Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 620
Filter
Add more filters

Publication year range
1.
Annu Rev Microbiol ; 76: 369-388, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35650665

ABSTRACT

The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.


Subject(s)
Antifungal Agents , Cryptococcus neoformans , Antifungal Agents/pharmacology , Candida albicans/genetics , Cryptococcus neoformans/genetics , Genomics/methods , Humans , Saccharomyces cerevisiae
2.
Semin Immunol ; 66: 101738, 2023 03.
Article in English | MEDLINE | ID: mdl-36878023

ABSTRACT

The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.


Subject(s)
Host-Pathogen Interactions , Immune Evasion , Humans , Macrophages , Fungi
3.
Proc Natl Acad Sci U S A ; 121(17): e2315926121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625945

ABSTRACT

RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast Saccharomyces cerevisiae, have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in Candida albicans, a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used C. albicans reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other C. albicans isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active C. albicans RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in C. albicans, highlighting the importance of using multiple reference strains when studying this dangerous pathogen.


Subject(s)
Candida albicans , Gene Editing , Humans , Candida albicans/genetics , RNA Interference , Saccharomyces cerevisiae/metabolism , Genomic Instability
4.
Proc Natl Acad Sci U S A ; 121(32): e2314087121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39083421

ABSTRACT

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.


Subject(s)
Antifungal Agents , Cryptococcus neoformans , Glucosyltransferases , Trehalose , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/genetics , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Trehalose/metabolism , Trehalose/analogs & derivatives , Trehalose/biosynthesis , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Models, Molecular , Humans , Catalytic Domain , Crystallography, X-Ray
5.
J Cell Sci ; 137(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39051746

ABSTRACT

Candida albicans is the most prevalent fungal pathogen associated with candidemia. Similar to other fungi, the complex life cycle of C. albicans has been challenging to study with high-resolution microscopy due to its small size. Here, we employed ultrastructure expansion microscopy (U-ExM) to directly visualise subcellular structures at high resolution in the yeast and during its transition to hyphal growth. N-hydroxysuccinimide (NHS)-ester pan-labelling in combination with immunofluorescence via snapshots of various mitotic stages provided a comprehensive map of nucleolar and mitochondrial segregation dynamics and enabled the resolution of the inner and outer plaque of spindle pole bodies (SPBs). Analyses of microtubules (MTs) and SPBs suggest that C. albicans displays a side-by-side SPB arrangement with a short mitotic spindle and longer astral MTs (aMTs) at the pre-anaphase stage. Modifications to the established U-ExM protocol enabled the expansion of six other human fungal pathogens, revealing that the side-by-side SPB configuration is a plausibly conserved feature shared by many fungal species. We highlight the power of U-ExM to investigate subcellular organisation at high resolution and low cost in poorly studied and medically relevant microbial pathogens.


Subject(s)
Hyphae , Microtubules , Microtubules/ultrastructure , Microtubules/metabolism , Hyphae/ultrastructure , Hyphae/growth & development , Candida albicans/ultrastructure , Spindle Pole Bodies/metabolism , Spindle Pole Bodies/ultrastructure , Saccharomycetales/ultrastructure , Mitochondria/ultrastructure , Microscopy/methods , Humans
6.
J Biol Chem ; 300(6): 107397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763332

ABSTRACT

Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharides from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extended to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.


Subject(s)
Cryptococcus neoformans , Epitopes , Cryptococcus neoformans/immunology , Cryptococcus neoformans/chemistry , Epitopes/chemistry , Epitopes/immunology , Immunoglobulin Constant Regions/chemistry , Immunoglobulin Constant Regions/genetics , Molecular Dynamics Simulation , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Humans , Antibody Specificity , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Animals , Antibodies, Fungal/immunology , Antibodies, Fungal/chemistry
7.
Mol Microbiol ; 121(4): 781-797, 2024 04.
Article in English | MEDLINE | ID: mdl-38242855

ABSTRACT

Invasive candidiasis caused by non-albicans species has been on the rise, with Candida glabrata emerging as the second most common etiological agent. Candida glabrata possesses an intrinsically lower susceptibility to azoles and an alarming propensity to rapidly develop high-level azole resistance during treatment. In this study, we have developed an efficient piggyBac (PB) transposon-mediated mutagenesis system in C. glabrata to conduct genome-wide genetic screens and applied it to profile genes that contribute to azole resistance. When challenged with the antifungal drug fluconazole, PB insertion into 270 genes led to significant resistance. A large subset of these genes has a role in the mitochondria, including almost all genes encoding the subunits of the F1F0 ATPase complex. We show that deleting ATP3 or ATP22 results in increased azole resistance but does not affect susceptibility to polyenes and echinocandins. The increased azole resistance is due to increased expression of PDR1 that encodes a transcription factor known to promote drug efflux pump expression. Deleting PDR1 in the atp3Δ or atp22Δ mutant resulted in hypersensitivity to fluconazole. Our results shed light on the mechanisms contributing to azole resistance in C. glabrata. This PB transposon-mediated mutagenesis system can significantly facilitate future genome-wide genetic screens.


Subject(s)
Candida glabrata , Fluconazole , Fluconazole/metabolism , Candida glabrata/genetics , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Azoles , Proton-Translocating ATPases/metabolism , Microbial Sensitivity Tests
8.
Mol Microbiol ; 121(3): 341-358, 2024 03.
Article in English | MEDLINE | ID: mdl-37800630

ABSTRACT

Human fungal pathogens are a deadly and underappreciated risk to global health that most severely affect immunocompromised individuals. A virulence attribute shared by some of the most clinically relevant fungal species is their ability to survive inside macrophages and escape from these immune cells. In this review, we discuss the mechanisms behind intracellular survival and elaborate how escape is mediated by lytic and non-lytic pathways as well as strategies to induce programmed host cell death. We also discuss persistence as an alternative to rapid host cell exit. In the end, we address the consequences of fungal escape for the host immune response and provide future perspectives for research and development of targeted therapies.


Subject(s)
Host-Pathogen Interactions , Immune Evasion , Humans , Phagocytes/microbiology , Fungi/genetics , Macrophages/microbiology
9.
Mol Microbiol ; 121(4): 696-716, 2024 04.
Article in English | MEDLINE | ID: mdl-38178569

ABSTRACT

Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.


Subject(s)
Amino Acids , Candida albicans , Female , Humans , Candida albicans/metabolism , Amino Acids/metabolism , Ammonia/metabolism , Candida/metabolism , Proline/metabolism , Candida glabrata/metabolism
10.
Mol Plant Microbe Interact ; 37(3): 327-337, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37759383

ABSTRACT

Pyrenophora tritici-repentis (tan spot) is a destructive foliar pathogen of wheat with global impact. This ascomycete fungus possesses a highly plastic open pangenome shaped by the gain and loss of effector genes. This study investigated the allelic variations in the chlorosis-encoding gene ToxB across 422 isolates representing all identified pathotypes and worldwide origins. To gain better insights into ToxB evolution, we examined its presence and variability in other Pyrenophora spp. A ToxB haplotype network was constructed, revealing the evolutionary relationships of this gene (20 haplotypes) across four Pyrenophora species. Notably, toxb, the homolog of ToxB, was detected for the first time in the barley pathogen Pyrenophora teres. The ToxB/toxb genes display evidence of selection that is characterized by loss of function, duplication, and diverse mutations. Within the ToxB/toxb open reading frame, 72 mutations were identified, including 14 synonymous, 55 nonsynonymous, and 3 indel mutations. Remarkably, a, ∼5.6-kb Copia-like retrotransposon, named Copia-1_Ptr, was found inserted in the toxb gene of a race 3 isolate. This insert disrupted the ToxB gene's function, a first case of effector gene disruption by a transposable element in P. tritici-repentis. Additionally, a microsatellite with 25 nucleotide repeats (0 to 10) in the upstream region of ToxB suggested a potential mechanism influencing ToxB expression and regulation. Exploring ToxB-like protein distribution in other ascomycetes revealed the presence of ToxB-like proteins in 19 additional species, including the Leotiomycetes class for the first time. The presence/absence pattern of ToxB-like proteins defied species relatedness compared with a phylogenetic tree, suggesting a past horizontal gene transfer event during the evolution of the ToxB gene. [Formula: see text] Copyright © 2024 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food. This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Fungal Proteins , Phylogeny , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Triticum/genetics , Triticum/microbiology
11.
Ecol Lett ; 27(4): e14425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577899

