Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proc Natl Acad Sci U S A ; 119(34): e2111932119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969762

ABSTRACT

Glutamate-gated chloride channels (GluCls) are unique to invertebrates and are targeted by macrocyclic lactones. In this study, we cloned an AVR-14B GluCl subunit from adult Brugia malayi, a causative agent of lymphatic filariasis in humans. To elucidate this channel's pharmacological properties, we used Xenopus laevis oocytes for expression and performed two-electrode voltage-clamp electrophysiology. The receptor was gated by the natural ligand L-glutamate (effective concentration, 50% [EC50] = 0.4 mM) and ivermectin (IVM; EC50 = 1.8 nM). We also characterized the effects of nodulisporic acid (NA) on Bma-AVR-14B and NA-produced dual effects on the receptor as an agonist and a type II positive allosteric modulator. Here we report characterization of the complex activity of NA on a nematode GluCl. Bma-AVR-14B demonstrated some unique pharmacological characteristics. IVM did not produce potentiation of L-glutamate-mediated responses but instead, reduced the channel's sensitivity for the ligand. Further electrophysiological exploration showed that IVM (at a moderate concentration of 0.1 nM) functioned as an inhibitor of both agonist and positive allosteric modulatory effects of NA. This suggests that IVM and NA share a complex interaction. The pharmacological properties of Bma-AVR-14B indicate that the channel is an important target of IVM and NA. In addition, the unique electrophysiological characteristics of Bma-AVR-14B could explain the observed variation in drug sensitivities of various nematode parasites. We have also shown the inhibitory effects of IVM and NA on adult worm motility using Worminator. RNA interference (RNAi) knockdown suggests that AVR-14 plays a role in influencing locomotion in B. malayi.


Subject(s)
Brugia malayi , Chloride Channels , Indoles , Animals , Brugia malayi/drug effects , Brugia malayi/genetics , Brugia malayi/metabolism , Chloride Channels/drug effects , Chloride Channels/genetics , Chloride Channels/metabolism , Glutamic Acid/metabolism , Indoles/pharmacology , Ivermectin/pharmacology , Ligands
2.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370666

ABSTRACT

Albendazole and ivermectin are the two most commonly co-administered anthelmintic drugs in mass-drug administration programs worldwide. Despite emerging resistance, we do not fully understand the mechanisms of resistance to these drugs nor the consequences of delivering them in combination. Albendazole resistance has primarily been attributed to variation in the drug target, a beta-tubulin gene. Ivermectin targets glutamate-gated chloride channel (GluCl) genes, but it is unknown whether these genes are involved in ivermectin resistance in nature. Using Caenorhabditis elegans, we defined the fitness costs associated with loss of the drug target genes singly or in combinations of the genes that encode GluCl subunits. We quantified the loss-of function effects on three traits: (i) multi-generational competitive fitness, (ii) fecundity, and (iii) development. In competitive fitness and development assays, we found that a deletion of the beta-tubulin gene ben-1 conferred albendazole resistance, but ivermectin resistance required loss of two GluCl genes (avr-14 and avr-15) or loss of three GluCl genes (avr-14, avr-15, and glc-1). The fecundity assays revealed that loss of ben-1 did not provide any fitness benefit in albendazole and that no GluCl deletion mutants were resistant to ivermectin. Next, we searched for evidence of multi-drug resistance across the three traits. Loss of ben-1 did not confer resistance to ivermectin, nor did loss of any single GluCl subunit or combination confer resistance to albendazole. Finally, we assessed the development of 124 C. elegans wild strains across six benzimidazoles and seven macrocyclic lactones to identify evidence of multi-drug resistance between the two drug classes and found a strong phenotypic correlation within a drug class but not across drug classes. Because each gene affects various aspects of nematode physiology, these results suggest that it is necessary to assess multiple fitness traits to evaluate how each gene contributes to anthelmintic resistance.

3.
Cell Rep ; 42(9): 113075, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37691148

ABSTRACT

The capacity of animals to respond to hazardous stimuli in their surroundings is crucial for their survival. In mammals, complex evaluations of the environment require large numbers and different subtypes of neurons. The nematode C. elegans avoids hazardous chemicals they encounter by reversing their direction of movement. How does the worms' compact nervous system process the spatial information and direct motion change? We show here that a single interneuron, AVA, receives glutamatergic excitatory and inhibitory signals from head and tail sensory neurons, respectively. AVA integrates the spatially distinct and opposing cues, whose output instructs the animal's behavioral decision. We further find that the differential activation of AVA stems from distinct localization of inhibitory and excitatory glutamate-gated receptors along AVA's process and from different threshold sensitivities of the sensory neurons. Our results thus uncover a cellular mechanism that mediates spatial computation of nociceptive cues for efficient decision-making in C. elegans.

4.
Biomed Pharmacother ; 145: 112380, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34749053

ABSTRACT

BACKGROUND AND PURPOSE: Nematode glutamate-gated chloride channels (GluCls) are targets of ivermectin (IVM) and moxidectin (MOX), structurally dissimilar macrocyclic lactone (ML) anthelmintics. IVM and MOX possess different pharmacokinetics and efficacy profiles but are thought to have the same binding site, through which they allosterically activate GluCls, apart from the GLC-2 receptor, which is antagonized by IVM. Our goal was to determine GLC-2 sensitivity to MOX, investigate residues involved in antagonism of GLC-2, and to identify differences in receptor-level pharmacology between IVM and MOX. EXPERIMENTAL APPROACH: Two-electrode voltage clamp electrophysiology was used to study the pharmacology of Caenorhabditis elegans GLC-2 receptors heterologously expressed in Xenopus laevis oocytes. In silico homology modeling identified Cel-GLC-2 residues Met291 and Gln292 at the IVM binding site that differ from other GluCls; we mutated these residues to those found in ML-sensitive GluCls, and those of filarial nematode GLC-2. KEY RESULTS: We discovered that MOX inhibits wild-type C. elegans GLC-2 receptors roughly 10-fold more potently than IVM, and with greater maximal inhibition of glutamate activation (MOX = 86.9 ± 2.5%; IVM = 57.8 ± 5.9%). IVM was converted into an agonist in the Met291Gln mutant, but MOX remained an antagonist. Glutamate responses were abrogated in a Met291Leu Gln292Thr double mutant (mimicking filarial nematode GLC-2), but MOX and IVM were converted into positive allosteric modulators of glutamate at this construct. CONCLUSIONS AND IMPLICATIONS: Our data provides new insights into differences in receptor-level pharmacology between IVM and MOX and identify residues responsible for ML antagonism of GLC-2.


Subject(s)
Anthelmintics/pharmacology , Chloride Channels/antagonists & inhibitors , Ivermectin/pharmacology , Macrolides/pharmacology , Animals , Binding Sites , Caenorhabditis elegans , Female , Oocytes , Patch-Clamp Techniques , Xenopus laevis
5.
Neuropharmacology ; 168: 107751, 2020 05 15.
Article in English | MEDLINE | ID: mdl-31494141

ABSTRACT

Drug-resistant epilepsy remains a significant health-care burden. The most effective treatment is surgery, but this is suitable for very few patients because of the unacceptable consequences of removing brain tissue. In contrast, gene therapy can regulate neuronal excitability in the epileptic focus whilst preserving function. Optogenetics and chemogenetics have the advantage that they are titratable therapies. Optogenetics uses light to control the excitability of specific neuronal populations. Optogenetics can be used in a closed-loop paradigm in which the light source is activated only when seizures are detected. However, expression of foreign proteins raises concerns about immunogenicity. Chemogenetics relies on the modification of an endogenous receptor or the production of a modified chimeric receptor that responds to an exogenous ligand. The main chemogenetic approach applied to epilepsy is to use designer receptors exclusively activated by designer drugs (DREADDs), which have been mainly modified muscarinic receptors or kappa-opioid receptors. Genetically modified human muscarinic receptor DREADDs are activated not by acetylcholine but by specific drugs such as clozapine-n-oxide or olanzepine. The dose of the drugs can be titrated in order to suppress seizures without adverse effects. Lastly, there is a chemogenetic approach that is activated by an endogenous ligand, glutamate. This takes advantage of invertebrate glutamate receptors that are chloride permeable. These bind glutamate released during seizure activity, and the resultant chloride current inhibits neuronal activity. The exogenous ligand, ivermectin, can also be given to reduce neuronal activity either chronically or as a rescue medication. The translation of this technology is hampered by the expression of a foreign protein. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.


Subject(s)
Anticonvulsants/therapeutic use , Brain/drug effects , Drug Resistant Epilepsy/therapy , Genetic Therapy/methods , Optogenetics/methods , Animals , Anticonvulsants/pharmacology , Brain/metabolism , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/metabolism , Epilepsy/genetics , Epilepsy/metabolism , Epilepsy/therapy , Glutamic Acid/metabolism , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/physiology
6.
Evol Appl ; 11(9): 1540-1553, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30344626

ABSTRACT

The frequency of insecticide/acaricide target-site resistance is increasing in arthropod pest populations and is typically underpinned by single point mutations that affect the binding strength between the insecticide/acaricide and its target-site. Theory predicts that although resistance mutations clearly have advantageous effects under the selection pressure of the insecticide/acaricide, they might convey negative pleiotropic effects on other aspects of fitness. If such fitness costs are in place, target-site resistance is thus likely to disappear in the absence of insecticide/acaricide treatment, a process that would counteract the spread of resistance in agricultural crops. Hence, there is a great need to reliably quantify the various potential pleiotropic effects of target-site resistance point mutations on arthropod fitness. Here, we used near-isogenic lines of the spider mite pest Tetranychus urticae that carry well-characterized acaricide target-site resistance mutations to quantify potential fitness costs. Specifically, we analyzed P262T in the mitochondrial cytochrome b, the combined G314D and G326E substitutions in the glutamate-gated chloride channels, L1024V in the voltage-gated sodium channel, and I1017F in chitin synthase 1. Five fertility life table parameters and nine single-generation life-history traits were quantified and compared across a total of 15 mite lines. In addition, we monitored the temporal resistance level dynamics of populations with different starting frequency levels of the chitin synthase resistant allele to further support our findings. Three target-site resistance mutations, I1017F and the co-occurring G314D and G326E mutations, were shown to significantly and consistently alter certain fitness parameters in T. urticae. The other two mutations (P262T and L1024V) did not result in any consistent change in a fitness parameter analyzed in our study. Our findings are discussed in the context of the global spread of T. urticae pesticide resistance and integrated pest management.

7.
Neurotoxicology ; 60: 240-244, 2017 May.
Article in English | MEDLINE | ID: mdl-27153748

ABSTRACT

The okaramine indole alkaloids were recently shown to be more selective than ivermectin in activating the glutamate-gated chloride channels of the silkworm larvae of Bombyx mori (BmGluCls). Those studies were carried out using the exon 3b variant as a representative of BmGluCls. However, it remains unknown whether okaramines are similarly effective on other silkworm GluCl variants and whether they share the same binding site as ivermectin on GluCls. To begin to address these questions, we examined the potency of four okaramines on the exon 3c variant of BmGluCls by two-electrode voltage clamp voltage recordings of glutamate-induced chloride currents. The potency of okaramines in activating the exon 3c BmGluCl agreed well with findings on the exon 3b BmGluCl and insecticidal potency. Okaramine B (10µM) reduced the maximum binding (Bmax) but not the dissociation constant (KD) of [3H]ivermectin in studies on plasma membrane fractions of HEK293 cells expressing the exon 3c variant. These findings indicate that activation of GluCls is important in the insecticidal actions of okaramines.


Subject(s)
Azetidines/pharmacology , Azocines/pharmacology , Chloride Channels/genetics , Chloride Channels/physiology , Exons , Indole Alkaloids/pharmacology , Insecticides/pharmacology , Animals , Bombyx , HEK293 Cells , Humans , Ivermectin/pharmacology , Larva/drug effects , Larva/physiology
8.
Int J Parasitol Drugs Drug Resist ; 4(2): 71-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25057456

ABSTRACT

Glutamate-gated chloride channels (GluCl) are targets for avermectin/milbemycin (A/M) anthelmintics such as ivermectin that cause paralysis of somatic and pharyngeal muscles in gastrointestinal nematodes. Ivermectin is useful for onchocerciasis control programs because of its activity against microfilariae that often cause ocular disease and severe dermatitis. However, mechanisms responsible for reduced microfilaria production by adult worms following ivermectin treatment are poorly understood. We synthesized subunit-specific RNA probes for the Brugia malayi GluCl gene avr-14 (BmAVR-14) to localize expression of this gene in adult filarial worms. Both subunits of BmAVR-14 exhibited very similar expression patterns. In female worms, strong expression signals were detected in the ovary, developing embryos and lateral hypodermal chords, with moderate expression in the uterus wall adjacent to stretched microfilariae. These genes were also highly expressed in adult male worms (in spermatogonia, in the wall of the vas deferens, and in the lateral chords, but not in mature spermatozoa). In addition, avr-14 was highly expressed in somatic muscles adjacent to the terminal end of the vas deferens which contains mature sperm. These results show that avr-14 is highly expressed in B. malayi developing embryos and reproductive tissues, and they provide evidence for the involvement of GluCl in gamete production and embryogenesis in filarial worms. This may explain the observed suppression of microfilaria (Mf) production by female worms following treatment with avermectin/milbemycin anthelmintics.

9.
Mol Biochem Parasitol ; 193(1): 1-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24412397

ABSTRACT

Intestinal nematodes or roundworms (aka soil-transmitted helminths or STHs) cause great disease. They infect upwards of two billion people, leading to high morbidity and a range of health problems, especially in infected children and pregnant women. Development of resistance to the two main classes of drugs used to treat intestinal nematode infections of humans has been reported. To fight STH infections, we need new and more effective drugs and ways to improve the efficacy of the old drugs. One promising alternative drug is nitazoxanide (NTZ). NTZ, approved for treating human protozoan infections, was serendipitously shown to have therapeutic activity against STHs. However, its mechanism of action against nematodes is not known. Using the laboratory nematode Caenorhabditis elegans, we show that NTZ acts on the nematodes through avr-14, an alpha-type subunit of a glutamate-gated chloride ion channel known for its role in ivermectin susceptibility. In addition, a forward genetic screen to select C. elegans mutants resistant to NTZ resulted in isolation of two NTZ resistant mutants that are not in avr-14, suggesting that additional mechanisms are involved in resistance to NTZ. We found that NTZ combines synergistically with other classes of anthelmintic drugs, i.e. albendazole and pyrantel, making it a good candidate for further studies on its use in drug combination therapy of STH infections. Given NTZ acts against a wide range of nematode parasites, our findings also validate avr-14 as an excellent target for pan-STH therapy.


Subject(s)
Anthelmintics/pharmacology , Caenorhabditis elegans/drug effects , Chloride Channels/antagonists & inhibitors , Thiazoles/pharmacology , Albendazole/pharmacology , Animals , Caenorhabditis elegans/enzymology , Drug Synergism , Nitro Compounds , Pyrantel/pharmacology
10.
Int J Parasitol ; 43(11): 917-27, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23911309

ABSTRACT

Clade V nematodes comprise several parasitic species that include the cyathostomins, primary helminth pathogens of horses. Next generation transcriptome datasets are available for eight parasitic clade V nematodes, although no equine parasites are included in this group. Here, we report next generation transcriptome sequencing analysis for the common cyathostomin species, Cylicostephanus goldi. A cDNA library was generated from RNA extracted from 17 C. goldi male and female adult parasites. Following sequencing using a 454 GS FLX pyrosequencer, a total of 475,215 sequencing reads were generated, which were assembled into 26,910 contigs. Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, 27% of the transcriptome was annotated. Further in-depth analysis was carried out by comparing the C. goldi dataset with the next generation transcriptomes and genomes of other clade V nematodes, with the Oesophagostomum dentatum transcriptome and the Haemonchus contortus genome showing the highest levels of sequence identity with the cyathostomin dataset (45%). The C. goldi transcriptome was mined for genes associated with anthelmintic mode of action and/or resistance. Sequences encoding proteins previously associated with the three major anthelmintic classes used in horses were identified, with the exception of the P-glycoprotein group. Targeted resequencing of the glutamate gated chloride channel α4 subunit (glc-3), one of the primary targets of the macrocyclic lactone anthelmintics, was performed for several cyathostomin species. We believe this study reports the first transcriptome dataset for an equine helminth parasite, providing the opportunity for in-depth analysis of these important parasites at the molecular level. Sequences encoding enzymes involved in key processes and genes associated with levamisole/pyrantel and macrocyclic lactone resistance, in particular the glutamate gated chloride channels, were identified. This novel data will inform cyathostomin biology and anthelmintic resistance studies in future.


Subject(s)
Anthelmintics/pharmacology , Gene Expression Profiling , Strongyloidea/drug effects , Strongyloidea/genetics , Animals , Female , Male , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL