Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Virol ; 97(7): e0068623, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37367489

ABSTRACT

Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Swine , Foot-and-Mouth Disease Virus/metabolism , Caspase 3/metabolism , Cysteine Endopeptidases/metabolism , Gasdermins , Pyroptosis , Viral Proteins/metabolism
2.
Cancer Cell Int ; 24(1): 279, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118110

ABSTRACT

The Gasdermin E gene (GSDME) plays roles in deafness and cancers. However, the roles and mechanisms in cancers are complex, and the same gene exhibits different mechanisms and actions in different types of cancers. Online databases, such as GEPIA2, cBioPortal, and DNMIVD, were used to comprehensively analyze GSDME profiles, DNA methylations, mutations, diagnosis, and prognosis in patients with tumor tissues and matched healthy tissues. Western blotting and RT-PCR were used to monitor the regulation of GSDME by Cordycepin (CD) in cancer cell lines. We revealed that GSDME expression is significantly upregulated in eight cancers (ACC, DLBC, GBM, HNSC, LGG, PAAD, SKCM, and THYM) and significantly downregulated in seven cancers (COAD, KICH, LAML, OV, READ, UCES, and UCS). The overall survival was longer only in ACC, but shorter in four cancers, including COAD, KIRC, LIHC, and STAD, when GSDME was highly expressed in cancers compared with the corresponding normal tissues. Moreover, the high expression of GSDME was negatively correlated with the poor prognosis of ACC, while the low expression of GSDME was negatively correlated with the poor prognosis of COAD, suggesting that GSDME might serve as a good prognostic factor in these two cancer types. Accordingly, results indicated that the DNA methylations of those 7 CpG sites constitute a potentially effective signature to distinguish different tumors from adjacent healthy tissues. Gene mutations for GSDME were frequently observed in a variety of tumors, with UCES having the highest frequency. Moreover, CD treatment inhibited GSDME expression in different cancer cell lines, while overexpression of GSDME promoted cell migration and invasion. Thus, we have systematically and successfully clarified the GSDME expression profiles, diagnostic values, and prognostic values in pan-cancers. Targeting GSDME with CD implies therapeutic significance and a mechanism for antitumor roles in some types of cancers via increasing the sensitivity of chemotherapy. Altogether, our study may provide a strategy and biomarker for clinical diagnosis, prognostics, and treatment of cancers by targeting GSDME.

3.
J Biol Chem ; 298(2): 101553, 2022 02.
Article in English | MEDLINE | ID: mdl-34973334

ABSTRACT

The breakdown of all-trans-retinal (atRAL) clearance is closely associated with photoreceptor cell death in dry age-related macular degeneration (AMD) and autosomal recessive Stargardt's disease (STGD1), but its mechanisms remain elusive. Here, we demonstrate that activation of gasdermin E (GSDME) but not gasdermin D promotes atRAL-induced photoreceptor damage by activating pyroptosis and aggravating apoptosis through a mitochondria-mediated caspase-3-dependent signaling pathway. Activation of c-Jun N-terminal kinase was identified as one of the major causes of mitochondrial membrane rupture in atRAL-loaded photoreceptor cells, resulting in the release of cytochrome c from mitochondria to the cytosol, where it stimulated caspase-3 activation required for cleavage of GSDME. Aggregation of the N-terminal fragment of GSDME in the mitochondria revealed that GSDME was likely to penetrate mitochondrial membranes in photoreceptor cells after atRAL exposure. ABC (subfamily A, member 4) and all-trans-retinol dehydrogenase 8 are two key proteins responsible for clearing atRAL in the retina. Abca4-/-Rdh8-/- mice exhibit serious defects in atRAL clearance upon light exposure and serve as an acute model for dry AMD and STGD1. We found that N-terminal fragment of GSDME was distinctly localized in the photoreceptor outer nuclear layer of light-exposed Abca4-/-Rdh8-/- mice. Of note, degeneration and caspase-3 activation in photoreceptors were significantly alleviated in Abca4-/-Rdh8-/-Gsdme-/- mice after exposure to light. The results of this study indicate that GSDME is a common causative factor of photoreceptor pyroptosis and apoptosis arising from atRAL overload, suggesting that repressing GSDME may represent a potential treatment of photoreceptor atrophy in dry AMD and STGD1.


Subject(s)
Photoreceptor Cells , Pore Forming Cytotoxic Proteins , Retina , Retinaldehyde , Stargardt Disease , ATP-Binding Cassette Transporters/metabolism , Animals , Caspase 3/metabolism , Mice , Photoreceptor Cells/metabolism , Photoreceptor Cells/pathology , Pore Forming Cytotoxic Proteins/metabolism , Retina/metabolism , Retina/pathology , Retinaldehyde/metabolism , Stargardt Disease/metabolism , Stargardt Disease/pathology
4.
Biochem Biophys Res Commun ; 646: 78-85, 2023 02 26.
Article in English | MEDLINE | ID: mdl-36706709

ABSTRACT

The identification of PARP1 as a therapeutic target for BRCA1/2-deficient cells has led to a paradigm shift for the treatment of human malignancies with BRCA1/2 mutations. However, our understanding of the mechanism of action of PARP1 inhibitors (PARPi) is still evolving. It is being increasingly appreciated that the immunomodulatory function of PARPi is a critical contributor of the anti-tumor effects of these compounds. Here, we identify a novel cell death effector pathway for PARPi where PARPi induces inflammatory pyroptosis that is mediated by caspase 3-dependent cleavage of GSDME. Caspase 3 is activated upon PARPi treatment which directly cleaves GSDME and, subsequently induces pyroptosis. Genetic and pharmacological experiments show that the presence of the PARP1 protein with uncompromised DNA binding capability is required for PARPi-induced pyroptosis, suggesting that PARP1 trapping is a key driver of this phenomenon. Importantly, we show that PARPi-induced GSDME cleavage and pyroptosis occurred only in the BRCA1-deficient cells, but not in those reconstituted with BRCA1 wild-type (WT). These findings suggest that pyroptosis could be a novel aspect of the immunomodulatory function of PARPi. Our studies could also offer new insights to the potential biomarkers and therapeutic strategies to achieve better anti-tumor effects of PARPi for BRCA-deficient tumors with low GSDME expression.


Subject(s)
Neoplasms , Pyroptosis , Humans , Gasdermins , Caspase 3/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Death , Neoplasms/pathology
5.
Toxicol Appl Pharmacol ; 472: 116574, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37271225

ABSTRACT

Pyroptosis, an inflammatory programmed cell death, has been suggested as a novel molecular mechanism for the treatment of hepatocellular carcinoma (HCC) with chemotherapeutic agents. Recent studies showed that natural killer (NK) cells could inhibit apoptosis and regulate the progression of pyroptosis in tumor cells. Schisandrin B (Sch B), a lignan isolated from Schisandrae chinensis (Turcz.) Baill. (Schisandraceae) Fructus, has various pharmacological activities including anti-cancer effects. The purpose of this study was to investigate the effect of NK cells on Sch B's regulation of pyroptosis in HCC cells and the molecular mechanisms implicated. The results showed that Sch B alone could decrease cell viability and induce apoptosis in HepG2 cells. However, Sch B induced apoptosis in HepG2 cells was transformed into pyroptosis in the presence of NK cells. The mechanisms underlying NK cell's effect on pyroptosis in Sch B-treated HepG2 cells was related to its activation of caspase 3-Gasdermin E (GSDME). Further studies revealed that NK cell induced caspase 3 activation was derived from its activation of perforin-granzyme B pathway. This study explored the effect of Sch B and NK cells on pyroptosis in HepG2 cells and revealed that perforin-granzyme B-caspase 3-GSDME pathway is involved in the process of pyroptosis. These results proposed an immunomodulatory mechanism of Sch B on HepG2 cells pyroptosis and suggested Sch B as a promising immunotherapy combination partner for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Lignans , Liver Neoplasms , Humans , Pyroptosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Caspase 3/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Lignans/pharmacology , Killer Cells, Natural/metabolism
6.
Eur Arch Otorhinolaryngol ; 280(9): 4239-4253, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37204444

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSC) poses a global health challenge. Effective biomarkers for early detection are necessary to improve the survival rate of HNSC patient. The purpose of this study was using integrated bioinformatic analysis to investigate the potential biological roles of GSDME in HNSC. METHODS: The Gene Expression Omnibus (GEO) and Cancer Gnome Atlas (TCGA) databases were used to analyze the expression of GSDME in different cancer types. The correlation between GSDME expression and immune cell infiltration or immune checkpoint genes was examined by Spearman correlation analysis. DNA methylation analysis of the GSDME gene was conducted using the MethSurv database. Kaplan-Meier (K-M) survival curves, diagnostic receiver operating characteristic (ROC) curves, nomogram model, and Cox regression analysis were chosen to evaluate the diagnostic and prognostic predictive value of GSDME. Connectivity Map (Cmap) online platform, Protein Data Bank (PDB) database and Chem3D, AutoDock Tool and PyMol software were used to predict and visualize potential molecular drugs aimed for GSDME. RESULTS: GSDME expression level in HNSC was significantly higher than in the controls (p < 0.001). Differentially expressed genes (DEGs) correlation with GSDME were enriched in the GO pathways, such as protein activation cascade, complement activation and classical pathway (p < 0.05). According to GSEA, GSDME-associated differentially expressed genes were significantly enriched in KRAS signaling pathway and cytokine signaling molecule (p < 0.05). There is a significant relation between GSDME expression and immune cell infiltration in HNSC tissues, as well as immune checkpoint genes expression (p < 0.001). DNA methylation status of cg17790129 CpG islands of GSDME gene is correlated with HNSC prognosis (p < 0.05). Based on Cox regression analysis of HNSC patients, GSDME as a potential risk gene has high correlation with overall survival (OS) and disease specific survival (DSS) (p < 0.05). In a ROC curve analysis, HNSC tissues were differentiated from adjacent peritumoral tissues based on GSDME expression levels (AUC = 0.928). Totally six potential drugs targeted for GSDME were screened and the molecular docking tests between GSDME protein and candidate drugs were conducted. CONCLUSIONS: GSDME is a promising therapeutic target as well as a potential clinical biomarker in HNSC patients.


Subject(s)
Head and Neck Neoplasms , Nomograms , Humans , Prognosis , Molecular Docking Simulation , Squamous Cell Carcinoma of Head and Neck/diagnosis , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics
7.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3589-3601, 2023 Jul.
Article in Zh | MEDLINE | ID: mdl-37474992

ABSTRACT

This study aimed to explore the anti-glioma effect of natural compound pterostilbene(PTE) through regulating pyroptosis and apoptosis pathways, and to analyze the possible anti-glioma pathways and targets of PTE by network pharmacology and molecular docking. In this study, the action targets of PTE and the glioma targets were obtained by network pharmacology to construct a target network and a protein-protein interaction(PPI) network to predict the possible action targets of PTE against glioma. Molecular docking was performed on the core targets by AutoDock and the action pathways of PTE against glioma were predicted by enrichment analysis. In addition, the effect of PTE on the viability of U87MG and GL261 glioma cells was detected by CCK-8 assay. Clone formation assay and cell scratching assay were used to explore the effect of different concentrations of PTE on the proliferation and migration, respectively of glioma cells. Hoechst staining was used to observe PTE-induced apoptosis in glioma cells. The changes in mitochondrial membrane potential were detected by JC-1 staining. The pyroptosis-inducing effect of PTE on glioma cells was observed by inverted microscopy and lactate dehydrogenase(LDH) assay. Hoechst 33342/PI dual staining assay was performed to detect the integrity of glioma cell membranes. The expressions of pyroptosis and apoptosis-related proteins in glioma cells after PTE induction were determined by Western blot. In this study, 37 anti-glioma targets of PTE were obtained, and enrichment analysis suggested that PTE exerted anti-glioma effects through various signaling pathways including cancer pathway, proteoglycan in cancer, PI3K/AKT pathway, and apoptosis regulatory pathway. Molecular docking revealed that PTE had good binding activity with the main targets. Compared with the control group, PTE significantly reduced the viability as well as the proliferation, migration and adhesion abilities of U87MG and GL261 cells; it induced the apoptosis of the two glioma cells and the decrease of mitochondrial membrane potential in U87MG cells, and the effects increased with the increase of drug concentration. Compared with the conditions in the control group, glioma cells in the PTE group had increased pyroptosis-specific appearance and gradually increased LDH release; the number of PI positive cells was significantly elevated with the increase of PTE concentration as revealed by Hoechst 33342/PI staining; the expression levels of apoptosis-related factors cleaved PARP1 and B-cell lymphoma-2(Bcl-2) associated X(BAX) in the PTE group were markedly up-regulated, while the expression level of Bcl-2 was markedly down-regulated; the activation levels of pyroptosis-related proteins cleaved caspase-3 and gasdermin E-N(GSDME-N) had a remarkable rise in the PTE group, while no significant changes were found in the activation levels of gasdermin D-N(GSDMD-N) and cleaved caspase-1. In summary, PTE plays an anti-glioma role by inhibiting cell viability, proliferation, and migration and activating the caspase-3/GSDME-mediated pyroptosis pathway and mitochondrial apoptosis pathway.


Subject(s)
Network Pharmacology , Pyroptosis , Caspase 3/metabolism , Gasdermins , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism
8.
Fish Shellfish Immunol ; 131: 757-765, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36280129

ABSTRACT

Cysteinyl aspartate specific proteinase-3 (Caspase-3) is an important protein involved in the apoptosis and gasdermin E (GSDME)-mediated cell pyroptosis pathways in vertebrates. A Caspase-3 homologue (designated as CgCaspase-3) was previously identified as an immune receptor specific for lipopolysaccharide (LPS) to regulate apoptosis in the Pacific oyster Crassostrea gigas. In the present study, the binding activity of CgCaspase-3 to different pathogen associated molecular patterns (PAMPs) and its effects on CgGSDME translocation in haemocytes were further investigated in C. gigas. The mRNA expression of CgCaspase-3 could be detected in all the tested tissues, including hepatopancreas, labial palp, adductor muscle, gonad, gill, mantle and haemocytes, and it was highly expressed in labial palp, gonad, haemocytes, and adductor muscle. The mRNA expression of CgCaspase-3 in haemocytes increased significantly at 3, 24, 48 and 72 h after LPS stimulation, and it increased significantly at 6, 12, 24 and 48 h after Vibrio splendidus stimulation. The recombinant CgCaspase-3 displayed binding activity towards LPS, mannose (MAN), peptidoglycan (PGN), and polyinosinic-polycytidylic acid potassium salt (Poly (I:C)). The positive signals of CgGSDME on haemocyte membrane became stronger at 3 h after V. splendidus stimulation, compared with that of Seawater group, and the co-localization of CgCaspase-3 and CgGSDME was observed in the haemocyte membrane. After the injection of dsCgCaspase-3, the positive signals of CgGSDME on haemocyte membrane became weaker compared with that of EGFP-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgCaspase-3 was able to bind diverse PAMPs and activate the translocation of CgGSDME in haemocytes of oyster response against pathogen invasion.


Subject(s)
Crassostrea , Animals , Caspase 3/genetics , Caspase 3/metabolism , Lipopolysaccharides/pharmacology , Pathogen-Associated Molecular Pattern Molecules , Immunity, Innate/genetics , Hemocytes , RNA, Messenger/genetics
9.
Ecotoxicol Environ Saf ; 242: 113881, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35863214

ABSTRACT

Cobalt is a transition element that abundantly exists in the environment. Besides direct hypoxia stress, cobalt ions indirectly induce hypoxia-reoxygenation injury (HRI), the main cause of acute kidney injury (AKI), a life-threatening clinical syndrome characterized by the necrosis of the proximal tubular epithelial cells (PTECs) and inflammation. Pyroptosis, a type of inflammatory programmed cell death, might play an essential role in HRI-AKI. However, whether pyroptosis is involved in cobalt chloride (CoCl2)-induced HRI-AKI remains unknown. Autophagy is a cellular biological process maintaining cell homeostasis that is involved in cell damage in AKI, yet the underlying regulatory mechanism of autophagy on pyroptosis has not been fully understood. In this study, the in vitro and in vivo models of CoCl2-induced HRI-AKI were established with HK-2 cell line and C57BL/6J mouse. Pyroptosis-related markers were detected with western blotting and immunofluorescence assays, and results showed that gasdermin E (GSDME)-mediated pyroptosis was involved in the cell damage in HRI-AKI. Specific chemical inhibitors of caspase 3, caspase 8, and caspase 9 significantly inhibited GSDME-mediated pyroptosis, verifying that GSDME-mediated pyroptosis was induced via the activation of caspase 3/8/9. The western blotting and immunofluorescence assays were adopted to detect the accumulation of the autophagosomes, and results suggested that HRI increased the autophagic level. The effects of autophagy on apoptosis and pyroptosis were evaluated using lentivirus transfection assays to knock down autophagy-specific genes atg5 and fip200, and results demonstrated that autophagy induced GSDME-mediated pyroptosis via apoptotic pathways in HRI-AKI. Our results revealed the involvement of GSDME-mediated pyroptosis in CoCl2-induced HRI-AKI and promoted the understanding of the regulatory mechanism of GSDME cleavage. Our study might provide a potential therapeutic target for HRI-AKI, and will be helpful for the risk evaluation of cobalt exposure.


Subject(s)
Acute Kidney Injury , Pyroptosis , Acute Kidney Injury/chemically induced , Animals , Apoptosis , Autophagy , Caspase 3/metabolism , Cobalt/toxicity , Humans , Hypoxia , Mice , Mice, Inbred C57BL , Pore Forming Cytotoxic Proteins
10.
J Biol Chem ; 295(4): 1120-1141, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31852739

ABSTRACT

The NLR family pyrin domain containing 3 (NLRP3) inflammasome is one of the best-characterized inflammasomes in humans and other mammals. However, knowledge about the NLRP3 inflammasome in nonmammalian species remains limited. Here, we report the molecular and functional identification of an NLRP3 homolog (DrNLRP3) in a zebrafish (Danio rerio) model. We found that DrNLRP3's overall structural architecture was shared with mammalian NLRP3s. It initiates a classical inflammasome assembly for zebrafish inflammatory caspase (DrCaspase-A/-B) activation and interleukin 1ß (DrIL-1ß) maturation in an apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent manner, in which DrNLRP3 organizes DrASC into a filament that recruits DrCaspase-A/-B by homotypic pyrin domain (PYD)-PYD interactions. DrCaspase-A/-B activation in the DrNLRP3 inflammasome occurred in two steps, with DrCaspase-A being activated first and DrCaspase-B second. DrNLRP3 also directly activated full-length DrCaspase-B and elicited cell pyroptosis in a gasdermin E (GSDME)-dependent but ASC-independent manner. These two events were tightly coordinated by DrNLRP3 to ensure efficient IL-1ß secretion for the initiation of host innate immunity. By knocking down DrNLRP3 in zebrafish embryos and generating a DrASC-knockout (DrASC-/-) fish clone, we characterized the function of the DrNLRP3 inflammasome in anti-bacterial immunity in vivo The results of our study disclosed the origin of the NLRP3 inflammasome in teleost fish, providing a cross-species understanding of the evolutionary history of inflammasomes. Our findings also indicate that the NLRP3 inflammasome may coordinate inflammatory cytokine processing and secretion through a GSDME-mediated pyroptotic pathway, uncovering a previously unrecognized regulatory function of NLRP3 in both inflammation and cell pyroptosis.


Subject(s)
Cytoskeletal Proteins/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Receptors, Estrogen/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Caspases/metabolism , HEK293 Cells , Humans , Mice , Protein Aggregates , Receptors, Estrogen/chemistry , Zebrafish Proteins/chemistry
11.
Int J Cancer ; 148(12): 2872-2883, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33186472

ABSTRACT

Gasdermin E (GSDME), a gene originally involved in hereditary hearing loss, has been associated with several types of cancer in the last two decades. Recently, GSDME was identified as a pore-forming molecule, which is activated following caspase-3-mediated cleavage resulting in so-called secondary necrosis following apoptotic cell death, or in primary necrotic cell death without an apoptotic phase, so-called pyroptosis-like. This implication in cell death execution suggests its potential role as a tumor suppressor. GSDME also exhibited a cancer type-specific differential methylation pattern between tumor tissues and normal cells, implying GSDME gene methylation as both a pan-cancer and cancer type-specific detection biomarker. A bit paradoxically, GSDME protein expression is considered to be less suited as biomarker, and although its ablation does not protect the cell against eventual cell death, its protein expression might still operate in tumor immunogenicity due to its capacity to induce (secondary) necrotic cell death, which has enhanced immunogenic properties. Additionally, GSDME gene expression has been shown to be associated with favorable prognosis following chemotherapy, and it could therefore be a potential predictive biomarker. We provide an overview of the different associations between GSDME gene methylation, gene expression and tumorigenesis, and explore their potential use in the clinic. Our review only focuses on GSDME and summarizes the current knowledge and most recent advances on GSDME's role in cancer formation, its potential as a biomarker in cancer and on its promising role in immunotherapies and antitumor immune response.


Subject(s)
DNA Methylation , Neoplasms/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Biomarkers, Tumor/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Prognosis
12.
Acta Pharmacol Sin ; 42(1): 68-76, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32457417

ABSTRACT

Programmed cell death (PCD), including apoptosis, apoptotic necrosis, and pyroptosis, is involved in various organ dysfunction syndromes. Recent studies have revealed that a substrate of caspase-3, gasdermin E (GSDME), functions as an effector for pyroptosis; however, few inhibitors have been reported to prevent pyroptosis mediated by GSDME. Here, we developed a class of GSDME-derived inhibitors containing the core structure of DMPD or DMLD. Ac-DMPD-CMK and Ac-DMLD-CMK could directly bind to the catalytic domains of caspase-3 and specifically inhibit caspase-3 activity, exhibiting a lower IC50 than that of Z-DEVD-FMK. Functionally, Ac-DMPD/DMLD-CMK substantially inhibited both GSDME and PARP cleavage by caspase-3, preventing apoptotic and pyroptotic events in hepatocytes and macrophages. Furthermore, in a mouse model of bile duct ligation that mimics intrahepatic cholestasis-related acute hepatic failure, Ac-DMPD/DMLD-CMK significantly alleviated liver injury. Together, this study not only identified two specific inhibitors of caspase-3 for investigating PCD but also, more importantly, shed light on novel lead compounds for treating liver failure and organ dysfunctions caused by PCD.


Subject(s)
Amino Acid Chloromethyl Ketones/therapeutic use , Caspase 3/metabolism , Caspase Inhibitors/therapeutic use , Liver Diseases/prevention & control , Oligopeptides/therapeutic use , Protective Agents/therapeutic use , Amino Acid Chloromethyl Ketones/chemistry , Animals , Apoptosis/drug effects , Bile Ducts/surgery , Caspase Inhibitors/chemistry , Cell Line, Tumor , Humans , Ligation , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Oligopeptides/chemistry , Peptide Fragments/chemistry , Protective Agents/chemistry , Pyroptosis/drug effects , Receptors, Estrogen/chemistry
13.
Apoptosis ; 24(9-10): 703-717, 2019 10.
Article in English | MEDLINE | ID: mdl-31175486

ABSTRACT

ATP acts as a canonical activator to induce NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome activation in macrophages, leading to caspase-1/gasdermin D (GSDMD)-mediated pyroptosis. It remains unclear whether ATP can induce pyroptosis in macrophages when the NLRP3 pathway is blocked by pathogenic infection. In this study, we used cellular models to mimic such blockade of NLRP3 activation: bone marrow-derived macrophages (BMDMs) treated with NLRP3-specific inhibitor MCC950 and RAW264.7 cells deficient in ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) expression. The results showed that ATP treatment induced lytic cell death morphologically resembling canonical pyroptosis in both MCC950-treated BMDMs and RAW264.7 cells, but did not cause the activation of caspase-1 (by detecting caspase-1p10 and mature interleukin-1ß) and cleavage of GSDMD. Instead, both apoptotic initiator (caspase-8 and -9) and executioner (caspase-3 and -7) caspases were evidently activated and gasdermin E (GSDME) was cleaved to generate its N-terminal fragment (GSDME-NT) which executes pyroptosis. The GSDME-NT production and lytic cell death induced by ATP were diminished by caspase-3 inhibitor. In BMDMs without MCC950 treatment, ATP induced the formation of ASC specks which were co-localized with caspase-8; with MCC950 treatment, however, ATP did not induced the formation of ASC specks. In RAW264.7 cells, knockdown of GSDME by small interfering RNA attenuated ATP-induced lytic cell death and HMGB1 release into culture supernatants. Collectively, our results indicate that ATP induces pyroptosis in macrophages through the caspase-3/GSDME axis when the canonical NLRP3 pathway is blocked, suggestive of an alternative mechanism for combating against pathogen evasion.


Subject(s)
Adenosine Triphosphate/pharmacology , Caspase 3/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neoplasm Proteins/metabolism , Pyroptosis/drug effects , Adenosine Triphosphate/metabolism , Animals , Caspase 1/metabolism , Caspase 8/metabolism , Caspases/metabolism , Inflammasomes/metabolism , Macrophages/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RAW 264.7 Cells , RNA Interference
14.
Zhongguo Fei Ai Za Zhi ; 27(7): 529-534, 2024 Jul 20.
Article in Zh | MEDLINE | ID: mdl-39147707

ABSTRACT

Lung cancer causes a significant threat to human health. Despite considerable advancements in the treatment technologies in recent years, the five-year survival rate for lung cancer patients remains low. In this context, the discovery of pyroptosis, a unique cell death mechanism, offers a novel perspective for exploring new pathways of lung cancer treatment. Particularly, the role of gasdermin E (GSDME) in the process of pyroptosis reveals its tremendous potential in lung cancer therapy. Recent studies have made considerable progress in understanding the role of GSDME-mediated pyroptosis in lung cancer growth, the lung cancer microenvironment, and the effect of GSDME methylation on lung cancer treatment. This paper summarizes these research advancements and analyzes the potential and possible side effects of GSDME-mediated pyroptosis in lung cancer therapy, aiming to provide a theoretical foundation for developing more effective strategies for lung cancer treatment.
.


Subject(s)
Lung Neoplasms , Pyroptosis , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Gasdermins
15.
Food Chem Toxicol ; 184: 114411, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128689

ABSTRACT

Acute kidney injury (AKI) induced by diquat (DQ) progresses rapidly, leading to high mortality, and there is no specific antidote for this chemical. Our limited knowledge of the pathogenic toxicological mechanisms of DQ has hindered the development of treatments against DQ poisoning. Pyroptosis is a form of programmed cell death and was recently identified as a novel molecular mechanism of drug-induced AKI. To explore the role of pyroptosis in HK-2 cells exposed to DQ, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDME. Proteomics analysis was performed to explore the mechanism of DQ induced nephrotoxicity. FerroOrange probe was used to measure the intracellular Fe2+ levels. Herein, we show that DQ induces pyroptosis in HK-2 cells. Mechanistically, DQ induces the accumulation of mitochondrial ROS and initiates the cleavage of gasdermin E (GSDME) in an intrinsic mitochondrial pathway. Knockout of GSDME attenuated DQ-induced cell death. Further analysis revealed that loss of FTH1 induces Fe2+ accumulation, contributing to DQ-induced pyroptosis. Knockdown LC3B could help restore the expression of FTH1 and improve cell viability. Moreover, we found DFO, an iron chelator, could reduce cellular Fe2+ levels and inhibit pyroptosis. Collectively, these findings suggest an unrecognized mechanism for GSDME-dependent pyroptosis in DQ-induced AKI.


Subject(s)
Acute Kidney Injury , Pyroptosis , Humans , Diquat , Gasdermins , Autophagy , Acute Kidney Injury/chemically induced , Kidney , Caspase 3 , Ferritins , Oxidoreductases
16.
Cancer Lett ; 588: 216797, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38462032

ABSTRACT

Induction of pyroptosis is proposed as a promising strategy for the treatment of hematological malignancies, but little is known. In the present study, we find clioquinol (CLQ), an anti-parasitic drug, induces striking myeloma and leukemia cell pyroptosis on a drug screen. RNA sequencing reveals that the interferon-inducible genes IFIT1 and IFIT3 are markedly upregulated and are essential for CLQ-induced GSDME activation and cell pyroptosis. Specifically, IFIT1 and IFIT3 form a complex with BAX and N-GSDME therefore directing N-GSDME translocalization to mitochondria and increasing mitochondrial membrane permeabilization and triggering pyroptosis. Furthermore, venetoclax, an activator of BAX and an inhibitor of Bcl-2, displays strikingly synergistic effects with CLQ against leukemia and myeloma via pyroptosis. This study thus reveals a novel mechanism for mitochondrial GSDME in pyroptosis and it also illustrates that induction of IFIT1/T3 and inhibition of Bcl-2 orchestrate the treatment of leukemia and myeloma via pyroptosis.


Subject(s)
Leukemia , Multiple Myeloma , Humans , Pyroptosis , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , bcl-2-Associated X Protein/metabolism , Mitochondria/metabolism , RNA-Binding Proteins/metabolism , Leukemia/metabolism , Caspase 3/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
17.
Inflammation ; 47(3): 921-938, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38133702

ABSTRACT

Rheumatoid arthritis (RA) is an enduring, progressive autoimmune disorder. Abnormal activation of fibroblast-like synoviocytes (FLSs) has been proposed as the initiating factor for inflammation of the synovium and bone destruction. Neutrophil extracellular traps (NETs), which are web-like structures composed of DNA, histones, and granule proteins, are involved in the development of RA in multiple aspects. Pyroptosis, gasdermin-mediated inflammatory programmed cell death, plays a vital function in the etiopathogenesis of RA. However, the exact mechanism underlying NETs-induced pyroptosis in FLSs of RA and its impact on cellular pathogenic behavior remain undefined. In this study, we demonstrated that gasdermin E (GSDME) expression was upregulated in RA plasma and synoviums, which was positively correlated with the elevated cell-free DNA (cfDNA) and citrullinated histone 3 (Cit H3) levels in the plasma. Additionally, in vitro experiments have shown that NETs triggered caspase 3/GSDME-mediated pyroptosis in RA-FLSs, characterized by decreased cell viability, cell membrane blebbing, and rupture, as well as increased levels of pyroptosis-related proteins and pro-inflammatory cytokines. Again, silencing GSDME significantly inhibited pyroptosis and suppressed the migration, invasion, and secretion of pro-inflammatory cytokines in RA-FLSs. Furthermore, we also found that the nuclear factor-kappa B (NF-κB) pathway, serving as an upstream mechanism, was involved in FLS pyroptosis. In conclusion, our investigation indicated that NETs could induce RA-FLS pyroptosis and facilitate phenotypic transformation through targeting the NF-κB/caspase 3/GSDME axis. This is the first to explore the crucial role of NETs-induced FLS pyroptosis in the progression of RA, providing novel targets for the clinical management of refractory RA.


Subject(s)
Arthritis, Rheumatoid , Caspase 3 , Extracellular Traps , NF-kappa B , Pyroptosis , Synoviocytes , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Humans , Extracellular Traps/metabolism , Pyroptosis/physiology , Synoviocytes/metabolism , Synoviocytes/pathology , NF-kappa B/metabolism , Caspase 3/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Signal Transduction , Neutrophils/metabolism , Cells, Cultured , Male , Female , Gasdermins
18.
Front Physiol ; 15: 1357285, 2024.
Article in English | MEDLINE | ID: mdl-38645692

ABSTRACT

Cell death is an essential cellular mechanism that ensures quality control and whole-body homeostasis. Various modes of cell death have been studied and detailed. Unbalanced cell death can lead to uncontrolled cell proliferation (i.e., tumors) or excessive loss of cells (i.e., ischemia injury tissue loss). Thus, it is imperative for modes of cell death to be balanced and controlled. Here, we will focus on a recent mode of cell death called pyroptosis. While extensive studies have shown the role of this route of cell death in macrophages and monocytes, evidence for pyroptosis have expanded to encompass other pathologies, including cancer and cardiac diseases. Herein, we provide a brief review on pyroptosis and discuss current gaps in knowledge and scientific advances in cardiac pyroptosis in recent years. Lastly, we provide conclusions and prospective on the relevance to various cardiac diseases.

19.
ACS Nano ; 18(26): 16658-16673, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38907726

ABSTRACT

Current therapies primarily targeting inflammation often fail to address the root relationship between intestinal mucosal integrity and the resulting dysregulated cell death and ensuing inflammation in ulcerative colitis (UC). First, UC tissues from human and mice models in this article both emphasize the crucial role of Gasdermin E (GSDME)-mediated pyroptosis in intestinal epithelial cells (IECs) as it contributes to colitis by releasing proinflammatory cytokines, thereby compromising the intestinal barrier. Then, 4-octyl-itaconate (4-OI), exhibiting potential for anti-inflammatory activity in inhibiting pyroptosis, was encapsulated by butyrate-modified liposome (4-OI/BLipo) to target delivery for IECs. In brief, 4-OI/BLipo exhibited preferential accumulation in inflamed colonic epithelium, attributed to over 95% of butyrate being produced and absorbed in the colon. As expected, epithelium barriers were restored significantly by alleviating GSDME-mediated pyroptosis in colitis. Accordingly, the permeability of IECs was restored, and the resulting inflammation, mucosal epithelium, and balance of gut flora were reprogrammed, which offers a hopeful approach to the effective management of UC.


Subject(s)
Colitis, Ulcerative , Epithelial Cells , Intestinal Mucosa , Pyroptosis , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Pyroptosis/drug effects , Animals , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Mice , Humans , Epithelial Cells/drug effects , Epithelial Cells/pathology , Epithelial Cells/metabolism , Liposomes/chemistry , Mice, Inbred C57BL , Drug Delivery Systems
20.
Elife ; 122024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489483

ABSTRACT

Caspase (CASP) is a family of proteases involved in cleavage and activation of gasdermin, the executor of pyroptosis. In humans, CASP3 and CASP7 recognize the same consensus motif DxxD, which is present in gasdermin E (GSDME). However, human GSDME is cleaved by CASP3 but not by CASP7. The underlying mechanism of this observation is unclear. In this study, we identified a pyroptotic pufferfish GSDME that was cleaved by both pufferfish CASP3/7 and human CASP3/7. Domain swapping between pufferfish and human CASP and GSDME showed that the GSDME C-terminus and the CASP7 p10 subunit determined the cleavability of GSDME by CASP7. p10 contains a key residue that governs CASP7 substrate discrimination. This key residue is highly conserved in vertebrate CASP3 and in most vertebrate (except mammalian) CASP7. In mammals, the key residue is conserved in non-primates (e.g., mouse) but not in primates. However, mouse CASP7 cleaved human GSDME but not mouse GSDME. These findings revealed the molecular mechanism of CASP7 substrate discrimination and the divergence of CASP3/7-mediated GSDME activation in vertebrate. These results also suggested that mutation-mediated functional alteration of CASP probably enabled the divergence and specialization of different CASP members in the regulation of complex cellular activities in mammals.


Cell death is essential for an organism to develop and survive as it plays key roles in processes such as embryo development and tissue regeneration. Cell death is also an important form of defence during an infection. A form of programmed cell death known as pyroptosis can be induced in infected cells, which helps to kill the infectious agent as well as alert the immune system to the infection. Pyroptosis is driven by Gasdermin E, a protein made up of two domains. At one end of the protein, the 'N-terminal' domain punctures holes in cell membranes, which can lead to cell death. At the other end, the 'C-terminal' domain inhibits the activity of the N-terminal domain. A family of proteins called caspases activate Gasdermin E by cleaving it, which releases the N-terminal domain from the inhibitory C-terminal domain. In humans, two caspases known as CASP3 and CASP7 recognize a specific sequence of amino acids ­ the building blocks of proteins ­ in Gasdermin E. However, only CASP3 is able to cleave the protein. After discovering that, unlike in humans, pufferfish Gasdermin E can be cleaved by both CASP3 and CASP7, Xu et al. wanted to investigate the underlying mechanisms behind this difference. Swapping the domains of human and pufferfish Gasdermin E and creating different versions of CASP7 revealed that the C-terminal domain of Gasdermin E and a single amino acid in CASP7 determine whether cleavage is possible. Interestingly, the key amino acid sequence required for cleavage by CASP7 is present in most vertebrate CASP3 and CASP7 proteins. However, it is absent in most mammalian CASP7. The findings of Xu et al. suggest that the different activity of human CASP7 and CASP3 is driven by a single amino acid mutation. This change likely played an important role in the process of different CASP proteins evolving to regulate different cellular activities in mammalian cells. This knowledge will be useful for future studies on the evolution and specialization of other closely related proteins.


Subject(s)
Gasdermins , Pyroptosis , Humans , Animals , Mice , Caspase 3/metabolism , Pyroptosis/genetics , Caspases/genetics , Caspases/metabolism , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL