Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
Add more filters

Publication year range
1.
Magn Reson Med ; 92(2): 772-781, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38525658

ABSTRACT

PURPOSE: To develop a flexible, vendor-neutral EPI sequence for hyperpolarized 13C metabolic imaging. METHODS: An open-source EPI sequence consisting of a metabolite-specific spectral-spatial RF excitation pulse and a customizable EPI readout was created using the Pulseq framework. To explore the flexibility of our sequence, we tested several versions of the sequence including a symmetric 3D readout with different spatial resolutions for each metabolite (1.0 cm3 and 1.5 cm3). A multichamber phantom constructed with a Shepp-Logan geometry, containing two chambers filled with either natural abundance 13C compounds or hyperpolarized (HP) [1-13C]pyruvate, was used to test each sequence. For experiments involving HP [1-13C]pyruvate, a single chamber was prefilled with nicotinamide adenine dinucleotide hydride and lactate dehydrogenase to facilitate the conversion of [1-13C]pyruvate to [1-13C]lactate. All experiments were performed on a Siemens Prisma 3T scanner. RESULTS: All the sequence variations localized natural-abundance 13C ethylene glycol and methanol to the appropriate compartment of the multichamber phantom. [1-13C]pyruvate was detectable in both chambers following the injection of HP [1-13C]pyruvate, whereas [1-13C]lactate was only found in the chamber containing nicotinamide adenine dinucleotide hydride and lactate dehydrogenase. The conversion rate from [1-13C]pyruvate to [1-13C]lactate (kPL) was 0.01 s-1 (95% confidence interval [0.00, 0.02]). CONCLUSION: We have developed and tested a vendor-neutral EPI sequence for imaging HP 13C agents. We have made all of our sequence creation and image reconstruction code freely available online for other investigators to use.


Subject(s)
Carbon Isotopes , Phantoms, Imaging , Pyruvic Acid , Pyruvic Acid/chemistry , Pyruvic Acid/metabolism , Carbon Isotopes/chemistry , Echo-Planar Imaging , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Lactic Acid/chemistry , Algorithms , Humans
2.
Magn Reson Med ; 91(6): 2559-2567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38205934

ABSTRACT

PURPOSE: To investigate the safety and value of hyperpolarized (HP) MRI of [1-13C]pyruvate in healthy volunteers using deuterium oxide (D2O) as a solvent. METHODS: Healthy volunteers (n = 5), were injected with HP [1-13C]pyruvate dissolved in D2O and imaged with a metabolite-specific 3D dual-echo dynamic EPI sequence at 3T at one site (Site 1). Volunteers were monitored following the procedure to assess safety. Image characteristics, including SNR, were compared to data acquired in a separate cohort using water as a solvent (n = 5) at another site (Site 2). The apparent spin-lattice relaxation time (T1) of [1-13C]pyruvate was determined both in vitro and in vivo from a mono-exponential fit to the image intensity at each time point of our dynamic data. RESULTS: All volunteers completed the study safely and reported no adverse effects. The use of D2O increased the T1 of [1-13C]pyruvate from 66.5 ± 1.6 s to 92.1 ± 5.1 s in vitro, which resulted in an increase in signal by a factor of 1.46 ± 0.03 at the time of injection (90 s after dissolution). The use of D2O also increased the apparent relaxation time of [1-13C]pyruvate by a factor of 1.4 ± 0.2 in vivo. After adjusting for inter-site SNR differences, the use of D2O was shown to increase image SNR by a factor of 2.6 ± 0.2 in humans. CONCLUSIONS: HP [1-13C]pyruvate in D2O is safe for human imaging and provides an increase in T1 and SNR that may improve image quality.


Subject(s)
Magnetic Resonance Imaging , Pyruvic Acid , Humans , Feasibility Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Carbon Isotopes , Solvents
3.
Magn Reson Med ; 91(3): 1030-1042, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38013217

ABSTRACT

PURPOSE: This study aimed to quantify T 2 * $$ {T}_2^{\ast } $$ for hyperpolarized [1-13 C]pyruvate and metabolites in the healthy human brain and renal cell carcinoma (RCC) patients at 3 T. METHODS: Dynamic T 2 * $$ {T}_2^{\ast } $$ values were measured with a metabolite-specific multi-echo spiral sequence. The dynamic T 2 * $$ {T}_2^{\ast } $$ of [1-13 C]pyruvate, [1-13 C]lactate, and 13 C-bicarbonate was estimated in regions of interest in the whole brain, sinus vein, gray matter, and white matter in healthy volunteers, as well as in kidney tumors and the contralateral healthy kidneys in a separate group of RCC patients. T 2 * $$ {T}_2^{\ast } $$ was fit using a mono-exponential function; and metabolism was quantified using pyruvate-to-lactate conversion rate maps and lactate-to-pyruvate ratio maps, which were compared with and without an estimated T 2 * $$ {T}_2^{\ast } $$ correction. RESULTS: The T 2 * $$ {T}_2^{\ast } $$ of pyruvate was shown to vary during the acquisition, whereas the T 2 * $$ {T}_2^{\ast } $$ of lactate and bicarbonate were relatively constant through time and across the organs studied. The T 2 * $$ {T}_2^{\ast } $$ of lactate was similar in gray matter (29.75 ± 1.04 ms), white matter (32.89 ± 0.9 ms), healthy kidney (34.61 ± 4.07 ms), and kidney tumor (33.01 ± 2.31 ms); and the T 2 * $$ {T}_2^{\ast } $$ of bicarbonate was different between whole-brain (108.17 ± 14.05 ms) and healthy kidney (58.45 ± 6.63 ms). The T 2 * $$ {T}_2^{\ast } $$ of pyruvate had similar trends in both brain and RCC studies, reducing from 75.56 ± 2.23 ms to 22.24 ± 1.24 ms in the brain and reducing from 122.72 ± 9.86 ms to 57.38 ± 7.65 ms in the kidneys. CONCLUSION: Multi-echo dynamic imaging can quantify T 2 * $$ {T}_2^{\ast } $$ and metabolism in a single integrated acquisition. Clear differences were observed in the T 2 * $$ {T}_2^{\ast } $$ of metabolites and in their behavior throughout the timecourse.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Pyruvic Acid/metabolism , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Bicarbonates/metabolism , Magnetic Resonance Imaging/methods , Brain/metabolism , Kidney/diagnostic imaging , Kidney/metabolism , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Lactates/metabolism , Carbon Isotopes/metabolism
4.
NMR Biomed ; 37(3): e5074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38054254

ABSTRACT

INTRODUCTION: The healthy heart has remarkable metabolic flexibility that permits rapid switching between mitochondrial glucose oxidation and fatty acid oxidation to generate ATP. Loss of metabolic flexibility has been implicated in the genesis of contractile dysfunction seen in cardiomyopathy. Metabolic flexibility has been imaged in experimental models, using hyperpolarized (HP) [2-13 C]pyruvate MRI, which enables interrogation of metabolites that reflect tricarboxylic acid (TCA) cycle flux in cardiac myocytes. This study aimed to develop methods, demonstrate feasibility for [2-13 C]pyruvate MRI in the human heart for the first time, and assess cardiac metabolic flexibility. METHODS: Good manufacturing practice [2-13 C]pyruvic acid was polarized in a 5 T polarizer for 2.5-3 h. Following dissolution, quality control parameters of HP pyruvate met all safety and sterility criteria for pharmacy release, prior to administration to study subjects. Three healthy subjects each received two HP injections and MR scans, first under fasting conditions, followed by oral glucose load. A 5 cm axial slab-selective spectroscopy approach was prescribed over the left ventricle and acquired at 3 s intervals on a 3 T clinical MRI scanner. RESULTS: The study protocol, which included HP substrate injection, MR scanning, and oral glucose load, was performed safely without adverse events. Key downstream metabolites of [2-13 C]pyruvate metabolism in cardiac myocytes include the glycolytic derivative [2-13 C]lactate, TCA-associated metabolite [5-13 C]glutamate, and [1-13 C]acetylcarnitine, catalyzed by carnitine acetyltransferase (CAT). After glucose load, 13 C-labeling of lactate, glutamate, and acetylcarnitine from 13 C-pyruvate increased by an average of 39.3%, 29.5%, and 114% respectively in the three subjects, which could result from increases in lactate dehydrogenase, pyruvate dehydrogenase, and CAT enzyme activity as well as TCA cycle flux (glucose oxidation). CONCLUSIONS: HP [2-13 C]pyruvate imaging is safe and permits noninvasive assessment of TCA cycle intermediates and the acetyl buffer, acetylcarnitine, which is not possible using HP [1-13 C]pyruvate. Cardiac metabolite measurement in the fasting/fed states provides information on cardiac metabolic flexibility and the acetylcarnitine pool.


Subject(s)
Myocardium , Pyruvic Acid , Humans , Pyruvic Acid/metabolism , Myocardium/metabolism , Glucose/metabolism , Acetylcarnitine/metabolism , Myocytes, Cardiac , Glutamic Acid/metabolism , Lactates/metabolism , Carbon Isotopes/metabolism
5.
NMR Biomed ; 37(3): e5073, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37990800

ABSTRACT

The goal of this study was to investigate the origin of brain lactate (Lac) signal in the healthy anesthetized rat after injection of hyperpolarized (HP) [1-13 C]pyruvate (Pyr). Dynamic two-dimensional spiral chemical shift imaging with flow-sensitizing gradients revealed reduction in both vascular and brain Pyr, while no significant dependence on the level of flow suppression was detected for Lac. These results support the hypothesis that the HP metabolites predominantly reside in different compartments in the brain (i.e., Pyr in the blood and Lac in the parenchyma). Data from high-resolution metabolic imaging of [1-13 C]Pyr further demonstrated that Lac detected in the brain was not from contributions of vascular signal attributable to partial volume effects. Additionally, metabolite distributions and kinetics measured with dynamic imaging after injection of HP [1-13 C]Lac were similar to Pyr data when Pyr was used as the substrate. These data do not support the hypothesis that Lac observed in the brain after Pyr injection was generated in other organs and then transported across the blood-brain barrier (BBB). Together, the presented results provide further evidence that even in healthy anesthetized rats, the transport of HP Pyr across the BBB is sufficiently fast to permit detection of its metabolic conversion to Lac within the brain.


Subject(s)
Lactic Acid , Pyruvic Acid , Rats , Animals , Pyruvic Acid/metabolism , Lactic Acid/metabolism , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/metabolism , Blood-Brain Barrier/diagnostic imaging , Carbon Isotopes/metabolism
6.
NMR Biomed ; : e5271, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367692

ABSTRACT

Hyperpolarized carbon-13 (13C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-13C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral 13C-labelled carbon dioxide (13CO2), in addition to the 13C-bicarbonate (H13CO3 -) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of H13CO3 - to 13CO2 in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-13C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-13C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized 13C-MRI to assess cerebral and extracerebral [1-13C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.

7.
J Magn Reson Imaging ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239784

ABSTRACT

BACKGROUND: Kidney transplant is the treatment of choice for patients with end-stage renal disease. Early detection of allograft injury is important to delay or prevent irreversible damage. PURPOSE: To investigate the feasibility of hyperpolarized (HP) [1-13C]pyruvate MRI for assessing kidney allograft metabolism. STUDY TYPE: Prospective. SUBJECTS: Six participants (mean age, 45.2 ± 12.4 years, two females) scheduled for kidney allograft biopsy and five patients (mean age, 59.6 ± 10.4 years, two females) with renal cell carcinoma (RCC). FIELD STRENGTH/SEQUENCE: Three Tesla, T2-weighted fast spin echo, multi-echo gradient echo, single shot diffusion-weighted echo-planar imaging, and time-resolved HP 13C metabolite-selective imaging. ASSESSMENT: Five of the six kidney allograft participants underwent biopsy after MRI. Estimated glomerular filtration rate (eGFR) and urine protein-to-creatine ratio (uPCR) were collected within 4 weeks of MRI. Kidney metabolism was quantified from HP [1-13C]pyruvate MRI using the lactate-to-pyruvate ratio in allograft kidneys and non-tumor bearing kidneys from RCC patients. STATISTICAL TESTS: Descriptive statistics (mean ± SD). RESULTS: Biopsy was performed a mean of 9 days (range 5-19 days) after HP [1-13C]pyruvate MRI. Three biopsies were normal, one showed low-grade fibrosis and one showed moderate microvascular inflammation. All had stable functioning allografts with eGFR >60 mL/min/1.73 m2 and normal uPCR. One participant who did not undergo biopsy had reduced eGFR of 49 mL/min/1.73 m2 and elevated uPCR. The mean lactate-to-pyruvate ratio was 0.373 in participants with normal findings (N = 3) and 0.552 in participants with abnormal findings (N = 2). The lactate-to-pyruvate ratio was highest (0.847) in the participant with reduced eGFR and elevated uPRC. Native non-tumor bearing kidneys had a mean lactate-to-pyruvate ratio of 0.309. DATA CONCLUSION: Stable allografts with normal findings at biopsy showed lactate-to-pyruvate ratios similar to native non-tumor bearing kidneys, whereas allografts with abnormal findings showed higher lactate-to-pyruvate ratios. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.

8.
Magn Reson Med ; 90(3): 894-909, 2023 09.
Article in English | MEDLINE | ID: mdl-37093981

ABSTRACT

PURPOSE: To develop a high spatiotemporal resolution 3D dynamic pulse sequence for preclinical imaging of hyperpolarized [1-13 C]pyruvate-to-[1-13 C]lactate metabolism at 7T. METHODS: A standard 3D balanced SSFP (bSSFP) sequence was modified to enable alternating-frequency excitations. RF pulses with 2.33 ms duration and 900 Hz FWHM were placed off-resonance of the target metabolites, [1-13 C]pyruvate (by approximately -245 Hz) and [1-13 C]lactate (by approximately 735 Hz), to selectively excite those resonances. Relatively broad bandwidth (compared to those metabolites' chemical shift offset) permits a short TR of 6.29 ms, enabling higher spatiotemporal resolution. Bloch equation simulations of the bSSFP response profile guided the sequence parameter selection to minimize spectral contamination between metabolites and preserve magnetization over time. RESULTS: Bloch equation simulations, phantom studies, and in vivo studies demonstrated that the two target resonances could be cleanly imaged without substantial bSSFP banding artifacts and with little spectral contamination between lactate and pyruvate and from pyruvate hydrate. High spatiotemporal resolution 3D images were acquired of in vivo pyruvate-lactate metabolism in healthy wild-type and endogenous pancreatic tumor-bearing mice, with 1.212 s acquisition time per single-metabolite image and (1.75 mm)3 isotropic voxels with full mouse abdomen 56 × 28 × 21 mm3 FOV and fully-sampled k-space. Kidney and tumor lactate/pyruvate ratios of two consecutive measurements in one animal, 1 h apart, were consistent. CONCLUSION: Spectrally selective bSSFP using off-resonant RF excitations can provide high spatio-temporal resolution 3D dynamic images of pyruvate-lactate metabolic conversion.


Subject(s)
Lactic Acid , Pyruvic Acid , Mice , Animals , Pyruvic Acid/metabolism , Lactic Acid/metabolism , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Carbon Isotopes/metabolism
9.
NMR Biomed ; 36(3): e4857, 2023 03.
Article in English | MEDLINE | ID: mdl-36285844

ABSTRACT

Kidneys play a central role in numerous disorders but current imaging methods have limited utility to probe renal metabolism. Hyperpolarized (HP) 13 C magnetic resonance imaging is uniquely suited to provide metabolite-specific information about key biochemical pathways and it offers the further advantage that renal imaging is practical in humans. This study evaluated the feasibility of hyperpolarization examinations in a widely used model for analysis of renal physiology, the isolated kidney, which enables isolation of renal metabolism from the effects of other organs and validation of HP results by independent measurements. Isolated rat kidneys were supplied with either HP [1-13 C]pyruvate only or HP [1-13 C]pyruvate plus octanoate. Metabolic activity in both groups was confirmed by stable renal oxygen consumption. HP [1-13 C]pyruvate was readily metabolized to [13 C]bicarbonate, [1-13 C]lactate, and [1-13 C]alanine, detectable seconds after HP [1-13 C]pyruvate was injected. Octanoate suppressed but did not eliminate the production of HP [13 C]bicarbonate from [1-13 C]pyruvate. Steady-state flux analyses using non-HP 13 C substrates validated the utilization of HP [1-13 C]pyruvate, as observed by HP 13 C NMR. In the presence of octanoate, lactate is generated from a tricarboxylic acid cycle intermediate, oxaloacetate. The isolated rat kidney may serve as an excellent model for investigating and establishing new HP 13 C metabolic probes for future kidney imaging applications.


Subject(s)
Caprylates , Pyruvic Acid , Rats , Humans , Animals , Pyruvic Acid/metabolism , Bicarbonates/metabolism , Kidney/diagnostic imaging , Kidney/metabolism , Lactic Acid/metabolism , Carbon Isotopes/metabolism
10.
Chemphyschem ; 24(12): e202300151, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36973178

ABSTRACT

Glutamine is under scrutiny regarding its metabolic deregulation linked to energetic reprogramming in cancer cells. Many analytical techniques have been used to better understand the impact of the metabolism of amino acids on biological processes, however only a few are suited to work with complex samples. Here, we report the use of a general dissolution dynamic nuclear polarization (D-DNP) formulation using an unexpensive radical as a multipurpose tool to study glutamine, with insights from enzymatic modelling to complex metabolic networks and fast imaging. First, hyperpolarized [5-13 C] glutamine is used as molecular probe to study the kinetic action of two enzymes: L-asparaginase that has been used as an anti-metabolic treatment for cancer, and glutaminase. These results are also compared with those acquired with another hyperpolarized amino acid, [1,4-13 C] asparagine. Second, we explored the use of hyperpolarized (HP) substrates to probe metabolic pathways by monitoring metabolic profiles arising from hyperpolarized glutamine in E. coli extracts. Finally, a highly concentrated sample formulation is proposed for the purpose of fast imaging applications. We think that this approach can be extended to formulate other amino acids as well as other metabolites and provide complementary insights into the analysis of metabolic networks.


Subject(s)
Escherichia coli , Glutamine , Glutamine/analysis , Glutamine/chemistry , Glutamine/metabolism , Solubility , Escherichia coli/metabolism , Metabolic Networks and Pathways , Amino Acids/metabolism , Carbon Isotopes
11.
J Biol Chem ; 297(1): 100775, 2021 07.
Article in English | MEDLINE | ID: mdl-34022218

ABSTRACT

Cellular pyruvate is an essential metabolite at the crossroads of glycolysis and oxidative phosphorylation, capable of supporting fermentative glycolysis by reduction to lactate mediated by lactate dehydrogenase (LDH) among other functions. Several inherited diseases of mitochondrial metabolism impact extracellular (plasma) pyruvate concentrations, and [1-13C]pyruvate infusion is used in isotope-labeled metabolic tracing studies, including hyperpolarized magnetic resonance spectroscopic imaging. However, how these extracellular pyruvate sources impact intracellular metabolism is not clear. Herein, we examined the effects of excess exogenous pyruvate on intracellular LDH activity, extracellular acidification rates (ECARs) as a measure of lactate production, and hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates across a panel of tumor and normal cells. Combined LDH activity and LDHB/LDHA expression analysis intimated various heterotetrameric isoforms comprising LDHA and LDHB in tumor cells, not only canonical LDHA. Millimolar concentrations of exogenous pyruvate induced substrate inhibition of LDH activity in both enzymatic assays ex vivo and in live cells, abrogated glycolytic ECAR, and inhibited hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in cellulo. Of importance, the extent of exogenous pyruvate-induced inhibition of LDH and glycolytic ECAR in live cells was highly dependent on pyruvate influx, functionally mediated by monocarboxylate transporter-1 localized to the plasma membrane. These data provided evidence that highly concentrated bolus injections of pyruvate in vivo may transiently inhibit LDH activity in a tissue type- and monocarboxylate transporter-1-dependent manner. Maintaining plasma pyruvate at submillimolar concentrations could potentially minimize transient metabolic perturbations, improve pyruvate therapy, and enhance quantification of metabolic studies, including hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging and stable isotope tracer experiments.


Subject(s)
L-Lactate Dehydrogenase/antagonists & inhibitors , Monocarboxylic Acid Transporters/metabolism , Pyruvic Acid/pharmacology , Symporters/metabolism , Acids/metabolism , Buffers , Carbon Isotopes , Cell Extracts , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Extracellular Space/chemistry , Glycolysis/drug effects , Humans , Inhibitory Concentration 50 , Kinetics , L-Lactate Dehydrogenase/metabolism , Lactic Acid/biosynthesis , Substrate Specificity/drug effects
12.
Neuroimage ; 257: 119284, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35533826

ABSTRACT

Deuterium metabolic imaging (DMI) and hyperpolarized 13C-pyruvate MRI (13C-HPMRI) are two emerging methods for non-invasive and non-ionizing imaging of tissue metabolism. Imaging cerebral metabolism has potential applications in cancer, neurodegeneration, multiple sclerosis, traumatic brain injury, stroke, and inborn errors of metabolism. Here we directly compare these two non-invasive methods at 3 T for the first time in humans and show how they simultaneously probe both oxidative and non-oxidative metabolism. DMI was undertaken 1-2 h after oral administration of [6,6'-2H2]glucose, and 13C-MRI was performed immediately following intravenous injection of hyperpolarized [1-13C]pyruvate in ten and nine normal volunteers within each arm respectively. DMI was used to generate maps of deuterium-labelled water, glucose, lactate, and glutamate/glutamine (Glx) and the spectral separation demonstrated that DMI is feasible at 3 T. 13C-HPMRI generated maps of hyperpolarized carbon-13 labelled pyruvate, lactate, and bicarbonate. The ratio of 13C-lactate/13C-bicarbonate (mean 3.7 ± 1.2) acquired with 13C-HPMRI was higher than the equivalent 2H-lactate/2H-Glx ratio (mean 0.18 ± 0.09) acquired using DMI. These differences can be explained by the route of administering each probe, the timing of imaging after ingestion or injection, as well as the biological differences in cerebral uptake and cellular physiology between the two molecules. The results demonstrate these two metabolic imaging methods provide different yet complementary readouts of oxidative and reductive metabolism within a clinically feasible timescale. Furthermore, as DMI was undertaken at a clinical field strength within a ten-minute scan time, it demonstrates its potential as a routine clinical tool in the future.


Subject(s)
Bicarbonates , Magnetic Resonance Imaging , Bicarbonates/metabolism , Brain/diagnostic imaging , Brain/metabolism , Carbon Isotopes/metabolism , Deuterium/metabolism , Glucose/metabolism , Humans , Lactic Acid/metabolism , Magnetic Resonance Imaging/methods , Pyruvic Acid
13.
Magn Reson Med ; 87(3): 1301-1312, 2022 03.
Article in English | MEDLINE | ID: mdl-34687088

ABSTRACT

PURPOSE: Dynamic nuclear polarization is an emerging imaging method that allows noninvasive investigation of tissue metabolism. However, the relatively low metabolic spatial resolution that can be achieved limits some applications, and improving this resolution could have important implications for the technique. METHODS: We propose to enhance the 3D resolution of carbon-13 magnetic resonance imaging (13 C-MRI) using the structural information provided by hydrogen-1 MRI (1 H-MRI). The proposed approach relies on variational regularization in 3D with a directional total variation regularizer, resulting in a convex optimization problem which is robust with respect to the parameters and can efficiently be solved by many standard optimization algorithms. Validation was carried out using an in silico phantom, an in vitro phantom and in vivo data from four human volunteers. RESULTS: The clinical data used in this study were upsampled by a factor of 4 in-plane and by a factor of 15 out-of-plane, thereby revealing occult information. A key finding is that 3D super-resolution shows superior performance compared to several 2D super-resolution approaches: for example, for the in silico data, the mean-squared-error was reduced by around 40% and for all data produced increased anatomical definition of the metabolic imaging. CONCLUSION: The proposed approach generates images with enhanced anatomical resolution while largely preserving the quantitative measurements of metabolism. Although the work requires clinical validation against tissue measures of metabolism, it offers great potential in the field of 13 C-MRI and could significantly improve image quality in the future.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Brain/diagnostic imaging , Carbon Isotopes , Humans , Phantoms, Imaging
14.
Magn Reson Med ; 88(6): 2609-2620, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35975978

ABSTRACT

PURPOSE: To develop techniques and establish a workflow using hyperpolarized carbon-13 (13 C) MRI and the pyruvate-to-lactate conversion rate (kPL ) biomarker to guide MR-transrectal ultrasound fusion prostate biopsies. METHODS: The integrated multiparametric MRI (mpMRI) exam consisted of a 1-min hyperpolarized 13 C-pyruvate EPI acquisition added to a conventional prostate mpMRI exam. Maps of kPL values were calculated, uploaded to a picture archiving and communication system and targeting platform, and displayed as color overlays on T2 -weighted anatomic images. Abdominal radiologists identified 13 C research biopsy targets based on the general recommendation of focal lesions with kPL >0.02(s-1 ), and created a targeting report for each study. Urologists conducted transrectal ultrasound-guided MR fusion biopsies, including the standard 1 H-mpMRI targets as well as 12-14 core systematic biopsies informed by the research 13 C-kPL targets. All biopsy results were included in the final pathology report and calculated toward clinical risk. RESULTS: This study demonstrated the safety and technical feasibility of integrating hyperpolarized 13 C metabolic targeting into routine 1 H-mpMRI and transrectal ultrasound fusion biopsy workflows, evaluated via 5 men (median age 71 years, prostate-specific antigen 8.4 ng/mL, Cancer of the Prostate Risk Assessment score 2) on active surveillance undergoing integrated scan and subsequent biopsies. No adverse event was reported. Median turnaround time was less than 3 days from scan to 13 C-kPL targeting, and scan-to-biopsy time was 2 weeks. Median number of 13 C targets was 1 (range: 1-2) per patient, measuring 1.0 cm (range: 0.6-1.9) in diameter, with a median kPL of 0.0319 s-1 (range: 0.0198-0.0410). CONCLUSIONS: This proof-of-concept work demonstrated the safety and feasibility of integrating hyperpolarized 13 C MR biomarkers to the standard mpMRI workflow to guide MR-transrectal ultrasound fusion biopsies.


Subject(s)
Prostate , Prostatic Neoplasms , Aged , Humans , Image-Guided Biopsy/methods , Lactates , Magnetic Resonance Imaging/methods , Male , Prospective Studies , Prostate/diagnostic imaging , Prostate/pathology , Prostate-Specific Antigen , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Pyruvic Acid , Ultrasonography, Interventional/methods
15.
Magn Reson Med ; 87(4): 1673-1687, 2022 04.
Article in English | MEDLINE | ID: mdl-34775639

ABSTRACT

PURPOSE: The goal of this study was to combine a specialized acquisition method with a new quantification pipeline to accurately and efficiently probe the metabolism of hyperpolarized 13 C-labeled compounds in vivo. In this study, we tested our approach on [2-13 C]pyruvate and [1-13 C]α-ketoglutarate data in rat orthotopic brain tumor models at 3T. METHODS: We used a multiband metabolite-specific radiofrequency (RF) excitation in combination with a variable flip angle scheme to minimize substrate polarization loss and measure fast metabolic processes. We then applied spectral-temporal denoising using singular value decomposition to enhance spectral quality. This was combined with LCModel-based automatic 13 C spectral fitting and flip angle correction to separate overlapping signals and rapidly quantify the different metabolites. RESULTS: Denoising improved the metabolite signal-to-noise ratio (SNR) by approximately 5. It also improved the accuracy of metabolite quantification as evidenced by a significant reduction of the Cramer Rao lower bounds. Furthermore, the use of the automated and user-independent LCModel-based quantification approach could be performed rapidly, with the kinetic quantification of eight metabolite peaks in a 12-spectrum array achieved in less than 1 minute. CONCLUSION: The specialized acquisition method combined with denoising and a new quantification pipeline using LCModel for the first time for hyperpolarized 13 C data enhanced our ability to monitor the metabolism of [2-13 C]pyruvate and [1-13 C]α-ketoglutarate in rat orthotopic brain tumor models in vivo. This approach could be broadly applicable to other hyperpolarized agents both preclinically and in the clinical setting.


Subject(s)
Brain Neoplasms , Pyruvic Acid , Animals , Brain Neoplasms/diagnostic imaging , Carbon Isotopes , Kinetics , Magnetic Resonance Spectroscopy , Pyruvic Acid/metabolism , Rats , Signal-To-Noise Ratio
16.
Cancer ; 127(15): 2693-2704, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33844280

ABSTRACT

BACKGROUND: Optimal treatment selection for localized renal tumors is challenging because of their variable biologic behavior and limitations in the preoperative assessment of tumor aggressiveness. The authors investigated the emerging hyperpolarized (HP) 13 C magnetic resonance imaging (MRI) technique to noninvasively assess tumor lactate production, which is strongly associated with tumor aggressiveness. METHODS: Eleven patients with renal tumors underwent HP 13 C pyruvate MRI before surgical resection. Tumor 13 C pyruvate and 13 C lactate images were acquired dynamically. Five patients underwent 2 scans on the same day to assess the intrapatient reproducibility of HP 13 C pyruvate MRI. Tumor metabolic data were compared with histopathology findings. RESULTS: Eight patients had tumors with a sufficient metabolite signal-to-noise ratio for analysis; an insufficient tumor signal-to-noise ratio was noted in 2 patients, likely caused by poor tumor perfusion and, in 1 patient, because of technical errors. Of the 8 patients, 3 had high-grade clear cell renal cell carcinoma (ccRCC), 3 had low-grade ccRCC, and 2 had chromophobe RCC. There was a trend toward a higher lactate-to-pyruvate ratio in high-grade ccRCCs compared with low-grade ccRCCs. Both chromophobe RCCs had relatively high lactate-to-pyruvate ratios. Good reproducibility was noted across the 5 patients who underwent 2 HP 13 C pyruvate MRI scans on the same day. CONCLUSIONS: The current results demonstrate the feasibility of HP 13 C pyruvate MRI for investigating the metabolic phenotype of localized renal tumors. The initial data indicate good reproducibility of metabolite measurements. In addition, the metabolic data indicate a trend toward differentiating low-grade and high-grade ccRCCs, the most common subtype of renal cancer. LAY SUMMARY: Renal tumors are frequently discovered incidentally because of the increased use of medical imaging, but it is challenging to identify which aggressive tumors should be treated. A new metabolic imaging technique was applied to noninvasively predict renal tumor aggressiveness. The imaging results were compared with tumor samples taken during surgery and showed a trend toward differentiating between low-grade and high-grade clear cell renal cell carcinomas, which are the most common type of renal cancers.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/pathology , Magnetic Resonance Imaging/methods , Pyruvic Acid/metabolism , Reproducibility of Results
17.
Magn Reson Med ; 85(6): 3027-3035, 2021 06.
Article in English | MEDLINE | ID: mdl-33421253

ABSTRACT

PURPOSE: To compare carbon-13 (13 C) MRSI of hyperpolarized [1-13 C]pyruvate metabolism in a murine tumor model with mass spectrometric (MS) imaging of the corresponding tumor sections in order to cross validate these metabolic imaging techniques and to investigate the effects of pyruvate delivery and tumor lactate concentration on lactate labeling. METHODS: [1-13 C]lactate images were obtained from tumor-bearing mice, following injection of hyperpolarized [1-13 C]pyruvate, using a single-shot 3D 13 C spectroscopic imaging sequence in vivo and using desorption electrospray ionization MS imaging of the corresponding rapidly frozen tumor sections ex vivo. The images were coregistered, and levels of association were determined by means of Spearman rank correlation and Cohen kappa coefficients as well as linear mixed models. The correlation between [1-13 C]pyruvate and [1-13 C]lactate in the MRS images and between [12 C] and [1-13 C]lactate in the MS images were determined by means of Pearson correlation coefficients. RESULTS: [1-13 C]lactate images generated by MS imaging were significantly correlated with the corresponding MRS images. The correlation coefficient between [1-13 C]lactate and [1-13 C]pyruvate in the MRS images was higher than between [1-13 C]lactate and [12 C]lactate in the MS images. CONCLUSION: The inhomogeneous distribution of labeled lactate observed in the MRS images was confirmed by MS imaging of the corresponding tumor sections. The images acquired using both techniques show that the rate of 13 C label exchange between the injected pyruvate and endogenous tumor lactate pool is more correlated with the rate of pyruvate delivery to the tumor cells and is less affected by the endogenous lactate concentration.


Subject(s)
Lymphoma , Pyruvic Acid , Animals , Carbon Isotopes , Lactic Acid , Lymphoma/diagnostic imaging , Magnetic Resonance Imaging , Mass Spectrometry , Mice
18.
Magn Reson Med ; 86(5): 2402-2411, 2021 11.
Article in English | MEDLINE | ID: mdl-34216051

ABSTRACT

PURPOSE: To develop a novel post-processing pipeline for hyperpolarized (HP) 13 C MRSI that integrates tensor denoising and B1+ correction to measure pyruvate-to-lactate conversion rates (kPL ) in patients with liver tumors. METHODS: Seven HP 13 C MR scans of progressing liver tumors were acquired using a custom 13 C surface transmit/receive coil and the echo-planar spectroscopic imaging (EPSI) data analysis included B0 correction, tensor rank truncation, and zero- and first-order phase corrections to recover metabolite signals that would otherwise be obscured by spectral noise as well as a correction for inhomogeneous transmit ( B1+ ) using a B1+ map aligned to the coil position for each patient scan. Processed HP data and corrected flip angles were analyzed with an inputless two-site exchange model to calculate kPL . RESULTS: Denoising averages SNR increases of pyruvate, lactate, and alanine were 37.4-, 34.0-, and 20.1-fold, respectively, with lactate and alanine dynamics most noticeably recovered and better defined. In agreement with Monte Carlo simulations, over-flipped regions underestimated kPL and under-flipped regions overestimated kPL . B1+ correction addressed this issue. CONCLUSION: The new HP 13 C EPSI post-processing pipeline integrated tensor denoising and B1+ correction to measure kPL in patients with liver tumors. These technical developments not only recovered metabolite signals in voxels that did not receive the prescribed flip angle, but also increased the extent and accuracy of kPL estimations throughout the tumor and adjacent regions including normal-appearing tissue and additional lesions.


Subject(s)
Liver Neoplasms , Magnetic Resonance Imaging , Carbon Isotopes , Echo-Planar Imaging , Humans , Kinetics , Liver Neoplasms/diagnostic imaging , Pyruvic Acid
19.
Magn Reson Med ; 85(3): 1175-1182, 2021 03.
Article in English | MEDLINE | ID: mdl-32936474

ABSTRACT

PURPOSE: To evaluate the utility of hyperpolarized [1-13 C]-l-lactate to detect hepatic pyruvate carboxylase activity in vivo under fed and fasted conditions. METHODS: [1-13 C]-labeled sodium L-lactate was polarized using a dynamic nuclear polarizer. Polarization level and the T1 were measured in vitro in a 3 Telsa MR scanner. Two groups of healthy rats (fasted vs. fed) were prepared for in vivo studies. Each rat was anesthetized and intravenously injected with 60-mM hyperpolarized [1-13 C]-l-lactate, immediately followed by dynamic acquisition of 13 C (carbon-13) MR spectra from the liver at 3 Tesla. The dosage-dependence of the 13 C-products was also investigated by performing another injection of an equal volume of 30-mM hyperpolarized [1-13 C]-l-lactate. RESULTS: T1 and liquid polarization level of [1-13 C]-l-lactate were estimated as 67.8 s and 40.0%, respectively. [1-13 C]pyruvate and [1-13 C]alanine, [13 C]bicarbonate ( HCO3- ) and [1-13 C]aspartate were produced from hyperpolarized [1-13 C]-l-lactate in rat liver. Smaller HCO3- and larger aspartate were measured in the fed group compared to the fasted group. Pyruvate and alanine production were increased in proportion to the lactate concentration, whereas the amount of HCO3- and aspartate production was consistent between 30-mM and 60-mM lactate injections. CONCLUSION: This study demonstrates that a unique biomarker of pyruvate carboxylase flux, the appearance of [1-13 C]aspartate from [1-13 C]-l-lactate, is sensitive to nutritional state and may be monitored in vivo at 3 Tesla. Because [13 C] HCO3- is largely produced by pyruvate dehydrogenase flux, these results suggest that the ratio of [1-13 C]aspartate and [13 C] HCO3- (aspartate/ HCO3- ) reflects the saturable pyruvate carboxylase/pyruvate dehydrogenase enzyme activities.


Subject(s)
Lactic Acid , Pyruvate Carboxylase , Animals , Carbon Isotopes , Liver/diagnostic imaging , Magnetic Resonance Spectroscopy , Pyruvic Acid , Rats
20.
Magn Reson Med ; 85(2): 978-986, 2021 02.
Article in English | MEDLINE | ID: mdl-32820566

ABSTRACT

PURPOSE: To generate dynamic, volumetric maps of hyperpolarized [1-13 C]pyruvate and its metabolic products in vivo. METHODS: Maps of chemical species were generated with iterative least squares (IDEAL) reconstruction from multiecho echo-planar imaging (EPI) of phantoms of thermally polarized 13 C-labeled chemicals and mice injected with hyperpolarized [1-13 C]pyruvate on a preclinical 3T scanner. The quality of the IDEAL decomposition of single-shot and multishot phantom images was evaluated using quantitative results from a simple pulse-and-acquire sequence as the gold standard. Time course and area-under-the-curve plots were created to analyze the distribution of metabolites in vivo. RESULTS: Improved separation of chemical species by IDEAL, evaluated by the amount of residual signal measured for chemicals not present in the phantoms, was observed as the number of EPI shots was increased from one to four. Dynamic three-dimensional metabolite maps of [1-13 C]pyruvate,[1-13 C]pyruvatehydrate, [1-13 C]lactate, [1-13 C]bicarbonate, and [1-13 C]alanine generated by IDEAL from interleaved multishot multiecho EPI of live mice were used to construct time course and area-under-the-curve graphs for the heart, kidneys, and liver, which showed good agreement with previously published results. CONCLUSIONS: IDEAL decomposition of multishot multiecho 13C EPI images is a simple, yet robust method for generating high-quality dynamic volumetric maps of hyperpolarized [1-13 C]pyruvate and its products in vivo and has potential applications for the assessment of multiorgan metabolic phenomena.


Subject(s)
Echo-Planar Imaging , Pyruvic Acid , Animals , Carbon Isotopes , Lactic Acid , Least-Squares Analysis , Magnetic Resonance Imaging , Mice , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL