expression Profiling/methods , RNA, Plant/genetics , RNA, Plant/biosynthesis
10.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892028

ABSTRACT

Amino acid permeases (AAPs) transporters are crucial for the long-distance transport of amino acids in plants, from source to sink. While Arabidopsis and rice have been extensively studied, research on foxtail millet is limited. This study identified two transcripts of SiAAP9, both of which were induced by NO3- and showed similar expression patterns. The overexpression of SiAAP9L and SiAAP9S in Arabidopsis inhibited plant growth and seed size, although SiAAP9 was found to transport more amino acids into seeds. Furthermore, SiAAP9-OX transgenic Arabidopsis showed increased tolerance to high concentrations of glutamate (Glu) and histidine (His). The high overexpression level of SiAAP9 suggested its protein was not only located on the plasma membrane but potentially on other organelles, as well. Interestingly, sequence deletion reduced SiAAP9's sensitivity to Brefeldin A (BFA), and SiAAP9 had ectopic localization on the endoplasmic reticulum (ER). Protoplast amino acid uptake experiments indicated that SiAAP9 enhanced Glu transport into foxtail millet cells. Overall, the two transcripts of SiAAP9 have similar functions, but SiAAP9L shows a higher colocalization with BFA compartments compared to SiAAP9S. Our research identifies a potential candidate gene for enhancing the nutritional quality of foxtail millet through breeding.


Subject(s)
Arabidopsis , Endoplasmic Reticulum , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Endoplasmic Reticulum/metabolism , Seeds/metabolism , Seeds/genetics , Seeds/growth & development , Setaria Plant/genetics , Setaria Plant/metabolism , Setaria Plant/growth & development , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems/genetics , Protein Transport , Brefeldin A/pharmacology , Amino Acids/metabolism , Glutamic Acid/metabolism
11.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38612713

ABSTRACT

Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet.


Subject(s)
Setaria Plant , Transcriptome , Setaria Plant/genetics , Plant Senescence , Gene Expression Profiling , Chlorophyll
12.
Int J Mol Sci ; 25(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39201492

ABSTRACT

The indeterminate domain proteins (IDD proteins) play essential roles in the growth and development of various plant tissues and organs across different developmental stages, but members of this gene family have not yet been characterized in foxtail millet (Setaria italica). To have a comprehensive understanding of the IDD gene family in foxtail millet, we performed a genome-wide characterization and haplotypic variation analysis of the IDD gene family in foxtail millet. In this study, sixteen IDD genes were identified across the reference genome of Yugu1, a foxtail millet cultivar. Phylogenetic analysis revealed that the Setaria italica IDD (SiIDD) proteins were clustered into four groups together with IDD proteins from Arabidopsis thaliana (dicot) and Oryza sativa (monocot). Conserved protein motif and gene structure analyses revealed that the closely clustered SiIDD genes were highly conserved within each subgroup. Furthermore, chromosomal location analysis showed that the SiIDD genes were unevenly distributed on nine chromosomes of foxtail millet and shared collinear relationships with IDD genes of other grass species. Transcriptional analysis revealed that the SiIDD genes differed greatly in their expression patterns, and paralogous genes shared similar expression patterns. In addition, superior haplotypes for two SiIDD genes (SiIDD8 and SiIDD14) were identified to correlate with traits of early heading date, and high thousand seed weight and molecular markers were designed for SiIDD8 and SiIDD14 to distinguish different haplotypes for breeding. Taken together, the results of this study provide useful information for further functional investigation of SiIDD genes, and the superior haplotypes of SiIDD8 and SiIDD14 will be particularly beneficial for improving heading date and yield of foxtail millet in breeding programs.


Subject(s)
Haplotypes , Multigene Family , Phylogeny , Plant Proteins , Setaria Plant , Setaria Plant/genetics , Plant Proteins/genetics , Gene Expression Regulation, Plant , Genome, Plant , Chromosome Mapping , Chromosomes, Plant/genetics , Genome-Wide Association Study/methods
13.
Plant J ; 110(4): 1213-1228, 2022 05.
Article in English | MEDLINE | ID: mdl-35262997

ABSTRACT

Drought stress is a serious factor affecting crop growth and production worldwide. The circadian clock has been identified as key to improving regional adaptability of plants. However, our understanding of the contribution of the circadian clock to drought response and the impacts of drought stress on the circadian clock in plants is still limited. To explore the interactions between the circadian clock and drought stress, foxtail millet seedlings were treated with simulated drought (20% polyethylene glycol-6000) treatment starting at the day (DD) onset zeitgeber time 0 (ZT0, lights on) and at the night (DN) onset zeitgeber time 16 (ZT16, lights off). A high temporal-resolution transcriptomic investigation was performed using DD and DN samples collected at intervals of 2 or 4 h within a 24-h drought-treatment period. Overall, we identified 13 294 drought-responsive genes (DRGs). Among these DRGs, 7931 were common between DD and DN samples, 2638 were specific to DD, and 2725 were specific to DN. Additionally, we identified 1257 circadian genes, of which 67% were DRGs. Interestingly, with drought treatment starting at the day for 8, 12 or 16 h, the circadian phase shifted to 12 h. We also found that the circadian clock led to different day and night drought-responsive pathways. The identification of DRG_Clock (DRG and circadian clock) and DRG_NonClock (DRG and not circadian clock) genes provides a reference for selecting candidate drought resistance genes. Our work reveals the temporal drought-response process and crosstalk between drought stress and the circadian clock in foxtail millet.


Subject(s)
Circadian Clocks , Setaria Plant , Circadian Clocks/genetics , Droughts , Gene Expression Regulation, Plant/genetics , Plant Proteins/metabolism , Setaria Plant/metabolism , Stress, Physiological/genetics , Transcriptome
14.
BMC Genomics ; 24(1): 458, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582696

ABSTRACT

BACKGROUND: Hull colour is an important morphological marker for selection in seed production of foxtail millet. However, the molecular mechanisms underlying hull colour variation remain unknown. RESULTS: An F7 recombinant inbred line (RIL) population containing 215 lines derived from Hongjiugu × Yugu18 was used to analyze inheritance and detect the quantitative trait loci (QTL) for four hull colour traits using major gene plus polygene mixed inheritance analysis and composite interval mapping (CIM) in four environments. Genetic analysis revealed that the hull colour L* value (HCL*) was controlled by two major genes plus additive polygenes, the hull colour a* value (HCa*) was controlled by three major genes, the hull colour b* value (HCb*) was controlled by two major genes plus polygenes, and the hull colour C* value (HCC*) was controlled by four major genes. A high-density genetic linkage map covering 1227.383 cM of the foxtail millet genome, with an average interval of 0.879 cM between adjacent bin markers, was constructed using 1420 bin markers. Based on the genetic linkage map and the phenotypic data, a total of 39 QTL were detected for these four hull colour traits across four environments, each explaining 1.50%-49.20% of the phenotypic variation. Of these, six environmentally stable major QTL were co-localized to regions on chromosomes 1 and 9, playing a major role in hull colour. There were 556 annotated genes within the two QTL regions. Based on the functions of homologous genes in Arabidopsis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) gene annotations, five genes were predicted as candidate genes for further studies. CONCLUSIONS: This is the first study to use an inheritance model and QTL mapping to determine the genetic mechanisms of hull colour trait in foxtail millet. We identified six major environmentally stable QTL and predicted five potential candidate genes to be associated with hull colour. These results advance the current understanding of the genetic mechanisms underlying hull colour traits in foxtail millet and provide additional resources for application in genomics-assisted breeding and potential isolation and functional characterization of the candidate genes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Setaria Plant , Quantitative Trait Loci , Chromosome Mapping/methods , Setaria Plant/genetics , Carcinoma, Hepatocellular/genetics , Color , Liver Neoplasms/genetics , Plant Breeding , Genetic Association Studies
15.
BMC Plant Biol ; 23(1): 223, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37101150

ABSTRACT

BACKGROUND: Foxtail millet (Setaria italica) harbors the small diploid genome (~ 450 Mb) and shows the high inbreeding rate and close relationship to several major foods, feed, fuel and bioenergy grasses. Previously, we created a mini foxtail millet, xiaomi, with an Arabidopsis-like life cycle. The de novo assembled genome data with high-quality and an efficient Agrobacterium-mediated genetic transformation system made xiaomi an ideal C4 model system. The mini foxtail millet has been widely shared in the research community and as a result there is a growing need for a user-friendly portal and intuitive interface to perform exploratory analysis of the data. RESULTS: Here, we built a Multi-omics Database for Setaria italica (MDSi, http://sky.sxau.edu.cn/MDSi.htm ), that contains xiaomi genome of 161,844 annotations, 34,436 protein-coding genes and their expression information in 29 different tissues of xiaomi (6) and JG21 (23) samples that can be showed as an Electronic Fluorescent Pictograph (xEFP) in-situ. Moreover, the whole-genome resequencing (WGS) data of 398 germplasms, including 360 foxtail millets and 38 green foxtails and the corresponding metabolic data were available in MDSi. The SNPs and Indels of these germplasms were called in advance and can be searched and compared in an interactive manner. Common tools including BLAST, GBrowse, JBrowse, map viewer, and data downloads were implemented in MDSi. CONCLUSION: The MDSi constructed in this study integrated and visualized data from three levels of genomics, transcriptomics and metabolomics, and also provides information on the variation of hundreds of germplasm resources that can satisfies the mainstream requirements and supports the corresponding research community.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Multiomics , Genomics , Sequence Analysis, DNA , Polymorphism, Single Nucleotide
16.
Microb Pathog ; 181: 106201, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37321424

ABSTRACT

Foxtail millet (Setaria italica [L.] P. Beauv.) is an important cereal worldwide. From 2021 to 2022, stalk rot disease of foxtail millet was identified in Shanxi province, northern China, with an 8% and 2% field incidence rate in Xinzhou (2 different locations), respectively. It caused necrosis, decay, stem lodging, and sometimes death. This study aimed to identify the causal agent of the disease through morphophysiological and molecular identification of the isolates. Stalk rot specimens were collected in Xinzhou, from foxtail millet plants exhibiting typical symptoms, and the pathogen was isolated with dilution plating. It was cultured at 28 °C for 48 h on nutrient agar, revealing circular, convex, and pale-yellow colonies, with a smooth surface and an entire edge. Scanning electron microscopy showed that the pathogen is rod shaped, round ended and has an uneven surface ranging from 0.5 to 0.7 µm in diameter and 1.2-2.7 µm in length. It is a motile gram-negative facultative anaerobic bacterium that can reduce nitrate and synthesize catalase but cannot hydrolyze starch. It also shows a negative reaction in the methyl red test and optimum growth at 37 °C. The pathogenicity test was performed on foxtail millet variety 'Jingu 21' stem to confirm Koch's postulates. The biochemical tests were done in the Biolog Gen III MicroPlate, revealing 21 positive chemical sensitivity tests, except those for minocycline and sodium bromate. Furthermore, among 71 carbon sources, the pathogen utilized 50 as the sole carbon source, including sucrose, d-maltose, α-d-lactose, d-galactose, D-sorbitol, D-mannitol, glycerol, and inositol. Finally, molecular characterization of the pathogen using 16S rRNA and rpoB gene sequencing and subsequent phylogenetic analysis identified the strain as Kosakonia cowanii. This study is the first to report K. cowanii as a stalk rot-causing pathogen in foxtail millet.


Subject(s)
Setaria Plant , Phylogeny , Setaria Plant/genetics , Base Composition , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
17.
Cell Mol Life Sci ; 79(11): 580, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36326888

ABSTRACT

High temperature-induced crop failures are prominent nowadays in major staples, including rice, wheat, and maize; however, crops such as foxtail millet (Setaria italica) are resilient to temperature stress. In this study, a novel small heat shock protein of foxtail millet, SisHSP21.9, is identified and characterized for its role in conferring tolerance to high-temperature stress. SisHSP21.9 is a panicoid-specific gene, which is highly upregulated during high-temperature in leaves, and the protein is localized in the chloroplast. Its expression is directly regulated by heat shock factor, SiHSFA2e, during temperature stress. Further, overexpression of SiHSP21.9 in rice enhanced the survival of transgenics during high-temperature stress (> 80% survival frequency), and the transgenic lines showed improved plant architecture and overall grain yield. Compared to WT plants, transgenic lines maintained optimal photosynthesis rates with higher photosystem efficiencies at high temperatures, and this is conferred through protecting the components of photosystems, chlorophyll-binding proteins, and chloroplast-localized functional proteins by SisHSP21.9. Prolonged high-temperature stress showed minimal damage to chloroplast proteins resulting in comparatively lower yield loss (35-37%) in transgenic lines. Altogether, the study suggests that SisHSP21.9 is a potential candidate for designing thermotolerant crops for climate-resilient agriculture; however, further research is needed because tolerance to abiotic stresses is polygenic.


Subject(s)
Gene Expression Regulation, Plant , Setaria Plant , Proteome/genetics , Proteome/metabolism , Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Setaria Plant/genetics , Setaria Plant/metabolism , Crops, Agricultural/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism
18.
Int J Mol Sci ; 24(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36982494

ABSTRACT

Drought is a major limiting factor affecting grain production. Drought-tolerant crop varieties are required to ensure future grain production. Here, 5597 DEGs were identified using transcriptome data before and after drought stress in foxtail millet (Setaria italica) hybrid Zhangza 19 and its parents. A total of 607 drought-tolerant genes were screened through WGCNA, and 286 heterotic genes were screened according to the expression level. Among them, 18 genes overlapped. One gene, Seita.9G321800, encoded MYBS3 transcription factor and showed upregulated expression after drought stress. It is highly homologous with MYBS3 in maize, rice, and sorghum and was named SiMYBS3. Subcellular localization analysis showed that the SiMYBS3 protein was located in the nucleus and cytoplasm, and transactivation assay showed SiMYBS3 had transcriptional activation activity in yeast cells. Overexpression of SiMYBS3 in Arabidopsis thaliana conferred drought tolerance, insensitivity to ABA, and earlier flowering. Our results demonstrate that SiMYBS3 is a drought-related heterotic gene and it can be used for enhancing drought resistance in agricultural crop breeding.


Subject(s)
Arabidopsis , Setaria Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Setaria Plant/genetics , Setaria Plant/metabolism , Drought Resistance , Hybrid Vigor , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plant Breeding , Droughts , Stress, Physiological/genetics
19.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958621

ABSTRACT

Panicle development and grain production in crop species are essential breeding characteristics affected by the synthesis of auxin, which is influenced by flavin monooxygenase-encoding genes such as YUC (YUCCA) family members. In this trial, fourteen YUCs were identified and named uniformly in foxtail millet, an ancient crop species cultivated across the world. The phylogenetic analysis revealed that the SiYUCs were clustered into four subgroups; protein motif and gene structure analyses suggested that the closely clustered SiYUC genes were relatively conserved within each subgroup; while genome mapping analysis indicated that the SiYUC genes were unevenly distributed on foxtail millet chromosomes and colinear with other grass species. Transcription analysis revealed that the SiYUC genes differed greatly in expression pattern in different tissues and contained hormonal/light/stress-responding cis-elements. The haplotype characterization of SiYUC genes indicated many superior haplotypes of SiYUCs correlated with higher panicle and grain weight could be favorably selected by breeding. These results will be useful for the further study of the functional characteristics of SiYUC genes, particularly with regard to the marker-assisted pyramiding of beneficial haplotypes in foxtail millet breeding programs.


Subject(s)
Setaria Plant , Haplotypes , Setaria Plant/genetics , Setaria Plant/metabolism , Phylogeny , Plant Breeding , Chromosome Mapping , Gene Expression Regulation, Plant , Plant Proteins/metabolism
20.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003509

ABSTRACT

Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop that is well adapted to nutrient-poor soils. However, our understanding of how different LN-tolerant foxtail millet varieties adapt to long-term low nitrogen (LN) stress at the physiological and molecular levels remains limited. In this study, two foxtail millet varieties with contrasting LN tolerance properties were investigated through analyses of physiological parameters and transcriptomics. The physiological results indicate that JG20 (high tolerance to LN) exhibited superior biomass accumulation both in its shoots and roots, and higher nitrogen content, soluble sugar concentration, soluble protein concentration, zeatin concentration in shoot, and lower soluble sugar and soluble protein concentration in its roots compared to JG22 (sensitive to LN) under LN, this indicated that the LN-tolerant foxtail millet variety can allocate more functional substance to its shoots to sustain aboveground growth and maintain high root activity by utilizing low soluble sugar and protein under LN conditions. In the transcriptomics analysis, JG20 exhibited a greater number of differentially expressed genes (DEGs) compared to JG22 in both its shoots and roots in response to LN stress. These LN-responsive genes were enriched in glycolysis metabolism, photosynthesis, hormone metabolism, and nitrogen metabolism. Furthermore, in the shoots, the glutamine synthetase gene SiGS5, chlorophyll apoprotein of photosystem II gene SiPsbQ, ATP synthase subunit gene Sib, zeatin synthesis genes SiAHP1, and aldose 1-epimerase gene SiAEP, and, in the roots, the high-affinity nitrate transporter genes SiNRT2.3, SiNRT2.4, glutamate synthase gene SiGOGAT2, fructose-bisphosphate aldolase gene SiFBA5, were important genes involved in the LN tolerance of the foxtail millet variety. Hence, our study implies that the identified genes and metabolic pathways contribute valuable insights into the mechanisms underlying LN tolerance in foxtail millet.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Plant Proteins/metabolism , Transcriptome , Nitrogen/metabolism , Zeatin/metabolism , Sugars/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL