Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 999
Filter
Add more filters

Publication year range
1.
Brain ; 147(2): 680-697, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37831655

ABSTRACT

Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.


Subject(s)
Cortical Spreading Depression , Epilepsy , Migraine Disorders , Migraine with Aura , Mice , Animals , Migraine with Aura/genetics , Mice, Transgenic , Calcium Channels, N-Type/genetics , Calcium/metabolism , Migraine Disorders/genetics , Mutation/genetics , Cortical Spreading Depression/physiology
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38615240

ABSTRACT

The mismatch negativity and the P3a of the event-related EEG potential reflect the electrocortical response to a deviant stimulus in a series of stimuli. Although both components have been investigated in various paradigms, these paradigms usually incorporate many repetitions of the same deviant, thus leaving open whether both components vary as a function of the deviant's position in a series of deviant stimuli-i.e. whether they are subject to qualitative/quantitative habituation from one instantiation of a deviant to the next. This is so because the detection of mismatch negativity/P3a in the event-related EEG potential requires an averaging over dozens or hundreds of stimuli, i.e. over many instantiations of the deviant per participant. The present study addresses this research gap. We used a two-tone oddball paradigm implementing only a small number of (deviant) stimuli per participant, but applying it to a large number of participants (n > 230). Our data show that the mismatch negativity amplitude exhibits no decrease as a function of the deviant's position in a series of (standard and) deviant stimuli. Importantly, only after the very first deviant stimulus, a distinct P3a could be detected, indicative of an orienting reaction and an attention shift, and thus documenting a dissociation of mismatch negativity and P3a.


Subject(s)
Caffeine , Habituation, Psychophysiologic , Humans , Evoked Potentials , Electroencephalography
3.
Cell Mol Life Sci ; 81(1): 97, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372750

ABSTRACT

Recent findings show that single, non-neuronal cells are also able to learn signalling responses developing cellular memory. In cellular learning nodes of signalling networks strengthen their interactions e.g. by the conformational memory of intrinsically disordered proteins, protein translocation, miRNAs, lncRNAs, chromatin memory and signalling cascades. This can be described by a generalized, unicellular Hebbian learning process, where those signalling connections, which participate in learning, become stronger. Here we review those scenarios, where cellular signalling is not only repeated in a few times (when learning occurs), but becomes too frequent, too large, or too complex and overloads the cell. This leads to desensitisation of signalling networks by decoupling signalling components, receptor internalization, and consequent downregulation. These molecular processes are examples of anti-Hebbian learning and 'forgetting' of signalling networks. Stress can be perceived as signalling overload inducing the desensitisation of signalling pathways. Ageing occurs by the summative effects of cumulative stress downregulating signalling. We propose that cellular learning desensitisation, stress and ageing may be placed along the same axis of more and more intensive (prolonged or repeated) signalling. We discuss how cells might discriminate between repeated and unexpected signals, and highlight the Hebbian and anti-Hebbian mechanisms behind the fold-change detection in the NF-κB signalling pathway. We list drug design methods using Hebbian learning (such as chemically-induced proximity) and clinical treatment modalities inducing (cancer, drug allergies) desensitisation or avoiding drug-induced desensitisation. A better discrimination between cellular learning, desensitisation and stress may open novel directions in drug design, e.g. helping to overcome drug resistance.


Subject(s)
Learning , Signal Transduction , Chromatin , NF-kappa B
4.
J Neurosci ; 43(44): 7307-7321, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37714707

ABSTRACT

In mouse primary visual cortex (V1), familiar stimuli evoke significantly altered responses when compared with novel stimuli. This stimulus-selective response plasticity (SRP) was described originally as an increase in the magnitude of visual evoked potentials (VEPs) elicited in layer 4 (L4) by familiar phase-reversing grating stimuli. SRP is dependent on NMDA receptors (NMDARs) and has been hypothesized to reflect potentiation of thalamocortical (TC) synapses in L4. However, recent evidence indicates that the synaptic modifications that manifest as SRP do not occur on L4 principal cells. To shed light on where and how SRP is induced and expressed in male and female mice, the present study had three related aims: (1) to confirm that NMDAR are required specifically in glutamatergic principal neurons of V1, (2) to investigate the consequences of deleting NMDAR specifically in L6, and (3) to use translaminar electrophysiological recordings to characterize SRP expression in different layers of V1. We find that knock-out (KO) of NMDAR in L6 principal neurons disrupts SRP. Current-source density (CSD) analysis of the VEP depth profile shows augmentation of short latency current sinks in layers 3, 4, and 6 in response to phase reversals of familiar stimuli. Multiunit recordings demonstrate that increased peak firing occurs in response to phase reversals of familiar stimuli across all layers, but that activity between phase reversals is suppressed. Together, these data reveal important aspects of the underlying phenomenology of SRP and generate new hypotheses for the expression of experience-dependent plasticity in V1.SIGNIFICANCE STATEMENT Repeated exposure to stimuli that portend neither reward nor punishment leads to behavioral habituation, enabling organisms to dedicate attention to novel or otherwise significant features of the environment. The neural basis of this process, which is so often dysregulated in neurologic and psychiatric disorders, remains poorly understood. Learning and memory of stimulus familiarity can be studied in mouse visual cortex by measuring electrophysiological responses to simple phase-reversing grating stimuli. The current study advances knowledge of this process by documenting changes in visual evoked potentials (VEPs), neuronal spiking activity, and oscillations in the local field potentials (LFPs) across all layers of mouse visual cortex. In addition, we identify a key contribution of a specific population of neurons in layer 6 (L6) of visual cortex.


Subject(s)
Evoked Potentials, Visual , Visual Cortex , Humans , Mice , Male , Female , Animals , Learning/physiology , Neurons/physiology , Visual Cortex/physiology , Memory , Photic Stimulation
5.
Diabetologia ; 67(2): 392-402, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010533

ABSTRACT

AIMS/HYPOTHESIS: Impaired awareness of hypoglycaemia (IAH) in type 1 diabetes may develop through a process referred to as habituation. Consistent with this, a single bout of high intensity interval exercise as a novel stress stimulus improves counterregulatory responses (CRR) to next-day hypoglycaemia, referred to as dishabituation. This longitudinal pilot study investigated whether 4 weeks of high intensity interval training (HIIT) has sustained effects on counterregulatory and symptom responses to hypoglycaemia in adults with type 1 diabetes and IAH. METHODS: HIT4HYPOS was a single-centre, randomised, parallel-group study. Participants were identified using the Scottish Diabetes Research Network (SDRN) and from diabetes outpatient clinics in NHS Tayside, UK. The study took place at the Clinical Research Centre, Ninewells Hospital and Medical School, Dundee, UK. Participants were aged 18-55 years with type 1 diabetes of at least 5 years' duration and HbA1c levels <75 mmol/mol (<9%). They had IAH confirmed by a Gold score ≥4, modified Clarke score ≥4 or Dose Adjustment For Normal Eating [DAFNE] hypoglycaemia awareness rating of 2 or 3, and/or evidence of recurrent hypoglycaemia on flash glucose monitoring. Participants were randomly allocated using a web-based system to either 4 weeks of real-time continuous glucose monitoring (RT-CGM) or RT-CGM+HIIT. Participants and investigators were not masked to group assignment. The HIIT programme was performed for 20 min on a stationary exercise bike three times a week. Hyperinsulinaemic-hypoglycaemic (2.5 mmol/l) clamp studies with assessment of symptoms, hormones and cognitive function were performed at baseline and after 4 weeks of the study intervention. The predefined primary outcome was the difference in hypoglycaemia-induced adrenaline (epinephrine) responses from baseline following RT-CGM or RT-CGM+HIIT. RESULTS: Eighteen participants (nine men and nine women) with type 1 diabetes (median [IQR] duration 27 [18.75-32] years) and IAH were included, with nine participants randomised to each group. Data from all study participants were included in the analysis. During the 4 week intervention there were no significant mean (SEM) differences between RT-CGM and RT-CGM+HIIT in exposure to level 1 (28 [7] vs 22 [4] episodes, p=0.45) or level 2 (9 [3] vs 4 [1] episodes, p=0.29) hypoglycaemia. The CGM-derived mean glucose level, SD of glucose and glucose management indicator (GMI) did not differ between groups. During the hyperinsulinaemic-hypoglycaemic clamp studies, mean (SEM) change from baseline was greater for the noradrenergic responses (RT-CGM vs RT-CGM+HIIT: -988 [447] vs 514 [732] pmol/l, p=0.02) but not the adrenergic responses (-298 [687] vs 1130 [747] pmol/l, p=0.11) in those participants who had undergone RT-CGM+HIIT. There was a benefit of RT-CGM+HIIT for mean (SEM) change from baseline in the glucagon CRR to hypoglycaemia (RT-CGM vs RT-CGM+HIIT: 1 [4] vs 16 [6] ng/l, p=0.01). Consistent with the hormone response, the mean (SEM) symptomatic response to hypoglycaemia (adjusted for baseline) was greater following RT-CGM+HIIT (RT-CGM vs RT-CGM+HIIT: -4 [2] vs 0 [2], p<0.05). CONCLUSIONS/INTERPRETATION: In this pilot clinical trial in people with type 1 diabetes and IAH, we found continuing benefits of HIIT for overall hormonal and symptomatic CRR to subsequent hypoglycaemia. Our findings also suggest that HIIT may improve the glucagon response to insulin-induced hypoglycaemia. TRIAL REGISTRATION: ISRCTN15373978. FUNDING: Sir George Alberti Fellowship from Diabetes UK (CMF) and the Juvenile Diabetes Research Foundation.


