Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 63(27): e202403209, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38647582

ABSTRACT

Metal-organic frameworks (MOFs) that exhibit dynamic phase-transition behavior under external stimuli could have great potential in adsorptive separations. Here we report on a zinc-based microporous MOF (JNU-80) and its reversible transformation between two crystalline phases: large pore (JNU-80-LP) and narrow pore (JNU-80-NP). Specifically, JNU-80-LP can undergo a dehydration-induced cluster consolidation under heat treatment, resulting in JNU-80-NP with a reduced channel that allows exclusion of di-branched hexane isomers while high adsorption of linear and mono-branched hexane isomers. We further demonstrate the fabrication of MOF-polymer composite (JNU-80-NP-block) and its application in the purification of di-branched isomers from liquid-phase hexane mixtures (98 % di-branched) at room temperature, affording the di-branched hexane isomers with 99.5 % purity and close to 90 % recovery rate over ten cycles. This work illustrates an interesting dehydration-induced cluster consolidation in MOF structure and the ensuing channel shrinkage for sieving di-branched hexane isomers, which may have important implications for the development of MOFs with dynamic behavior and their potential applications in non-thermal driven separation technologies.

2.
Small ; 19(22): e2207367, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36808807

ABSTRACT

Efficient separation of hexane isomers is a crucial process for upgrading gasoline. Herein, the sequential separation of linear, mono-, and di-branched hexane isomers by a robust stacked 1D coordination polymer termed as Mn-dhbq ([Mn(dhbq)(H2 O)2 ], H2 dhbq = 2,5-dihydroxy-1,4-benzoquinone) is reported. The interchain space of the activated polymer is of optimal aperture size (5.58 Å) that could exclude 2,3-dimethylbutane, while the chain structure can discriminate n-hexane with high capacity (1.53 mmol g-1 at 393 K, 6.67 kPa) by high-density open metal sites (5.18 mmol g-1 ). With the temperature- and adsorbate-dependent swelling of interchain spaces, the affinity between 3-methylpentane and Mn-dhbq can be deliberately controlled from sorption to exclusion, and thus a complete separation of ternary mixture can be achieved. Column breakthrough experiments confirm the excellent separation performance of Mn-dhbq. The ultrahigh stability and easy scalability further highlight the application prospect of Mn-dhbq for separation of hexane isomers.

3.
Chemosphere ; 316: 137759, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36621686

ABSTRACT

The reactive oxygen species (ROS) involved photocatalytic ozonation of gaseous n-hexane to heterocyclic compounds has been recently reported. However, whether such heterocyclization reaction happens on other alkanes and what is the contributing mechanism of ROS to the heterocyclic compound formation are still unclear. In present study, photocatalytic ozonation of three n-hexane's isomers (i.e. 2-methypentane, 3-methylpentane and 2,3-dimethylbutane) on Cu2O-CuO/TiO2-foam ceramic was investigated. Within reaction period, 2-methylpentane and 3-methylpentane not only showed higher average degradation efficiency than 2,3-dimethylbutane, but also separately converted to interfacial heterocyclic compounds of 5,5-dimethyldihydro-2(3H)-furanone and 4,5-dimethyl-4,5-dihydro-2(3H)-furanone. Enough reaction time, optimum experimental atmosphere and shorter light wavelength benefited the formation of heterocyclization products. None of O3, 1O2, electron and hole directly contributed to the heterocyclic compound formation. While •O2- dominated the production of the heterocyclic compound under the dry reaction atmosphere and •OH showed more important role than •O2- in the heterocyclic compound formation under the moist reaction atmosphere. Theoretical calculation confirmed that •OH or •O2- induced heterocyclization reaction of alkane was exothermic, while the former reaction released 0.47 eV higher energy than the later reaction. The findings provide a comprehensive understanding of contributing roles of ROS in heterocyclization reaction of alkanes, and are helpful for effective elimination of industrial alkanes by advanced oxidation methods.


Subject(s)
Hexanes , Ozone , Reactive Oxygen Species , Alkanes , Catalysis
4.
ACS Appl Mater Interfaces ; 10(6): 6031-6038, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29357223

ABSTRACT

A novel iron-based microporous metal-organic framework built of trinuclear iron clusters [Fe3(µ3-O)(COO)6] and 2,2-bis(4-carboxyphenyl)-hexafluoropropane (6FDCA) has been prepared by solvothermal synthesis. It exhibits excellent chemical stability and strong hydrophobic character. More importantly, this material is capable of separating hexane isomers with good separation performance on the basis of a kinetically controlled process, making it a promising candidate for improving the research octane number of gasoline.

SELECTION OF CITATIONS
SEARCH DETAIL