Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 41(11): e109902, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35343600

ABSTRACT

Induction and suppression of antiviral RNA interference (RNAi) has been observed in mammals during infection with at least seven distinct RNA viruses, including some that are pathogenic in humans. However, while the cell-autonomous immune response mediated by antiviral RNAi is gradually being recognized, little is known about systemic antiviral RNAi in mammals. Furthermore, extracellular vesicles (EVs) also function in viral signal spreading and host immunity. Here, we show that upon antiviral RNAi activation, virus-derived small-interfering RNAs (vsiRNAs) from Nodamura virus (NoV), Sindbis virus (SINV), and Zika virus (ZIKV) enter the murine bloodstream via EVs for systemic circulation. vsiRNAs in the EVs are biologically active, since they confer RNA-RNA homology-dependent antiviral activity in both cultured cells and infant mice. Moreover, we demonstrate that vaccination with a live-attenuated virus, rendered deficient in RNAi suppression, induces production of stably maintained vsiRNAs and confers protective immunity against virus infection in mice. This suggests that vaccination with live-attenuated VSR (viral suppressor of RNAi)-deficient mutant viruses could be a new strategy to induce immunity.


Subject(s)
Extracellular Vesicles , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents , Extracellular Vesicles/genetics , Humans , Mammals/genetics , Mice , RNA Interference , RNA, Double-Stranded , RNA, Small Interfering/genetics , Zika Virus/genetics , Zika Virus Infection/genetics , Zika Virus Infection/prevention & control
2.
Mol Ther ; 31(8): 2391-2407, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37263272

ABSTRACT

Live attenuated vaccines (LAVs) administered via the mucosal route may offer better control of the COVID-19 pandemic than non-replicating vaccines injected intramuscularly. Conceptionally, LAVs have several advantages, including presentation of the entire antigenic repertoire of the virus, and the induction of strong mucosal immunity. Thus, immunity induced by LAV could offer superior protection against future surges of COVID-19 cases caused by emerging SARS-CoV-2 variants. However, LAVs carry the risk of unintentional transmission. To address this issue, we investigated whether transmission of a SARS-CoV-2 LAV candidate can be blocked by removing the furin cleavage site (FCS) from the spike protein. The level of protection and immunity induced by the attenuated virus with the intact FCS was virtually identical to the one induced by the attenuated virus lacking the FCS. Most importantly, removal of the FCS completely abolished horizontal transmission of vaccine virus between cohoused hamsters. Furthermore, the vaccine was safe in immunosuppressed animals and showed no tendency to recombine in vitro or in vivo with a SARS-CoV-2 field strain. These results indicate that removal of the FCS from SARS-CoV-2 LAV is a promising strategy to increase vaccine safety and prevent vaccine transmission without compromising vaccine efficacy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Cricetinae , Humans , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Vaccines, Attenuated , Antibodies, Viral , Antibodies, Neutralizing
3.
J Appl Toxicol ; 43(4): 534-556, 2023 04.
Article in English | MEDLINE | ID: mdl-36227735

ABSTRACT

Herpes simplex virus type 2 (HSV-2) is the most common cause of genital disease worldwide. The development of an effective HSV-2 vaccine would significantly impact global health based on the psychological distress caused by genital herpes for some individuals, the risk transmitting the infection from mother to infant, and the elevated risk of acquiring HIV-1. Five nonclinical safety studies were conducted with the replication defective HSV529 vaccine, alone or adjuvanted with GLA-SE, and the G103 subunit vaccine containing GLA-SE. A biodistribution study was conducted in guinea pigs to evaluate distribution, persistence, and shedding of HSV529. A preliminary immunogenicity study was conducted in rabbits to demonstrate HSV529-specific humoral response and its enhancement by GLA-SE. Three repeated-dose toxicity studies, one in guinea pigs and two in rabbits, were conducted to assess systemic toxicity and local tolerance of HSV529, alone or adjuvanted with GLA-SE, or G103 containing GLA-SE. Data from these studies show that both vaccines are safe and well tolerated and support the ongoing HSV-2 clinical trial in which the two vaccine candidates will be given either sequentially or concomitantly to explore their potential synergistic and incremental effects.


Subject(s)
Antibodies, Viral , Herpesvirus 2, Human , Humans , Animals , Guinea Pigs , Rabbits , Tissue Distribution , Viral Envelope Proteins , Adjuvants, Immunologic , Vaccines, Subunit
4.
Biotechnol Bioeng ; 118(1): 106-115, 2021 01.
Article in English | MEDLINE | ID: mdl-32880898

ABSTRACT

There is growing interest in the development of new vaccines based on live-attenuated viruses (LAVs) and virus-like particles. The large size of these vaccines, typically 100-400 nm, significantly complicates the use of sterile filtration. The objectives of this study are to examine the performance of several commercial sterile filters for filtration of a cytomegalovirus vaccine candidate (referred to as the LAV) and to develop and evaluate the use of a model nanoparticle suspension to perform a more quantitative assessment. Data obtained with a mixture of 200- and 300-nm fluorescent particles provided yield and pressure profiles that captured the behavior of the viral vaccine. This included the excellent performance of the Sartorius Sartobran P filter, which provided greater than 80% yield of both the vaccine and model particles even though the average particle size was more than 250 nm. The particle yield for the Sartobran P was independent of filtrate flux above 200 L/m2 /h, but increased with increasing particle concentration, varying from less than 10% at concentrations around 107 particles/ml to more than 80% at concentrations above 1010 particles/ml due to saturation of particle capture/binding sites within the filter. These results provide important insights into the factors controlling transmission and fouling during sterile filtration of large vaccine products.


Subject(s)
Nanoparticles/chemistry , Viral Vaccines , Viruses , Particle Size , Ultrafiltration , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/isolation & purification , Viral Vaccines/chemistry , Viral Vaccines/isolation & purification , Viruses/chemistry , Viruses/isolation & purification
5.
J Gen Virol ; 100(6): 975-984, 2019 06.
Article in English | MEDLINE | ID: mdl-31090533

ABSTRACT

The development of live-attenuated vaccines against Dengue virus (DENV) has been problematic. Dengvaxia, licensed in several countries where DENV is endemic, has shown low efficacy profiles and there are safety concerns prohibiting its administration to children younger than 9 years old, and the live-attenuated tetravalent vaccine (LATV) developed by NIAID has proven too reactogenic during clinical trialing. In this work we examined whether the combination of TV005, a LATV-derived formulation, with Tetra DIIIC, a subunit vaccine candidate based on fusion proteins derived from structural proteins from all four DENV serotypes, can overcome the respective limitations of these two vaccine approaches. Rhesus macaques were first primed with one or two doses of Tetra DIIIC and then boosted with TV005, following the time course of the appearance of virus-binding and neutralizing antibodies, and evaluating protection by means of a challenge experiment with wild-type viruses. Although the two evaluated prime-boost regimes were equivalent to a single administration of TV005 in terms of the development of virus-binding and neutralizing antibodies as well as the protection against viral challenge, both regimes reduced vaccine viremia to undetectable levels. Thus, the combination of Tetra DIIIC with TV005 offers a potential solution to the reactogenicity problems, which have beset the development of the latter vaccine candidate.


Subject(s)
Dengue Virus/immunology , Dengue/immunology , Recombinant Fusion Proteins/immunology , Vaccines, Attenuated/immunology , Animals , Antibodies, Neutralizing/immunology , Cell Line , Chlorocebus aethiops , Dengue/virology , Female , Immunization/methods , Immunization, Secondary/methods , Macaca mulatta , Male , Vero Cells
6.
J Virol ; 91(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28814514

ABSTRACT

African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV. Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, although little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates and have hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found that the deletion of the viral CD2v (EP402R) gene highly attenuated the virulent BA71 strain in vivo Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose dependent, and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8+ T cells capable of recognizing both BA71 and E75 viruses in vitro Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in areas where the virus is endemic and where multiple viruses are circulating.IMPORTANCE African swine fever virus (ASFV) remains enzootic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being in Georgia in 2007. Since then, ASFV has spread toward neighboring countries, reaching the European Union's east border in 2014. The lack of available vaccines against ASFV makes its control difficult; so far, only live attenuated viruses have demonstrated solid protection against homologous experimental challenges, but they have failed at inducing solid cross-protective immunity against heterologous viruses. Here we describe a new LAV candidate with unique cross-protective abilities: BA71ΔCD2. Inoculation of BA71ΔCD2 protected pigs not only against experimental challenge with BA71, the virulent parental strain, but also against heterologous viruses, including Georgia 2007/1, the genotype II strain of ASFV currently circulating in Eastern Europe.


Subject(s)
African Swine Fever Virus/genetics , African Swine Fever/prevention & control , Vaccines, Attenuated/administration & dosage , Viral Vaccines/administration & dosage , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever Virus/pathogenicity , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cells, Cultured , Immunization , Macrophages/drug effects , Macrophages/immunology , Macrophages/virology , Swine , Viral Proteins/genetics
7.
Intervirology ; 60(1-2): 8-18, 2017.
Article in English | MEDLINE | ID: mdl-28869941

ABSTRACT

Emerging Flaviviruses pose an increasing threat to global human health. To date, human vaccines against yellow fever virus (YFV), Japanese encephalitis virus (JEV), dengue virus (DV), and tick-borne encephalitis virus (TBEV) exist. However, there is no human vaccine against other Flaviviruses such as Zika virus (ZIKV) and West Nile virus (WNV). In order to restrict their spread and to protect populations against the diseases they induce, vaccines against these emerging viruses must be designed. Obtaining new live attenuated Flavivirus vaccines using molecular biology methods is now possible. Molecular infectious clones of the parental viruses are relatively easy to generate. Key mutations present in live attenuated vaccines or mutations known to have a key role in the Flavivirus life cycle and/or interactions with their hosts can be identified by sequencing, and are then inserted in infectious clones by site-directed mutagenesis. More recently, the use of chimeric viruses and large-scale reencoding and introduction of microRNA target sequences have also been tested. Indeed, a combination of these methods will help in designing new generations of vaccines against emerging and reemerging Flaviviruses.


Subject(s)
Flavivirus/genetics , Flavivirus/immunology , Mutation , Vaccines, Attenuated , Viral Vaccines , Animals , Antibodies, Viral/blood , Dengue Virus/genetics , Dengue Virus/immunology , Drug Design , Encephalitis Viruses, Tick-Borne/genetics , Flavivirus/pathogenicity , Humans , MicroRNAs/genetics , Mutagenesis, Site-Directed , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/genetics , West Nile virus/genetics , West Nile virus/immunology , Zika Virus/genetics , Zika Virus/immunology , Zika Virus Infection/prevention & control
8.
Viruses ; 16(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39205300

ABSTRACT

African swine fever (ASF) is a highly contagious and severe hemorrhagic transboundary swine viral disease with up to a 100% mortality rate, which leads to a tremendous socio-economic loss worldwide. The lack of safe and efficacious ASF vaccines is the greatest challenge in the prevention and control of ASF. In this study, we generated a safe and effective live-attenuated virus (LAV) vaccine candidate VNUA-ASFV-LAVL3 by serially passaging a virulent genotype II strain (VNUA-ASFV-L2) in an immortalized porcine alveolar macrophage cell line (3D4/21, 50 passages). VNUA-ASFV-LAVL3 lost its hemadsorption ability but maintained comparable growth kinetics in 3D4/21 cells to that of the parental strain. Notably, it exhibited significant attenuation of virulence in pigs across different doses (103, 104, and 105 TCID50). All vaccinated pigs remained healthy with no clinical signs of African swine fever virus (ASFV) infection throughout the 28-day observation period of immunization. VNUA-ASFV-LAVL3 was efficiently cleared from the blood at 14-17 days post-infection, even at the highest dose (105 TCID50). Importantly, the attenuation observed in vivo did not compromise the ability of VNUA-ASFV-LAVL3 to induce protective immunity. Vaccination with VNUA-ASFV-LAVL3 elicited robust humoral and cellular immune responses in pigs, achieving 100% protection against a lethal wild-type ASFV (genotype II) challenge at all tested doses (103, 104, and 105 TCID50). Furthermore, a single vaccination (104 TCID50) provided protection for up to 2 months. These findings suggest that VNUA-ASFV-LAVL3 can be utilized as a promising safe and efficacious LAV candidate against the contemporary pandemic genotype II ASFV.


Subject(s)
African Swine Fever Virus , African Swine Fever , Genotype , Vaccines, Attenuated , Viral Vaccines , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/administration & dosage , Swine , African Swine Fever/prevention & control , African Swine Fever/immunology , African Swine Fever/virology , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Line , Virulence , Vaccination/veterinary
9.
Viruses ; 16(4)2024 04 07.
Article in English | MEDLINE | ID: mdl-38675912

ABSTRACT

In this paper, we report the characterization of a genetically modified live-attenuated African swine fever virus (ASFV) field strain isolated from Vietnam. The isolate, ASFV-GUS-Vietnam, belongs to p72 genotype II, has six multi-gene family (MGF) genes deleted, and an Escherichia coli GusA gene (GUS) inserted. When six 6-8-week-old pigs were inoculated with ASFV-GUS-Vietnam oro-nasally (2 × 105 TCID50/pig), they developed viremia, mild fever, lethargy, and inappetence, and shed the virus in their oral and nasal secretions and feces. One of the pigs developed severe clinical signs and was euthanized 12 days post-infection, while the remaining five pigs recovered. When ASFV-GUS-Vietnam was inoculated intramuscularly (2 × 103 TCID50/pig) into four 6-8 weeks old pigs, they also developed viremia, mild fever, lethargy, inappetence, and shed the virus in their oral and nasal secretions and feces. Two contact pigs housed together with the four intramuscularly inoculated pigs, started to develop fever, viremia, loss of appetite, and lethargy 12 days post-contact, confirming horizontal transmission of ASFV-GUS-Vietnam. One of the contact pigs died of ASF on day 23 post-contact, while the other one recovered. The pigs that survived the exposure to ASFV-GUS-Vietnam via the mucosal or parenteral route were fully protected against the highly virulent ASFV Georgia 2007/1 challenge. This study showed that ASFV-GUS-Vietnam field isolate is able to induce complete protection in the majority of the pigs against highly virulent homologous ASFV challenge, but has the potential for horizontal transmission, and can be fatal in some animals. This study highlights the need for proper monitoring and surveillance when ASFV live-attenuated virus-based vaccines are used in the field for ASF control in endemic countries.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , African Swine Fever Virus/pathogenicity , African Swine Fever Virus/classification , African Swine Fever/virology , Swine , Vietnam , Viremia , Genome, Viral , Genotype , Sequence Deletion , Virus Shedding , Phylogeny
10.
Vaccines (Basel) ; 12(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38675825

ABSTRACT

Candidate vaccines against African swine fever virus (ASFV) based on naturally attenuated or genetically modified viruses have the potential to generate protective immune responses, although there is no consensus on what defines a protective immune response against ASFV. Studies, especially in sensitive host species and focused on unravelling protective mechanisms, will contribute to the development of safer and more effective vaccines. The present study provides a detailed analysis of phenotypic and functional data on cellular responses induced by intradermal immunization and subsequent boosting of domestic pigs with the naturally attenuated field strain Lv17/WB/Rie1, as well as the mechanisms underlying protection against intramuscular challenge with the virulent genotype II Armenia/07 strain. The transient increase in IL-8 and IL-10 in serum observed after immunization might be correlated with survival. Protection was also associated with a robust ASFV-specific polyfunctional memory T-cell response, where CD4CD8 and CD8 T cells were identified as the main cellular sources of virus-specific IFNγ and TNFα. In parallel with the cytokine response, these T-cell subsets also showed specific cytotoxic activity as evidenced by the increased expression of the CD107a degranulation marker. Along with virus-specific multifunctional CD4CD8 and CD8 T-cell responses, the increased levels of antigen experienced in cytotoxic CD4 T cells observed after the challenge in immunized pigs might also contribute to controlling virulent infection by killing mechanisms targeting infected antigen-presenting cells. Future studies should elucidate whether the memory T-cell responses evidenced in the present study persist and provide long-term protection against further ASFV infections.

11.
Front Cell Infect Microbiol ; 14: 1336013, 2024.
Article in English | MEDLINE | ID: mdl-38633745

ABSTRACT

Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine , Humans , Influenza A virus/physiology , Vaccines, Attenuated , Antibodies, Viral
12.
Viruses ; 16(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38932114

ABSTRACT

When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct effects on viral structural and replicative machinery or viral factors that antagonize host defense or cause disease. However, attenuation must balance reduced replication and immunogenic antigen expression. In the present study, we explored a new approach in order to discover attenuating mutations. Specifically, we used protein structure modeling and computational methods to identify amino acid substitutions in the RSV nonstructural protein 1 (NS1) predicted to cause various levels of structural perturbation. Twelve different mutations predicted to alter the NS1 protein structure were introduced into infectious virus and analyzed in cell culture for effects on viral mRNA and protein expression, interferon and cytokine expression, and caspase activation. We found the use of structure-based machine learning to predict amino acid substitutions that reduce the thermodynamic stability of NS1 resulted in various levels of loss of NS1 function, exemplified by effects including reduced multi-cycle viral replication in cells competent for type I interferon, reduced expression of viral mRNAs and proteins, and increased interferon and apoptosis responses.


Subject(s)
Machine Learning , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Viral Nonstructural Proteins , Virus Replication , Humans , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Infections/immunology , Amino Acid Substitution , Mutation , Cell Line
13.
Front Public Health ; 11: 1284337, 2023.
Article in English | MEDLINE | ID: mdl-38259741

ABSTRACT

The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.


Subject(s)
Poliomyelitis , Poliovirus Vaccines , Vaccines , Humans , Poliomyelitis/prevention & control , Central Nervous System , Behavior Therapy
14.
mSystems ; 8(2): e0092722, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36861991

ABSTRACT

Over the past 150 years, vaccines have revolutionized the relationship between people and disease. During the COVID-19 pandemic, technologies such as mRNA vaccines have received attention due to their novelty and successes. However, more traditional vaccine development platforms have also yielded important tools in the worldwide fight against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of approaches have been used to develop COVID-19 vaccines that are now authorized for use in countries around the world. In this review, we highlight strategies that focus on the viral capsid and outwards, rather than on the nucleic acids inside. These approaches fall into two broad categories: whole-virus vaccines and subunit vaccines. Whole-virus vaccines use the virus itself, in either an inactivated or an attenuated state. Subunit vaccines contain instead an isolated, immunogenic component of the virus. Here, we highlight vaccine candidates that apply these approaches against SARS-CoV-2 in different ways. In a companion article (H. M. Rando, R. Lordan, L. Kolla, E. Sell, et al., mSystems 8:e00928-22, 2023, https://doi.org/10.1128/mSystems.00928-22), we review the more recent and novel development of nucleic acid-based vaccine technologies. We further consider the role that these COVID-19 vaccine development programs have played in prophylaxis at the global scale. Well-established vaccine technologies have proved especially important to making vaccines accessible in low- and middle-income countries. Vaccine development programs that use established platforms have been undertaken in a much wider range of countries than those using nucleic acid-based technologies, which have been led by wealthy Western countries. Therefore, these vaccine platforms, though less novel from a biotechnological standpoint, have proven to be extremely important to the management of SARS-CoV-2. IMPORTANCE The development, production, and distribution of vaccines is imperative to saving lives, preventing illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Vaccines that use cutting-edge biotechnology have played an important role in mitigating the effects of SARS-CoV-2. However, more traditional methods of vaccine development that were refined throughout the 20th century have been especially critical to increasing vaccine access worldwide. Effective deployment is necessary to reducing the susceptibility of the world's population, which is especially important in light of emerging variants. In this review, we discuss the safety, immunogenicity, and distribution of vaccines developed using established technologies. In a separate review, we describe the vaccines developed using nucleic acid-based vaccine platforms. From the current literature, it is clear that the well-established vaccine technologies are also highly effective against SARS-CoV-2 and are being used to address the challenges of COVID-19 globally, including in low- and middle-income countries. This worldwide approach is critical for reducing the devastating impact of SARS-CoV-2.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Pandemics/prevention & control , Vaccine Development , Vaccines, Subunit , Nucleic Acid-Based Vaccines
15.
Virology ; 566: 143-152, 2022 01.
Article in English | MEDLINE | ID: mdl-34929590

ABSTRACT

Annual repeat influenza vaccination raises concerns about protective efficacy against mismatched viruses. We investigated the impact of heterologous prime-boost vaccination on inducing cross protection by designing recombinant influenza viruses with chimeric hemagglutinin (HA) carrying M2 extracellular domains (M2e-HA). Heterologous prime-boost vaccination of C57BL/6 mice with M2e-HA chimeric virus more effectively induced M2e and HA stalk specific IgG antibodies correlating with cross protection than homologous prime-boost vaccination. Induction of M2e and HA stalk specific IgG antibodies was compromised in 1-year old mice, indicating significant aging effects on priming subdominant M2e and HA stalk IgG antibody responses. This study demonstrates that a heterologous prime-boost strategy with recombinant influenza virus expressing extra M2e epitopes provides more effective cross protection than homologous vaccination.


Subject(s)
Aging/immunology , Antibodies, Viral/biosynthesis , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Immunoglobulin G/biosynthesis , Influenza Vaccines/genetics , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Age Factors , Aging/genetics , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Cross Protection , Female , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunization, Secondary/methods , Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza Vaccines/administration & dosage , Influenza Vaccines/biosynthesis , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred C57BL , Models, Molecular , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Vaccination/methods , Vaccines, Synthetic , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
16.
Front Immunol ; 13: 787021, 2022.
Article in English | MEDLINE | ID: mdl-35173716

ABSTRACT

Vaccination is the best form of protecting fish against viral diseases when the pathogen cannot be contained by biosecurity measures. Vaccines based on live attenuated viruses seem to be most effective for vaccination against challenging pathogens like Cyprinid herpesvirus 3. However, there are still knowledge gaps how these vaccines effectively protect fish from the deadly disease caused by the epitheliotropic CyHV-3, and which aspects of non-direct protection of skin or gill integrity and function are important in the aquatic environment. To elucidate some elements of protection, common carp were vaccinated against CyHV-3 using a double deletion vaccine virus KHV-T ΔDUT/TK in the absence or presence of a mix of common carp beta-defensins 1, 2 and 3 as adjuvants. Vaccination induced marginal clinical signs, low virus load and a minor upregulation of cd4, cd8 and igm gene expression in vaccinated fish, while neutralisation activity of blood serum rose from 14 days post vaccination (dpv). A challenge infection with CyHV-3 induced a severe disease with 80-100% mortality in non-vaccinated carp, while in vaccinated carp, no mortality was recorded and the virus load was >1,000-fold lower in the skin, gill and kidney. Histological analysis showed strongest pathological changes in the skin, with a complete destruction of the epidermis in non-vaccinated carp. In the skin of non-vaccinated fish, T and B cell responses were severely downregulated, inflammation and stress responses were increased upon challenge, whereas vaccinated fish had boosted neutrophil, T and B cell responses. A disruption of skin barrier elements (tight and adherence junction, desmosomes, mucins) led to an uncontrolled increase in skin bacteria load which most likely exacerbated the inflammation and the pathology. Using a live attenuated virus vaccine, we were able to show that increased neutrophil, T and B cell responses provide protection from CyHV-3 infection and lead to preservation of skin integrity, which supports successful protection against additional pathogens in the aquatic environment which foster disease development in non-vaccinated carp.


Subject(s)
Fish Diseases/immunology , Fish Diseases/prevention & control , Herpesviridae Infections/veterinary , Herpesviridae/immunology , Viral Vaccines/immunology , Animals , Carps , Herpesviridae/genetics , Herpesviridae Infections/immunology , Vaccination , Vaccines, Attenuated/immunology , Viral Vaccines/genetics
17.
Pathogens ; 11(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36558773

ABSTRACT

African Swine Fever Virus (ASFV) is the causative agent of a highly contagious and lethal vector-borne disease in suids. Recently, a live attenuated virus strain, developed using the currently circulating, virulent Georgia strain (ASFV-G) with a single gene deletion (ASFV-G-ΔI177L), resulted in an effective vaccine. Nevertheless, protective immune response mechanisms induced by this candidate are poorly understood. In this study, Yorkshire crossbred swine intramuscularly vaccinated with 106 50% hemadsorption dose (HAD50) of ASFV-G-ΔI177L or a vehicle control were challenged at 28 days post-inoculation (dpi) with 102 HAD50 of ASFV-G. Analysis of purified peripheral blood mononuclear cells following inoculation and challenge revealed that CD4+, CD8+ and CD4+CD8+ central memory T cells (CD44+CD25-CD27-CD62L+CCR7+, Tcm) decreased significantly by 28 dpi in ASFV-G-ΔI177L-vaccinated swine compared to baseline and time-matched controls. Conversely, CD4+, CD8+ and CD4+CD8+ effector memory T cells (CD44+CD25-CD27-CD62-CCR7-, Tem) increased significantly among ASFV-G-ΔI177L-vaccined swine by 28 dpi compared to baseline and time-matched controls. Additionally, the percentage of natural killer (NK), CD4+ and CD4+CD8+ Tem and CD8+ Tcm and Tem positive for IFNγ increased significantly following inoculation, surpassing that of controls by 28 dpi or earlier. These results suggest that NK and memory T cells play a role in protective immunity and suggest that studying these cell populations may be a surrogate immunity marker in ASF vaccination.

18.
Vet Microbiol ; 253: 108968, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33418392

ABSTRACT

Swine Influenza A virus (swIAV) poses a substantial burden to the swine industry due to its highly contagious nature, acute viral disease, and ability to cause up to 100 % morbidity. Currently, North American swine are predominately infected with three subtypes of swIAV: H1N1, H1N2, and H3N2. The ability of influenza viruses to cross both directions between humans and swine means that both human and swine-origin viruses as well as new reassortant viruses can pose a substantial public health or pandemic threat. Since the primary method of protection and control against influenza is through vaccination, more effective, new vaccine platforms need to be developed. This study uses two Canadian swIAV isolates, A/Swine/Alberta/SD0191/2016 (H1N2) [SD191] and A/Swine/Saskatchewan/SD0069/2015 (H3N2) [SD69] to design a bivalent live attenuated influenza virus vaccine (LAIV) through reverse genetics. The hemagglutinin (HA) cleavage site from both SD191-WT and SD69-WT were engineered from a trypsin-sensitive to an elastase-sensitive motif, to generate SD191-R342V and SD69-K345V, respectively. The elastase dependent SD191-R342V virus possesses a mutation from arginine to valine at amino acid (aa) 342 on HA, whereas the elastase dependent SD69-K345V virus possesses a mutation from lysine to valine at aa 345 on HA. Both elastase dependent swIAVs are completely dependent on elastase, display comparable growth properties to the wild type (WT) viruses, are genetically stable in vitro, and entirely non-virulent in pigs. Moreover, when these elastase dependent swIAVs were administered together in pigs, they were found to stimulate antibody responses and IFN-γ secreting cells, as well as prevent viral replication and lung pathology associated with WT H1N2 and H3N2 swIAV challenge. Therefore, this bivalent LAIV demonstrates the strong candidacy to protect swine against the predominant influenza subtypes in North America.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Swine Diseases/prevention & control , Animals , Immunogenicity, Vaccine , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Influenza Vaccines/administration & dosage , Orthomyxoviridae Infections/immunology , Pancreatic Elastase/metabolism , Reassortant Viruses , Reverse Genetics , Swine , Swine Diseases/immunology , Swine Diseases/virology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
19.
Microorganisms ; 10(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35056456

ABSTRACT

Marek's disease (MD) is a ubiquitous disease of domesticated chickens and its etiologic agent is the Gallid alphaherpesvirus 2 (GaHV-2), also known as Marek's disease virus (MDV). MD is currently controlled by vaccination using live attenuated strains of MDV (e.g., CVI988/Rispens), non-pathogenic serotypes of MDV (GaHV-3), or non-pathogenic strains of the related Melagrid alphaherpesvirus 1 (MeHV-1). One attractive strategy for the production of new vaccine strains is a recombinant MDV attenuated by the deletion of the major viral oncogene meq. However, meq-deleted variants of MDV cause atrophy of the bursa and thymus in maternal antibody-negative chickens, and the resulting immunosuppression makes them unsuitable. Herein we detail our attempt to mitigate the lymphoid atrophy caused by meq-deleted MDV by further attenuation of the virus through ablation of the viral thymidine kinase (tk) gene. We demonstrate that ablation of the viral tk from the meq-deleted virus rMd5B40/Δmeq resulted in a virus attenuated for replication in vitro and which spared chickens from atrophy of the lymphoid organs in vivo. When the rMd5B40/Δmeq/Δtk/GFP was used as a vaccine it was protective against challenge with the vv+MDV strain 686, but the protection was less than that provided by the CVI988/Rispens vaccine.

20.
Vaccines (Basel) ; 9(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069239

ABSTRACT

African swine fever (ASF) is today's number one threat for the global swine industry. Neither commercial vaccine nor treatment is available against ASF and, thus far, only live attenuated viruses (LAV) have provided robust protection against lethal ASF virus (ASFV) challenge infections. Identification of ASFV proteins inducing protective immune responses is one of the major challenges to develop safer and efficient subunit vaccines. Immunopeptidomic studies recently performed in our laboratory allowed identifying ASFV antigens recognized by ASFV-specific CD8+ T-cells. Here, we used data from the SLAI-peptide repertoire presented by a single set of ASFV-infected porcine alveolar macrophages to generate a complex DNA vaccine composed by 15 plasmids encoding the individual peptide-bearing ORFs. DNA vaccine priming improved the protection afforded by a suboptimal dose of the BA71ΔCD2 LAV given as booster vaccination, against Georgia2007/1 lethal challenge. Interestingly, M448R was the only protein promiscuously recognized by the induced ASFV-specific T-cells. Furthermore, priming pigs with DNA plasmids encoding M488R and MGF505-7R, a CD8+ T-cell antigen previously described, confirmed these two proteins as T-cell antigens with protective potential. These studies might be useful to pave the road for designing safe and more efficient vaccine formulations in the future.

SELECTION OF CITATIONS
SEARCH DETAIL