Subject(s)
Diabetes Mellitus, Type 1 , High-Intensity Interval Training , Hypoglycemia , Adult , Male , Humans , Female , Diabetes Mellitus, Type 1/drug therapy , Blood Glucose Self-Monitoring , Glucagon , Pilot Projects , Blood Glucose/analysis , Hypoglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Epinephrine
6.
Neuroimage ; 294: 120640, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719154

ABSTRACT

Attentional control, guided by top-down processes, enables selective focus on pertinent information, while habituation, influenced by bottom-up factors and prior experiences, shapes cognitive responses by emphasizing stimulus relevance. These two fundamental processes collaborate to regulate cognitive behavior, with the prefrontal cortex and its subregions playing a pivotal role. Nevertheless, the intricate neural mechanisms underlying the interaction between attentional control and habituation are still a subject of ongoing exploration. To our knowledge, there is a dearth of comprehensive studies on the functional connectivity between subsystems within the prefrontal cortex during attentional control processes in both primates and humans. Utilizing stereo-electroencephalogram (SEEG) recordings during the Stroop task, we observed top-down dominance effects and corresponding connectivity patterns among the orbitofrontal cortex (OFC), the middle frontal gyrus (MFG), and the inferior frontal gyrus (IFG) during heightened attentional control. These findings highlighting the involvement of OFC in habituation through top-down attention. Our study unveils unique connectivity profiles, shedding light on the neural interplay between top-down and bottom-up attentional control processes, shaping goal-directed attention.


Subject(s)
Attention , Electroencephalography , Habituation, Psychophysiologic , Prefrontal Cortex , Humans , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Attention/physiology , Male , Female , Electroencephalography/methods , Habituation, Psychophysiologic/physiology , Adult , Young Adult , Stroop Test
7.
Ecol Lett ; 27(6): e14452, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857324

ABSTRACT

Anthropogenic disturbance of wildlife is increasing globally. Generalizing impacts of disturbance to novel situations is challenging, as the tolerance of animals to human activities varies with disturbance frequency (e.g. due to habituation). Few studies have quantified frequency-dependent tolerance, let alone determined how it affects predictions of disturbance impacts when these are extrapolated over large areas. In a comparative study across a gradient of air traffic intensities, we show that birds nearly always fled (80%) if aircraft were rare, while birds rarely responded (7%) if traffic was frequent. When extrapolating site-specific responses to an entire region, accounting for frequency-dependent tolerance dramatically alters the predicted costs of disturbance: the disturbance map homogenizes with fewer hotspots. Quantifying frequency-dependent tolerance has proven challenging, but we propose that (i) ignoring it causes extrapolations of disturbance impacts from single sites to be unreliable, and (ii) it can reconcile published idiosyncratic species- or source-specific disturbance responses.


Subject(s)
Aircraft , Birds , Animals , Birds/physiology , Ecosystem
8.
Eur J Neurosci ; 59(10): 2522-2534, 2024 May.
Article in English | MEDLINE | ID: mdl-38650479

ABSTRACT

Dopamine neurons signal the salience of environmental stimuli and influence learning, although it is less clear if these neurons also determine the salience of memories. Ventral tegmental area (VTA) dopamine neurons increase their firing in the presence of new objects and reduce it upon repeated, inconsequential exposures, marking the shift from novelty to familiarity. This study investigates how dopamine neuron activity during repeated familiar object exposure affects an animal's preference for new objects in a subsequent novel object recognition (NOR) test. We hypothesize that a single familiarization session will not sufficiently lower dopamine activity, such that the memory of a familiar object remains salient, leading to equal exploration of familiar and novel objects and weaker NOR discrimination. In contrast, multiple familiarization sessions likely suppress dopamine activity more effectively, reducing the salience of the familiar object and enhancing subsequent novelty discrimination. Our experiments in mice indicated that multiple familiarization sessions reduce VTA dopamine neuron activation, as measured by c-Fos expression, and enhance novelty discrimination compared with a single familiarization session. Dopamine neurons that show responsiveness to novelty were primarily located in the paranigral nucleus of the VTA and expressed vesicular glutamate transporter 2 transcripts, marking them as dopamine-glutamate neurons. Chemogenetic inhibition of dopamine neurons during a single session paralleled the effects of multiple sessions, improving NOR. These findings suggest that a critical role of dopamine neurons during the transition from novelty to familiarity is to modulate the salience of an object's memory.


Subject(s)
Dopaminergic Neurons , Mice, Inbred C57BL , Recognition, Psychology , Ventral Tegmental Area , Animals , Recognition, Psychology/physiology , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Ventral Tegmental Area/physiology , Mice , Male , Proto-Oncogene Proteins c-fos/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Vesicular Glutamate Transport Protein 2/genetics
9.
Horm Behav ; 162: 105524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513526

ABSTRACT

Letrozole, an aromatase inhibitor preventing estrogen synthesis from testosterone, is used as an adjuvant therapy in estrogen receptor-positive breast cancer patients. However, like other aromatase inhibitors, it induces many side effects, including impaired cognition. Despite its negative effect in humans, results from animal models are inconsistent and suggest that letrozole can either impair or improve cognition. Here, we studied the effects of chronic letrozole treatment on cognitive behavior of adult female BALB/c mice, a relevant animal model for breast cancer studies, to develop an appropriate animal model aimed at testing therapies to mitigate side effects of letrozole. In Morris water maze, letrozole 0.1 mg/kg impaired reference learning and memory. Interestingly, most of the letrozole 0.1 mg/kg-treated mice were able to learn the new platform position in reversal training and performed similar to control mice in a reversal probe test. Results of the reversal test suggest that letrozole did not completely disrupt spatial navigation, but rather delayed acquisition of spatial information. The delay might be related to increased anxiety as suggested by increased thigmotactic behavior during the reference memory training. The learning impairment was water maze-specific since we did not observe impairment in other spatial tasks such as in Y-maze or object location test. In contrast, the dose of 0.3 mg/kg did not have effect on water maze learning and facilitated locomotor habituation and recognition in novel object recognition test. The current study shows that letrozole dose-dependently modulates behavioral response and that its effects are task-dependent.