ABSTRACT

Plants interact in complex networks but how network structure depends on resources, natural enemies and species resource-use strategy remains poorly understood. Here, we quantified competition networks among 18 plants varying in fast-slow strategy, by testing how increased nutrient availability and reduced foliar pathogens affected intra- and inter-specific interactions. Our results show that nitrogen and pathogens altered several aspects of network structure, often in unexpected ways due to fast and slow growing species responding differently. Nitrogen addition increased competition asymmetry in slow growing networks, as expected, but decreased it in fast growing networks. Pathogen reduction made networks more even and less skewed because pathogens targeted weaker competitors. Surprisingly, pathogens and nitrogen dampened each other's effect. Our results show that plant growth strategy is key to understand how competition respond to resources and enemies, a prediction from classic theories which has rarely been tested by linking functional traits to competition networks.


Subject(s)
Nitrogen , Plants
12.
Ecol Lett ; 27(1): e14361, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38217282

ABSTRACT

Biodiversity typically increases multiple ecosystem functions simultaneously (multifunctionality) but variation in the strength and direction of biodiversity effects between studies suggests context dependency. To determine how different factors modulate the diversity effect on multifunctionality, we established a large grassland experiment manipulating plant species richness, resource addition, functional composition (exploitative vs. conservative species), functional diversity and enemy abundance. We measured ten above- and belowground functions and calculated ecosystem multifunctionality. Species richness and functional diversity both increased multifunctionality, but their effects were context dependent. Richness increased multifunctionality when communities were assembled with fast-growing species. This was because slow species were more redundant in their functional effects, whereas different fast species promoted different functions. Functional diversity also increased multifunctionality but this effect was dampened by nitrogen enrichment and enemy presence. Our study suggests that a shift towards fast-growing communities will not only alter ecosystem functioning but also the strength of biodiversity-functioning relationships.


Subject(s)
Ecosystem , Nitrogen , Biodiversity , Plants , Grassland
13.
Mol Microbiol ; 120(5): 723-739, 2023 11.
Article in English | MEDLINE | ID: mdl-37800599

ABSTRACT

DectiSomes are anti-infective drug-loaded liposomes targeted to pathogenic cells by pathogen receptors including the Dectins. We have previously used C-type lectin (CTL) pathogen receptors Dectin-1, Dectin-2, and DC-SIGN to target DectiSomes to the extracellular oligoglycans surrounding diverse pathogenic fungi and kill them. Dectin-3 (also known as MCL, CLEC4D) is a CTL pathogen receptor whose known cognate ligands are partly distinct from other CTLs. We expressed and purified a truncated Dectin-3 polypeptide (DEC3) comprised of its carbohydrate recognition domain and stalk region. We prepared amphotericin B (AmB)-loaded pegylated liposomes (AmB-LLs) and coated them with this isoform of Dectin-3 (DEC3-AmB-LLs), and we prepared control liposomes coated with bovine serum albumin (BSA-AmB-LLs). DEC3-AmB-LLs bound to the exopolysaccharide matrices of Candida albicans, Rhizopus delemar (formerly known as R. oryzae), and Cryptococcus neoformans from one to several orders of magnitude more strongly than untargeted AmB-LLs or BSA-AmB-LLs. The data from our quantitative fluorescent binding assays were standardized using a CellProfiler program, AreaPipe, that was developed for this purpose. Consistent with enhanced binding, DEC3-AmB-LLs inhibited and/or killed C. albicans and R. delemar more efficiently than control liposomes and significantly reduced the effective dose of AmB. In conclusion, Dectin-3 targeting has the potential to advance our goal of building pan-antifungal DectiSomes.


Subject(s)
Antifungal Agents , Cryptococcosis , Humans , Antifungal Agents/pharmacology , Liposomes/chemistry , Liposomes/pharmacology , Amphotericin B/pharmacology , Amphotericin B/chemistry , Candida albicans
14.
BMC Plant Biol ; 24(1): 291, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632518

ABSTRACT

BACKGROUND: Leaf rust (LR) is among the most destructive fungal diseases of rye (Secale cereale L.). Despite intensive research using various analytical and methodological approaches, such as quantitative trait locus (QTL) mapping, candidate gene expression analysis, and transcriptome sequencing, the genetic basis of the rye immune response to LR remains unclear. RESULTS: A genome-wide association study was employed to detect QTLs controlling the immune response to LR of rye. A mapping population, G38A, was constructed by crossing two inbred lines: 723 (susceptible to LR) and JKI-NIL-Pr3 (a donor of the LR resistance gene Pr3). For genotyping, SNP-DArT and silico-DArT markers were used. Resistance phenotyping was conducted by visual assessment of the infection severity in detached leaf segments inoculated with two isolates of Puccinia recondita f. sp. secalis, namely, 60/17/2.1 (isolate S) in the main experiment and 86/n/2.1_5x (isolate N) in the validation experiment, at 10 and 17 days post-infection (dpi), respectively. In total, 42,773 SNP-DArT and 105,866 silico-DArT markers were included in the main analysis including isolate S, of which 129 and 140 SNP-DArTs and 767 and 776 silico-DArTs were significantly associated (p ≤ 0.001; - log10(p) ≥ 3.0) with the immune response to LR at 10 and 17 dpi, respectively. Most significant markers were mapped to chromosome 1R. The number of common markers from both systems and at both time points occupying common chromosomal positions was 37, of which 21 were positioned in genes, comprising 18 markers located in exons and three in introns. This gene pool included genes encoding proteins with a known function in response to LR (e.g., a NBS-LRR disease resistance protein-like protein and carboxyl-terminal peptidase). CONCLUSION: This study has expanded and supplemented existing knowledge of the genetic basis of rye resistance to LR by (1) detecting two QTLs associated with the LR immune response of rye, of which one located on the long arm of chromosome 1R is newly detected, (2) assigning hundreds of markers significantly associated with the immune response to LR to genes in the 'Lo7' genome, and (3) predicting the potential translational effects of polymorphisms of SNP-DArT markers located within protein-coding genes.


Subject(s)
Basidiomycota , Quantitative Trait Loci , Secale/genetics , Genome-Wide Association Study , Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/microbiology , Basidiomycota/genetics
15.
Appl Environ Microbiol ; : e0108524, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39287398

ABSTRACT

This review covers, for the first time, all methods based on the use of Aspergillus strains as biocontrol agents for the management of plant diseases caused by fungi and oomycetes. Atoxigenic Aspergillus strains have been screened in a variety of hosts, such as peanuts, maize kernels, and legumes, during the preharvest and postharvest stages. These strains have been screened against a wide range of pathogens, such as Fusarium, Phytophthora, and Pythium species, suggesting a broad applicability spectrum. The highest efficacies were generally observed when using non-toxigenic Aspergillus strains for the management of mycotoxin-producing Aspergillus strains. The modes of action included the synthesis of antifungal metabolites, such as kojic acid and volatile organic compounds (VOCs), secretion of hydrolytic enzymes, competition for space and nutrients, and induction of disease resistance. Aspergillus strains degraded Sclerotinia sclerotiorum sclerotia, showing high control efficacy against this pathogen. Collectively, although two Aspergillus strains have been commercialized for aflatoxin degradation, a new application of Aspergillus strains is emerging and needs to be optimized.

16.
New Phytol ; 243(2): 705-719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38803110

ABSTRACT

Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.


Subject(s)
Ascomycota , Disease Resistance , Genome-Wide Association Study , Plant Diseases , Pseudotsuga , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Pseudotsuga/genetics , Pseudotsuga/microbiology , Pseudotsuga/physiology , Ascomycota/physiology , Ascomycota/pathogenicity , Trees/genetics , Adaptation, Physiological/genetics , Multifactorial Inheritance , Gene Expression Regulation, Plant , Genes, Plant
17.
Mol Ecol ; 33(15): e17441, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923648

ABSTRACT

Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.


Subject(s)
Daphne , Ecosystem , Mycorrhizae , Plant Roots , Mycorrhizae/genetics , Mycorrhizae/classification , Plant Roots/microbiology , Daphne/microbiology , Daphne/genetics , Mycobiome/genetics , Fungi/classification , Fungi/genetics , Endophytes/genetics , Adaptation, Physiological/genetics
18.
Glob Chang Biol ; 30(2): e17182, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38348761

ABSTRACT

Biodiversity is considered important to the mitigation of global change impacts on ecosystem multifunctionality in terrestrial ecosystems. However, potential mechanisms through which biodiversity maintains ecosystem multifunctionality under global change remain unclear. We grew 132 plant communities with two levels of plant diversity, crossed with treatments based on 10 global change factors (nitrogen deposition, soil salinity, drought, plant invasion, simulated grazing, oil pollution, plastics pollution, antibiotics pollution, heavy metal pollution, and pesticide pollution). All global change factors negatively impacted ecosystem multifunctionality, but negative impacts were stronger in high compared with low diversity plant communities. We explored potential mechanisms for this unexpected result, finding that the inhibition of selection effects (i.e., selection for plant species associated with high ecosystem functioning) contributed to sensitivity of ecosystem multifunctionality to global change. Specifically, global change factors decreased the abundance of novel functional plants (i.e., legumes) in high but not low diversity plant communities. The negative impacts of global change on ecosystem multifunctionality were also mediated by increased relative abundance of fungal plant pathogens (identified from metabarcoding of soil samples) and their negative relationship with the abundance of novel functional plants. Taken together, our experiment highlights the importance of protecting high diversity plant communities and legumes, and managing fungal pathogens, to the maintenance of ecosystem multifunctionality in the face of complex global change.


Subject(s)
Ecosystem , Fabaceae , Biodiversity , Plants , Soil , Environmental Pollution
19.
Int Microbiol ; 27(5): 1501-1511, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38401003

ABSTRACT

The phytopathogenic fungus Ustilago maydis causes corn smut by suppressing host plant defenses, including the oxidative burst response. While many studies have investigated how U. maydis responds to oxidative stress during infection, the consequences of heightened resistance to oxidative stress on virulence remain understudied. This study aimed to identify the effects on virulence in U. maydis strains exhibiting enhanced resistance to hydrogen peroxide (H2O2).To achieve this, we exposed U. maydis SG200 to 20 escalating H2O2 shocks, resulting in an adapted strain resistant to concentrations as high as 60 mM of H2O2, a lethal dose for the initial strain. Genetic analysis of the adapted strain revealed five nucleotide substitutions, two minor copy number variants, and a large amplification event on chromosome nine (1-149 kb) encompassing the sole catalase gene. Overexpressing catalase increased resistance to H2O2; however, this resistance was lower than that observed in the adapted strain. Additionally, virulence was reduced in both strains with enhanced H2O2 resistance.In summary, enhanced H2O2 resistance, achieved through either continuous exposure to the oxidative agent or through catalase overexpression, decreased virulence. This suggests that the response to the oxidative stress burst in U. maydis is optimal and that increasing the resistance to H2O2 does not translate into increased virulence. These findings illuminate the intricate relationship between oxidative stress resistance and virulence in U. maydis, offering insights into its infection mechanisms.


Subject(s)
Hydrogen Peroxide , Oxidative Stress , Plant Diseases , Zea mays , Virulence , Hydrogen Peroxide/pharmacology , Zea mays/microbiology , Plant Diseases/microbiology , Catalase/genetics , Catalase/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ustilago/genetics , Ustilago/pathogenicity , Ustilago/drug effects , Basidiomycota
20.
Mol Breed ; 44(2): 8, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38263979

ABSTRACT

Breeding for resistant crops is a sustainable way to control disease and relies on the introduction of novel resistance genes. Here, we tested three strategies on how to use transgenes from wheat to achieve durable resistance against fungal pathogens in the field. First, we tested the highly effective, overexpressed single transgene Pm3e in the background of spring wheat cultivar Bobwhite in a long-term field trial over many years. Together with previous results, this revealed that transgenic wheat line Pm3e#2 conferred complete powdery mildew resistance during a total of nine field seasons without a negative impact on yield. Furthermore, overexpressed Pm3e provided resistance to powdery mildew isolates from our worldwide collection when crossed into the elite wheat cultivar Fiorina. Second, we pyramided the four overexpressed transgenes Pm3a, Pm3b, Pm3d, and Pm3f in the background of cultivar Bobwhite and showed that the pyramided line Pm3a,b,d,f was completely resistant to powdery mildew in five field seasons. Third, we performed field trials with three barley lines expressing adult plant resistance gene Lr34 from wheat during three field seasons. Line GLP8 expressed Lr34 under control of the pathogen-inducible Hv-Ger4c promoter and provided partial barley powdery mildew and leaf rust resistance in the field with small, negative effects on yield components which might need compensatory breeding. Overall, our study demonstrates and discusses three successful strategies for achieving fungal disease resistance of wheat and barley in the field using transgenes from wheat. These strategies might confer long-term resistance if applied in a sustainable way. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01451-2.

SELECTION OF CITATIONS
SEARCH DETAIL