Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069177

ABSTRACT

Organ culture storage techniques for corneoscleral limbal (CSL) tissue have improved the quality of corneas for transplantation and allow for longer storage times. Cultured limbal tissue has been used for stem cell transplantation to treat limbal stem cell deficiency (LSCD) as well as for research purposes to assess homeostasis mechanisms in the limbal stem cell niche. However, the effects of organ culture storage conditions on the quality of limbal niche components are less well described. Therefore, in this study, the morphological and immunohistochemical characteristics of organ-cultured limbal tissue are investigated and compared to fresh limbal tissues by means of light and electron microscopy. Organ-cultured limbal tissues showed signs of deterioration, such as edema, less pronounced basement membranes, and loss of the most superficial layers of the epithelium. In comparison to the fresh limbal epithelium, organ-cultured limbal epithelium showed signs of ongoing proliferative activity (more Ki-67+ cells) and exhibited an altered limbal epithelial phenotype with a loss of N-cadherin and desmoglein expression as well as a lack of precise staining patterns for cytokeratin ((CK)14, CK17/19, CK15). The analyzed extracellular matrix composition was mainly intact (collagen IV, fibronectin, laminin chains) except for Tenascin-C, whose expression was increased in organ-cultured limbal tissue. Nonetheless, the expression patterns of cell-matrix adhesion proteins varied in organ-cultured limbal tissue compared to fresh limbal tissue. A decrease in the number of melanocytes (Melan-A+ cells) and Langerhans cells (HLA-DR+, CD1a+, CD18+) was observed in the organ-cultured limbal tissue. The organ culture-induced alterations of the limbal epithelial stem cell niche might hamper its use in the treatment of LSCD as well as in research studies. In contrast, reduced numbers of donor-derived Langerhans cells seem associated with better clinical outcomes. However, there is a need to consider the preferential use of fresh CSL for limbal transplants and to look at ways of improving the limbal stem cell properties of stored CSL tissue.


Subject(s)
Epithelium, Corneal , Humans , Organ Culture Techniques , Epithelium, Corneal/metabolism , Stem Cells/metabolism , Stem Cell Niche , Limbal Stem Cells , Epithelial Cells , Cells, Cultured
2.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108705

ABSTRACT

The porcine ocular surface is used as a model of the human ocular surface; however, a detailed characterization of the porcine ocular surface has not been documented. This is due, in part, to the scarcity of antibodies produced specifically against the porcine ocular surface cell types or structures. We performed a histological and immunohistochemical investigation on frozen and formalin-fixed, paraffin-embedded ocular surface tissue from domestic pigs using a panel of 41 different antibodies related to epithelial progenitor/differentiation phenotypes, extracellular matrix and associated molecules, and various niche cell types. Our observations suggested that the Bowman's layer is not evident in the cornea; the deep invaginations of the limbal epithelium in the limbal zone are analogous to the limbal interpalisade crypts of human limbal tissue; and the presence of goblet cells in the bulbar conjunctiva. Immunohistochemistry analysis revealed that the epithelial progenitor markers cytokeratin (CK)15, CK14, p63α, and P-cadherin were expressed in both the limbal and conjunctival basal epithelium, whereas the basal cells of the limbal and conjunctival epithelium did not stain for CK3, CK12, E-cadherin, and CK13. Antibodies detecting marker proteins related to the extracellular matrix (collagen IV, Tenascin-C), cell-matrix adhesion (ß-dystroglycan, integrin α3 and α6), mesenchymal cells (vimentin, CD90, CD44), neurons (neurofilament), immune cells (HLA-ABC; HLA-DR, CD1, CD4, CD14), vasculature (von Willebrand factor), and melanocytes (SRY-homeobox-10, human melanoma black-45, Tyrosinase) on the normal human ocular surface demonstrated similar immunoreactivity on the normal porcine ocular surface. Only a few antibodies (directed against N-cadherin, fibronectin, agrin, laminin α3 and α5, melan-A) appeared unreactive on porcine tissues. Our findings characterize the main immunohistochemical properties of the porcine ocular surface and provide a morphological and immunohistochemical basis useful to research using porcine models. Furthermore, the analyzed porcine ocular structures are similar to those of humans, confirming the potential usefulness of pig eyes to study ocular surface physiology and pathophysiology.


Subject(s)
Limbus Corneae , Swine , Humans , Animals , Cornea , Conjunctiva/metabolism , Extracellular Matrix , Sus scrofa , Epithelial Cells/metabolism
3.
Int J Mol Sci ; 23(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35269891

ABSTRACT

The fate decision of limbal epithelial progenitor cells (LEPC) at the human corneal limbus is determined by the surrounding microenvironment with limbal niche cells (LNC) as one of its essential components. Research on freshly isolated LNC which mainly include limbal mesenchymal stromal cells (LMSC) and limbal melanocytes (LM) has been hampered by a lack of efficient protocols to isolate and purify these cells. We devised a protocol for rapid retrieval of pure LMSC, LM and LEPC populations by collagenase digestion of limbal tissue and subsequent fluorescence-activated cell sorting (FACS) using antibodies against CD90 and CD117. The sorted cells were characterized by immunophenotyping and functional assays. The effects of LMSC and LM on LEPC were studied in 3D co-cultures and LEPC differentiation status was assessed by immunohistochemistry. Enzymatic digestion and flow sorting yielded pure populations of LMSC (CD117-CD90+), LM (CD117+CD90-), and LEPC (CD117-CD90-). The LMSC exhibited self-renewal capacity (55.0 ± 4.6 population doublings), expressed mesenchymal stem cell markers (CD73, CD90, CD105, and CD44), and transdifferentiated to adipocytes, osteocytes, or chondrocytes. The LM exhibited self-renewal capacity and sustained melanin production. The sorted LEPC expressed epithelial progenitor markers (CK14, CK19, and CK15) and showed a colony-forming ability. Co-cultivation of LMSC and LM with LEPC resulted in a 4-5-layered stratified epithelium and supported the preservation of a LEPC phenotype, as reflected by increased p63+ and Ki67+ cells and decreased CK12+ cells compared with LEPC monocultures. A highly efficient isolation of pure LM, LMSC, and LEPC populations from a single preparation may allow for direct transcriptomic and proteomic profiling as well as functional studies on native unpassaged LNC, which can be considered as proper equivalents of LNC in vivo. The developed biomimetic 3D co-culture method could provide an experimental model for investigating the functional role of LNC in the limbal stem cell niche.


Subject(s)
Epithelium, Corneal , Limbus Corneae , Biomarkers , Cell Differentiation , Cells, Cultured , Epithelial Cells , Humans , Proteomics , Stem Cell Niche/physiology
4.
Cells ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38607062

ABSTRACT

Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells (LMSC) remain limited, and there are no studies on sEVs from limbal melanocytes (LM). In this study, we isolated sEV from conditioned media of LMSC and LM using a combination of tangential flow filtration and size exclusion chromatography and characterized them by nanoparticle tracking analysis, transmission electron microscopy, Western blot, multiplex bead arrays, and quantitative mass spectrometry. The internalization of sEV by LEPC was studied using flow cytometry and confocal microscopy. The isolated sEVs exhibited typical EV characteristics, including cell-specific markers such as CD90 for LMSC-sEV and Melan-A for LM-sEV. Bioinformatics analysis of the proteomic data suggested a significant role of sEVs in extracellular matrix deposition, with LMSC-derived sEV containing proteins involved in collagen remodeling and cell matrix adhesion, whereas LM-sEV proteins were implicated in other cellular bioprocesses such as cellular pigmentation and development. Moreover, fluorescently labeled LMSC-sEV and LM-sEV were taken up by LEPC and localized to their perinuclear compartment. These findings provide valuable insights into the complex role of sEV from niche cells in regulating the human limbal stem cell niche.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Proteomics/methods , Mesenchymal Stem Cells/metabolism , Stem Cells , Melanocytes , Extracellular Vesicles/metabolism
5.
Cells ; 12(3)2023 01 23.
Article in English | MEDLINE | ID: mdl-36766742

ABSTRACT

Paired box 6 (PAX6), a nuclear transcription factor, determines the fate of limbal epithelial progenitor cells (LEPC) and maintains epithelial cell identity. However, the expression of PAX6 in limbal niche cells, primarily mesenchymal stromal cells (LMSC), and melanocytes is scarce and not entirely clear. To distinctly assess the PAX6 expression in limbal niche cells, fresh and organ-cultured human corneoscleral tissues were stained immunohistochemically. Furthermore, the expression of PAX6 in cultured limbal cells was investigated. Immunostaining revealed the presence of PAX6-negative cells which were positive for vimentin and the melanocyte markers Melan-A and human melanoma black-45 in the basal layer of the limbal epithelium. PAX6 staining was not observed in the limbal stroma. Moreover, the expression of PAX6 was observed by Western blot in cultured LEPC but not in cultured LMSC or LM. These data indicate a restriction of PAX6 expression to limbal epithelial cells at the limbal stem cell niche. These observations warrant further studies for the presence of other PAX isoforms in the limbal stem cell niche.


Subject(s)
Epithelium, Corneal , Limbus Corneae , Humans , Adult , Epithelium, Corneal/metabolism , Limbal Stem Cells , Limbus Corneae/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism
6.
Cells ; 11(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36497012

ABSTRACT

Limbal stem cell deficiency (LSCD) is a complex, multifactorial disease affecting limbal epithelial progenitor cells (LEPC), which are essential for maintaining corneal stability and transparency. Human induced pluripotent stem cell-derived (hiPSC-) LEPC are a promising cell source for the treatment of LSCD. However, their similarity to native tissue-derived (T-) LEPC and their functional characterization has not been studied in detail. Here, we show that hiPSC-LEPC and T-LEPC have rather similar gene expression patterns, colony-forming ability, wound-healing capacity, and melanosome uptake. In addition, hiPSC-LEPC exhibited lower immunogenicity and reduced the proliferation of peripheral blood mononuclear cells compared with T-LEPC. Similarly, the hiPSC-LEPC secretome reduced the proliferation of vascular endothelial cells more than the T-LEPC secretome. Moreover, hiPSC-LEPC successfully repopulated decellularized human corneolimbal (DHC/L) scaffolds with multilayered epithelium, while basal deposition of fibrillary material was observed. These findings suggest that hiPSC-LEPC exhibited functional properties close to native LEPC and that hiPSC-LEPC-DHC/L scaffolds might be feasible for transplantation in patients suffering from LSCD in the future. Although hiPSC-LEPC-based stem cell therapy is promising, the current study also revealed new challenges, such as abnormal extracellular matrix deposition, that need to be overcome before hiPSC-LEPC-based stem cell therapies are viable.


Subject(s)
Epithelium, Corneal , Induced Pluripotent Stem Cells , Limbus Corneae , Humans , Epithelium, Corneal/metabolism , Endothelial Cells , Leukocytes, Mononuclear
7.
Cells ; 11(12)2022 06 20.
Article in English | MEDLINE | ID: mdl-35741104

ABSTRACT

Interactions between limbal epithelial progenitor cells (LEPC) and surrounding niche cells, which include limbal mesenchymal stromal cells (LMSC) and melanocytes (LM), are essential for the maintenance of the limbal stem cell niche required for a transparent corneal surface. P-cadherin (P-cad) is a critical stem cell niche adhesion molecule at various epithelial stem cell niches; however, conflicting observations were reported on the presence of P-cad in the limbal region. To explore this issue, we assessed the location and phenotype of P-cad+ cells by confocal microscopy of human corneoscleral tissue. In subsequent fluorescence-activated cell sorting (FACS) experiments, we used antibodies against P-cad along with CD90 and CD117 for the enrichment of LEPC, LMSC and LM, respectively. The sorted cells were characterized by immunophenotyping and the repopulation of decellularized limbal scaffolds was evaluated. Our findings demonstrate that P-cad is expressed by epithelial progenitor cells as well as melanocytes in the human limbal epithelial stem cell niche. The modified flow sorting addressing P-cad as well as CD90 and CD117 yielded enriched LEPC (CD90-CD117-P-cad+) and pure populations of LMSC (CD90+CD117-P-cad-) and LM (CD90-CD117+P-cad+). The enriched LEPC showed the expression of epithelial progenitor markers and better colony-forming ability than their P-cad- counterparts. The cultured LEPC and LM exhibited P-cad expression at intercellular junctions and successfully repopulated decellularized limbal scaffolds. These data suggest that P-cad is a critical cell-cell adhesion molecule, connecting LEPC and LM, which may play an important role in the long-term maintenance of LEPC at the limbal stem cell niche; moreover, these findings led to further improvement of cell enrichment protocols to enhance the yield of LEPC.


Subject(s)
Limbus Corneae , Cadherins/metabolism , Cell Adhesion Molecules/metabolism , Humans , Melanocytes/metabolism , Stem Cell Niche , Stem Cells
8.
Bio Protoc ; 10(18): e3754, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-33659413

ABSTRACT

Limbal stem cell transplantation has been used successfully to treat patients with limbal stem cell deficiency all over the world. However, long term clinical results often proved less satisfactory due to the low quality of the graft or inadequate properties of transplanted cells. To enhance the ex vivo expansion of human limbal epithelial stem or progenitor cells (LEPC) by preserving stem cell phenotype and to improve subsequent transplantation efficiency, cell-matrix interactions ex vivo should mimic the condition in vivo. The laminin isoforms preferentially expressed in the limbal niche can be used as a culture matrix for epithelial tissue engineering. We recently published the expansion of LEPC on various laminin isoforms and observed that laminin alpha 5-derived matrices support the efficient expansion of LEPC compared to tissue culture plates and other laminin isoforms by preserving stem/progenitor cell phenotype. Here, we describe an optimized protocol for the isolation of LEPC from cadaveric corneal limbal tissue by collagenase digestion and efficient expansion of LEPC using recombinant human laminin-511 E8 fragment (LN-511E8) as culture substrate.

SELECTION OF CITATIONS
SEARCH DETAIL