Subject(s)
Anxiety , Aromatase Inhibitors , Letrozole , Maze Learning , Mice, Inbred BALB C , Animals , Letrozole/pharmacology , Female , Maze Learning/drug effects , Mice , Anxiety/drug therapy , Aromatase Inhibitors/pharmacology , Nitriles/pharmacology , Triazoles/pharmacology
10.
J Exp Biol ; 227(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38873739

ABSTRACT

Social insects live in communities where cooperative actions heavily rely on the individual cognitive abilities of their members. In the honey bee (Apis mellifera), the specialization in nectar or pollen collection is associated with variations in gustatory sensitivity, affecting both associative and non-associative learning. Gustatory sensitivity fluctuates as a function of changes in motivation for the specific floral resource throughout the foraging cycle, yet differences in learning between nectar and pollen foragers at the onset of food collection remain unexplored. Here, we examined nectar and pollen foragers captured upon arrival at food sources. We subjected them to an olfactory proboscis extension reflex (PER) conditioning using a 10% sucrose solution paired (S10%+P) or unpaired (S10%) with pollen as a co-reinforcement. For non-associative learning, we habituated foragers with S10%+P or S10%, followed by dishabituation tests with either a 50% sucrose solution paired (S50%+P) or unpaired (S50%) with pollen. Our results indicate that pollen foragers show lower performance than nectar foragers when conditioned with S10%. Interestingly, performance improves to levels similar to those of nectar foragers when pollen is included as a rewarding stimulus (S10%+P). In non-associative learning, pollen foragers tested with S10%+P displayed a lower degree of habituation than nectar foragers and a higher degree of dishabituation when pollen was used as the dishabituating stimulus (S10%+P). Altogether, our results support the idea that pollen and nectar honey bee foragers differ in their responsiveness to rewards, leading to inter-individual differences in learning that contribute to foraging specialization.


Subject(s)
Feeding Behavior , Learning , Plant Nectar , Pollen , Reward , Animals , Bees/physiology , Pollen/physiology , Feeding Behavior/physiology , Learning/physiology , Flowers/physiology , Sucrose/metabolism
11.
Exp Brain Res ; 242(1): 267-274, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38015244

ABSTRACT

Human passive motion during boat, car or airplane travel may trigger motion sickness. Seasickness is the most provoking manifestation of motion sickness. It imposes major constraints on quality of life and human performance. Based on seasickness susceptibility the population is usually categorized into susceptible (S) and non-susceptible (NS). During repeated exposure some susceptible individuals undergo habituation and obtain symptoms relief, reflecting a third group of habituating (H) individuals. Recently, accumulative evidence suggests that the vestibular time constant (Tc) is associated with motion sickness susceptibility and attenuation of symptoms. These studies demonstrated that repeated passive motion stimuli lead to temporary short-term (days) changes in Tc, whereas sea sickness habituation process lasts 3 to 6 months. Therefore, the goal of the present study was to examine the behavior of Tc during the entire span of the seasickness habituation process between the H, S and NS groups to find an objective test for seasickness severity prediction. Tc of 30 subjects was prospectively evaluated pre, 3 and 6 months post exposure to sea environment using a computerized rotatory chair system protocol. Seasickness severity was evaluated by Wiker questionnaire. Significantly shorter Tc was found in the S group compared with the NS and H groups. Further analysis revealed lower maximal Slow Phase Velocity (mSPV) and nystagmus frequency (total number of beats/second) in the S group. Our results suggest that Tc, mSPV and nystagmus frequency might serve as a prediction for seasickness severity. This study was retrospectively registered on December 7th 2022 and assigned the identifier number NCT05640258.


Subject(s)
Motion Sickness , Vestibule, Labyrinth , Humans , Prospective Studies , Quality of Life , Motion Sickness/etiology , Disease Susceptibility
12.
Dev Sci ; 27(3): e13460, 2024 May.
Article in English | MEDLINE | ID: mdl-38155558

ABSTRACT

Habituation and dishabituation are the most prevalent measures of infant cognitive functioning, and they have reliably been shown to predict later cognitive outcomes. Yet, the exact mechanisms underlying infant habituation and dishabituation are still unclear. To investigate them, we tested 106 8-month-old infants on a classic habituation task and a novel visual learning task. We used a hierarchical Bayesian model to identify individual differences in sustained attention, learning performance, processing speed and curiosity from the visual learning task. These factors were then related to habituation and dishabituation. We found that habituation time was related to individual differences in processing speed, while dishabituation was related to curiosity, but only for infants who did not habituate. These results offer novel insights in the mechanisms underlying habituation and serve as proof of concept for hierarchical models as an effective tool to measure individual differences in infant cognitive functioning. RESEARCH HIGHLIGHTS: We used a hierarchical Bayesian model to measure individual differences in infants' processing speed, learning performance, sustained attention, and curiosity. Faster processing speed was related to shorter habituation time. High curiosity was related to stronger dishabituation responses, but only for infants who did not habituate.


Subject(s)
Habituation, Psychophysiologic , Processing Speed , Infant , Humans , Habituation, Psychophysiologic/physiology , Individuality , Bayes Theorem , Exploratory Behavior
13.
Brain ; 146(4): 1373-1387, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36200388

ABSTRACT

The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).


Subject(s)
Caenorhabditis elegans Proteins , Intellectual Disability , Animals , Humans , Corpus Callosum/pathology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Intellectual Disability/genetics , Phenotype , Ligases/genetics , Ubiquitins/genetics , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/pathology , Ubiquitin-Protein Ligases/genetics , Adaptor Proteins, Signal Transducing/genetics , Guanine Nucleotide Exchange Factors/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
14.
Conscious Cogn ; 123: 103722, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981366

ABSTRACT

Startle modulation paradigms, namely habituation and prepulse inhibition (PPI), can offer insight into the brain's early information processing mechanisms that might be impacted by regular meditation practice. Habituation refers to decreasing response to a repeatedly-presented startle stimulus, reflecting its redundancy. PPI refers to response reduction when a startling stimulus "pulse" is preceded by a weaker sensory stimulus "prepulse" and provides an operational measure of sensorimotor gating. Here, we examined habituation and PPI of the acoustic startle response in regular meditators (n = 32), relative to meditation-naïve individuals (n = 36). Overall, there was no significant difference between meditators and non-meditators in habituation or PPI, but there was significantly greater PPI in meditators who self-reported being able to enter and sustain non-dual awareness during their meditation practice (n = 18) relative to those who could not (n = 14). Together, these findings suggest that subjective differences in meditation experience may be associated with differential sensory processing characteristics in meditators.

15.
Cogn Emot ; : 1-16, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294682

ABSTRACT

The recognition of taboo words - i.e. socially inappropriate words - has been repeatedly associated to semantic interference phenomena, with detrimental effects on the performance in the ongoing task. In the present study, we investigated taboo interference in the context of reading aloud, a task configuration which prompts the overt violation of conventional sociolinguistic norms by requiring the explicit utterance of taboo items. We assessed whether this form of semantic interference is handled by habituative or cognitive control processes. In addition to the reading aloud task, participants performed a vocal Stroop task featuring different conditions to dissociate semantic, task, and response conflict. Taboo words were read slower than non-taboo words, but this effect was subject to a quick habituation, with a decreasing interference over the course of trials, which allowed participants to selectively attend to goal-relevant information. In the Stroop task, only semantic conflict was significantly reduced by habituation. These findings suggest that semantic properties can be quickly and flexibly weighed on the basis of contextual appropriateness, thus characterising semantic processing as a flexible and goal-directed component of reading aloud.

16.
J Environ Manage ; 365: 121561, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924890

ABSTRACT

An experimental study was conducted to test the effectiveness of olfactory repellents (ORE) as a mitigation measure to reduce ungulate-vehicle collisions (UVC). In the first phase, an extensive field survey was undertaken while employing the Before-After Control-Impact (BACI) study design. On the basis of ungulate mortality, 134 road sections were monitored on foot along both roadsides once a week. The monitoring lasted fourteen weeks per year in both 2021 (Before period) and 2022 (After period). In the after period, 2022, ORE were applied within the impact segments. The second phase consisted of data verification and statistical analysis. The data revealed a decrease in UVC of 68%. The confidence interval of this estimate suggested, however, a great deal of uncertainty about the true value. Therefore, the data were pooled, and the Bayesian inference was applied. On the level of moderate evidence, ORE decreased the number of UVC by at least 43% and at most 60%. We also observed that the ORE effect was more pronounced in the first seven weeks after installation than in the following seven weeks, suggesting ungulate habituation to ORE. We have therefore concluded that for a short period (ideally corresponding to UVC peaks) ORE could be considered an effective safety measure for secondary roads.


Subject(s)
Accidents, Traffic , Animals , Accidents, Traffic/prevention & control , Bayes Theorem
17.
J Ethn Subst Abuse ; : 1-21, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630621

ABSTRACT

Physical activity is a positive health behavior that has been shown to reduce the risk of physical and mental illnesses; There's strong evidence suggesting that Physical activity, as one of the components of a healthy lifestyle, if transformed into a consistent behavior or habit early in life, becomes easier to sustain throughout the lifecycle and leads to valuable outcomes for the society's health in various physical, mental, and social dimensions. Each social institution, considering its unique role and characteristics, can contribute to shaping individuals' behaviors in societies. Consequently, identifying the role of social institutions in the development of leisure-time physical activity (LTPA) as a regular activity and a behavioral habit can result in the selection and implementation of highly effective intervention strategies. Therefore, this research aimed to present a model of the role of social institutions in institutionalizing leisure-time physical activity among Iranian adolescent girls. To collect data, the questionnaires were employed, and for presenting the model, structural equation modeling was utilized. Data analysis showed that the role of three social institutions in the institutionalization of physical activities including habituation, objectification and sedimentation was confirmed, although sedimentation was confirmed in all three institutions at the 0.05 level, which indicates that factors in this area can be investigated. Examining the role of social institutions in institutionalizing behaviors may vary across different ages and genders, which is open to investigation in future studies.

18.
J Physiol ; 601(16): 3533-3556, 2023 08.
Article in English | MEDLINE | ID: mdl-37309891

ABSTRACT

Carnitine palmitoyltransferase 1c (CPT1C) is a neuron-specific protein widely distributed throughout the CNS and highly expressed in discrete brain areas including the hypothalamus, hippocampus, amygdala and different motor regions. Its deficiency has recently been shown to disrupt dendritic spine maturation and AMPA receptor synthesis and trafficking in the hippocampus, but its contribution to synaptic plasticity and cognitive learning and memory processes remains mostly unknown. Here, we aimed to explore the molecular, synaptic, neural network and behavioural role of CPT1C in cognition-related functions by using CPT1C knockout (KO) mice. CPT1C-deficient mice showed extensive learning and memory deficits. The CPT1C KO animals exhibited impaired motor and instrumental learning that seemed to be related, in part, to locomotor deficits and muscle weakness but not to mood alterations. In addition, CPT1C KO mice showed detrimental hippocampus-dependent spatial and habituation memory, most probably attributable to inefficient dendritic spine maturation, impairments in long-term plasticity at the CA3-CA1 synapse and aberrant cortical oscillatory activity. In conclusion, our results reveal that CPT1C is not only crucial for motor function, coordination and energy homeostasis, but also has a crucial role in the maintenance of learning and memory cognitive functions. KEY POINTS: CPT1C, a neuron-specific interactor protein involved in AMPA receptor synthesis and trafficking, was found to be highly expressed in the hippocampus, amygdala and various motor regions. CPT1C-deficient animals exhibited energy deficits and impaired locomotion, but no mood changes were found. CPT1C deficiency disrupts hippocampal dendritic spine maturation and long-term synaptic plasticity and reduces cortical γ oscillations. CPT1C was found to be crucial for motor, associative and non-associative learning and memory.


Subject(s)
Carnitine O-Palmitoyltransferase , Receptors, AMPA , Animals , Mice , Brain/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Hippocampus/metabolism , Long-Term Potentiation , Mice, Knockout , Neuronal Plasticity , Neurons/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism
19.
Neuroimage ; 274: 120153, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37146782

ABSTRACT

INTRODUCTION: Habituation and novelty detection are two fundamental and widely studied neurocognitive processes. Whilst neural responses to repetitive and novel sensory input have been well-documented across a range of neuroimaging modalities, it is not yet fully understood how well these different modalities are able to describe consistent neural response patterns. This is particularly true for infants and young children, as different assessment modalities might show differential sensitivity to underlying neural processes across age. Thus far, many neurodevelopmental studies are limited in either sample size, longitudinal scope or breadth of measures employed, impeding investigations of how well common developmental trends can be captured via different methods. METHOD: This study assessed habituation and novelty detection in N = 204 infants using EEG and fNIRS measured in two separate paradigms, but within the same study visit, at 1, 5 and 18 months of age in an infant cohort in rural Gambia. EEG was acquired during an auditory oddball paradigm during which infants were presented with Frequent, Infrequent and Trial Unique sounds. In the fNIRS paradigm, infants were familiarised to a sentence of infant-directed speech, novelty detection was assessed via a change in speaker. Indices for habituation and novelty detection were extracted for both EEG and NIRS RESULTS: We found evidence for weak to medium positive correlations between responses on the fNIRS and the EEG paradigms for indices of both habituation and novelty detection at most age points. Habituation indices correlated across modalities at 1 month and 5 months but not 18 months of age, and novelty responses were significantly correlated at 5 months and 18 months, but not at 1 month. Infants who showed robust habituation responses also showed robust novelty responses across both assessment modalities. DISCUSSION: This study is the first to examine concurrent correlations across two neuroimaging modalities across several longitudinal age points. Examining habituation and novelty detection, we show that despite the use of two different testing modalities, stimuli and timescale, it is possible to extract common neural metrics across a wide age range in infants. We suggest that these positive correlations might be strongest at times of greatest developmental change.


Subject(s)
Habituation, Psychophysiologic , Speech , Child , Humans , Infant , Child, Preschool , Habituation, Psychophysiologic/physiology , Spectrum Analysis , Sound , Electroencephalography/methods
20.
J Neurophysiol ; 130(3): 619-627, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37465890

ABSTRACT

When visual distractors are presented far from the goal of an impending voluntary saccadic eye movement, saccade execution will occur less frequently about 90 ms after distractor appearance, a phenomenon known as saccadic inhibition. However, it is also known that neural responses in visual and visuomotor areas of the brain will be attenuated if a visual stimulus appears several times in the same location in rapid succession. In particular, such visual adaptation can affect neurons in the mammalian superior colliculus (SC). As the SC is known to be intimately involved in the production of saccadic eye movements, and thus perhaps in saccadic inhibition, we used a memory-guided saccade task to test whether saccadic inhibition in humans would diminish if a distractor appeared several times in quick succession. We found that distractor repetition reduced saccadic inhibition considerably when distractors appeared opposite in space to the goal of the impending saccade. In addition, when three distractors appeared in quick succession but in different, spatially disparate locations, with only the final distractor appearing opposite the saccade goal, saccadic inhibition was reduced by an intermediate level, suggesting that its reduction due to distractor inhibition spatially generalizes. This suggests that distractor suppression can help reduce the impact that suddenly appearing visual stimuli have on purposive eye movement behavior.NEW & NOTEWORTHY This work combines approaches studying saccadic inhibition and visual adaptation to demonstrate that saccadic inhibition is largely eliminated with stimulus repetition. This is likely to be the largest demonstrated effect of visual stimulus context on saccadic inhibition. It also provides evidence for the existence of a mechanism that acts to suppress the effect of frequently appearing visual stimuli on purposive eye movement behavior in dynamic visual environments.


Subject(s)
Eye Movements , Saccades , Humans , Animals , Photic Stimulation , Reaction Time/physiology , Inhibition, Psychological , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL