Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 354
Filter
Add more filters

Publication year range
1.
Cell ; 185(10): 1646-1660.e18, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35447073

ABSTRACT

Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.


Subject(s)
Marsupialia , Animals , Australia , Evolution, Molecular , Genetic Speciation , Genome , Marsupialia/genetics , Phenotype , Phylogeny
2.
Proc Natl Acad Sci U S A ; 120(22): e2208654120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216522

ABSTRACT

The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex, patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in noneutherian mammals, as well as when and how they arise during development, remain open questions relevant for understanding brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer an approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice) and examined earlier stages of development to determine the onset of these patterns and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate other early events in cortical development.


Subject(s)
Cerebral Cortex , Marsupialia , Animals , Mice , Axons , Mammals , Brain , Eutheria , Somatosensory Cortex
3.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35005774

ABSTRACT

Only mammals evolved a neocortex, which integrates sensory-motor and cognitive functions. Significant diversifications in the cellular composition and connectivity of the neocortex occurred between the two main therian groups: marsupials and eutherians. However, the developmental mechanisms underlying these diversifications are largely unknown. Here, we compared the neocortical transcriptomes of Sminthopsis crassicaudata, a mouse-sized marsupial, with those of eutherian mice at two developmentally equivalent time points corresponding to deeper and upper layer neuron generation. Enrichment analyses revealed more mature gene networks in marsupials at the early stage, which reverted at the later stage, suggesting a more precocious but protracted neuronal maturation program relative to birth timing of cortical layers. We ranked genes expressed in different species and identified important differences in gene expression rankings between species. For example, genes known to be enriched in upper-layer cortical projection neuron subtypes, such as Cux1, Lhx2 and Satb2, likely relate to corpus callosum emergence in eutherians. These results show molecular heterochronies of neocortical development in Theria, and highlight changes in gene expression and cell type composition that may underlie neocortical evolution and diversification. This article has an associated 'The people behind the papers' interview.


Subject(s)
Biological Evolution , Eutheria/growth & development , Marsupialia/growth & development , Neocortex/growth & development , Transcriptome , Animals , Eutheria/classification , Eutheria/genetics , Marsupialia/classification , Marsupialia/genetics , Mice , Neocortex/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Dev Dyn ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721717

ABSTRACT

BACKGROUND: Marsupials are a diverse and unique group of mammals, but remain underutilized in developmental biology studies, hindering our understanding of mammalian diversity. This study focuses on establishing the fat-tailed dunnart (Sminthopsis crassicaudata) as an emerging laboratory model, providing reproductive monitoring methods and a detailed atlas of its embryonic development. RESULTS: We monitored the reproductive cycles of female dunnarts and established methods to confirm pregnancy and generate timed embryos. With this, we characterized dunnart embryo development from cleavage to birth, and provided detailed descriptions of its organogenesis and heterochronic growth patterns. Drawing stage-matched comparisons with other species, we highlight the dunnarts accelerated craniofacial and limb development, characteristic of marsupials. CONCLUSIONS: The fat-tailed dunnart is an exceptional marsupial model for developmental studies, where our detailed practices for reproductive monitoring and embryo collection enhance its accessibility in other laboratories. The accelerated developmental patterns observed in the Dunnart provide a valuable system for investigating molecular mechanisms underlying heterochrony. This study not only contributes to our understanding of marsupial development but also equips the scientific community with new resources for addressing biodiversity challenges and developing effective conservation strategies in marsupials.

5.
BMC Biol ; 21(1): 59, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949471

ABSTRACT

BACKGROUND: With an increasing interest in the manipulation of methane produced from livestock cultivation, the microbiome of Australian marsupials provides a unique ecological and evolutionary comparison with 'low-methane' emitters. Previously, marsupial species were shown to be enriched for novel lineages of Methanocorpusculum, as well as Methanobrevibacter, Methanosphaera, and Methanomassiliicoccales. Despite sporadic reports of Methanocorpusculum from stool samples of various animal species, there remains little information on the impacts of these methanogens on their hosts. RESULTS: Here, we characterise novel host-associated species of Methanocorpusculum, to explore unique host-specific genetic factors and their associated metabolic potential. We performed comparative analyses on 176 Methanocorpusculum genomes comprising 130 metagenome-assembled genomes (MAGs) recovered from 20 public animal metagenome datasets and 35 other publicly available Methanocorpusculum MAGs and isolate genomes of host-associated and environmental origin. Nine MAGs were also produced from faecal metagenomes of the common wombat (Vombatus ursinus) and mahogany glider (Petaurus gracilis), along with the cultivation of one axenic isolate from each respective animal; M. vombati (sp. nov.) and M. petauri (sp. nov.). CONCLUSIONS: Through our analyses, we substantially expand the available genetic information for this genus by describing the phenotypic and genetic characteristics of 23 host-associated species of Methanocorpusculum. These lineages display differential enrichment of genes associated with methanogenesis, amino acid biosynthesis, transport system proteins, phosphonate metabolism, and carbohydrate-active enzymes. These results provide insights into the differential genetic and functional adaptations of these novel host-associated species of Methanocorpusculum and suggest that this genus is ancestrally host-associated.


Subject(s)
Methane , Microbiota , Animals , Australia , Methane/metabolism , Metagenome
6.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338755

ABSTRACT

In marsupials, upper-layer cortical neurons derived from the progenitors of the subventricular zone of the lateral ventricle (SVZ) mature morphologically and send their axons to form interhemispheric connections through the anterior commissure. In contrast, eutherians have evolved a new extra callosal pathway, the corpus callosum, that interconnects both hemispheres. In this study, we aimed to examine neurogenesis during the formation of cortical upper layers, including their morphological maturation in a marsupial species, namely the opossum (Monodelphis domestica). Furthermore, we studied how the axons of upper layers neurons pass through the anterior commissure of the opossum, which connects neocortical areas. We showed that upper-layer II/III neurons were generated within at least seven days in the opossum neocortex. Surprisingly, these neurons expressed special AT-rich sequence binding protein 2 (Satb2) and neuropilin 1 interacting protein (Nrp1), which are proteins known to be essential for the formation of the corpus callosum in eutherians. This indicates that extrinsic, but not intrinsic, cues could be key players in guiding the axons of newly generated cortical neurons in the opossum. Although oligodendrocyte precursor cells were present in the neocortex and anterior commissure, newly generated upper-layer neurons sent unmyelinated axons to the anterior commissure. We also found numerous GFAP-expressing progenitor cells in both brain structures, the neocortex and the anterior commissure. However, at P12-P17 in the opossums, a small population of astrocytes was observed only in the midline area of the anterior commissure. We postulate that in the opossum, midline astrocytes allow neocortical axons to be guided to cross the midline, as this structure resembles the glial wedge required by fibers to cross the midline area of the corpus callosum in the rodent.


Subject(s)
Monodelphis , Neocortex , Animals , Astrocytes , Axon Guidance , Neurons , Corpus Callosum , Axons/physiology , Eutheria
7.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34865126

ABSTRACT

Chromosome rearrangements can result in the rapid evolution of hybrid incompatibilities. Robertsonian fusions, particularly those with monobrachial homology, can drive reproductive isolation amongst recently diverged taxa. The recent radiation of rock-wallabies (genus Petrogale) is an important model to explore the role of Robertsonian fusions in speciation. Here, we pursue that goal using an extensive sampling of populations and genomes of Petrogale from north-eastern Australia. In contrast to previous assessments using mitochondrial DNA or nuclear microsatellite loci, genomic data are able to separate the most closely related species and to resolve their divergence histories. Both phylogenetic and population genetic analyses indicate introgression between two species that differ by a single Robertsonian fusion. Based on the available data, there is also evidence for introgression between two species which share complex chromosomal rearrangements. However, the remaining results show no consistent signature of introgression amongst species pairs and where evident, indicate generally low introgression overall. X-linked loci have elevated divergence compared with autosomal loci indicating a potential role for genic evolution to produce reproductive isolation in concert with chromosome change. Our results highlight the value of genome scale data in evaluating the role of Robertsonian fusions and structural variation in divergence, speciation, and patterns of molecular evolution.


Subject(s)
Macropodidae , Reproductive Isolation , Animals , Chromosomes/genetics , DNA, Mitochondrial/genetics , Macropodidae/genetics , Phylogeny
8.
Biol Reprod ; 109(5): 644-653, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37593918

ABSTRACT

The prostate of the koala (Phascolarctos cinereus), and of marsupials more generally, is the primary contributor of seminal fluid, yet comparatively little is known about its microanatomy or biochemistry. This study explored evidence of parenchymal segmentation of the koala prostate. The prostate of three sexually mature koalas were processed for histopathology, histochemistry (Masson's trichrome, Alcian Blue, periodic acid Schiff staining), and immunohistochemistry using basal (tumor protein 63, cytokeratin 14) and luminal (cytokeratin 8/18, prostate specific antigen, androgen receptor) markers. Results confirmed clear segmentation of the koala prostate into three zones, anterior, central, and posterior, characterized by differences in the proportion of glandular tissue, as well as the thickness of collagen fibers; there were also distinct differences in the secretions produced in each zone. Based on immunohistochemistry, the koala prostate showed evidence of both basal proliferative and luminal secretory cells. The ratio of cell types varied across the three segments, with the central segment housing the highest density of basal cells. Globular bodies produced in the anterior zone were shown to possess the same markers as those described for human prostasomes. This study is the first to comprehensively document the marsupial prostate in terms of microanatomy and corresponding immunohistochemistry. While further biochemical analysis, such as proteomics of each segment will better define the relative functions of each tissue, the data presented here are consistent with the hypothesis that the koala prostate potentially represents an example of an ontological stage in the evolutionary differentiation of male eutherian accessory glands.


Subject(s)
Marsupialia , Phascolarctidae , Animals , Male , Humans , Phascolarctidae/anatomy & histology , Prostate , Immunohistochemistry
9.
Mol Ecol ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38013623

ABSTRACT

Identifying and analysing isolated populations is critical for conservation. Isolation can make populations vulnerable to local extinction due to increased genetic drift and inbreeding, both of which should leave imprints of decreased genome-wide heterozygosity. While decreases in heterozygosity among populations are frequently investigated, fewer studies have analysed how heterozygosity varies among individuals, including whether heterozygosity varies geographically along lines of discrete population structure or with continuous patterns analogous to isolation by distance. Here we explore geographical patterns of differentiation and individual heterozygosity in the threatened eastern barred bandicoot (Perameles gunnii) in Tasmania, Australia, using genomic data from 85 samples collected between 2008 and 2011. Our analyses identified two isolated demes undergoing significant genetic drift, and several areas of fine-scale differentiation across Tasmania. We observed discrete genetic structures across geographical barriers and continuous patterns of isolation by distance, with little evidence of recent or historical migration. Using a recently developed analytical pipeline for estimating autosomal heterozygosity, we found individual heterozygosities varied within demes by up to a factor of two, and demes with low-heterozygosity individuals also still contained those with high heterozygosity. Spatial interpolation of heterozygosity scores clarified these patterns and identified the isolated Tasman Peninsula as a location where low-heterozygosity individuals were more common than elsewhere. Our results provide novel insights into the relationship between isolation-driven genetic structure and local heterozygosity patterns. These may help improve translocation efforts, by identifying populations in need of assistance, and by providing an individualised metric for identifying source animals for translocation.

10.
J Anat ; 243(6): 910-935, 2023 12.
Article in English | MEDLINE | ID: mdl-37497834

ABSTRACT

Recent didelphid marsupials resemble the assumed mammalian ancestor and are suitable to inform on the evolution of the mammalian lung. This study uses X-ray computed tomography (µCT) to three-dimensionally reconstruct the bronchial tree of the marsupial Gray short-tailed opossum (Monodelphis domestica) in order to reveal the timeline of morphogenesis during the postnatal period. The development of the bronchial tree was examined in 37 animals from embryonic day 13, during the postnatal period (neonate to 57 days) and in adults. The first appearance and the branching of lobar, segmental and sub-segmental bronchioles in the lungs were documented. Based on the reconstructions, the generation of end-branching airways, the median and maximum generation and the number of branches were calculated for each pulmonary lobe. At birth, the lung of M. domestica has a primitive appearance since it consists of a simple system of branching airways that end in a number of terminal air spaces, lobar bronchioles, and first segmental bronchioles are present. During the postnatal period, the volumes of the lung and bronchial tree steadily increase and development, differentiation, and expansion of the bronchial tree takes place. By 14 days, the fundamental bronchial tree consisting of lobar, segmental, and sub-segmental bronchioles has been established. A mature bronchial tree, including respiratory bronchioles and alveolar ducts is present by day 35. The asymmetry of the right (predominately four lobes) and the left lung (predominately two lobes), as present in M. domestica, can be considered as plesiomorphic for Mammalia. In marsupials, the process of branching morphogenesis, which takes place intrauterine in the placental fetus, is shifted to the postnatal period, but follows similar patterns as described in placentals. Lung maturation in general and the branching morphogenesis in particular seems to be highly conservative within mammalian evolution.


Subject(s)
Monodelphis , Animals , Female , Pregnancy , Imaging, Three-Dimensional , Placenta , Lung , Organogenesis
11.
Conserv Biol ; 37(5): e14098, 2023 10.
Article in English | MEDLINE | ID: mdl-37186093

ABSTRACT

Severely fragmented habitats increase the risk of extirpation of native mammal populations through isolation, increased edge effects, and predation. Therefore, monitoring the movement of mammal populations through anthropogenically altered landscapes can inform conservation. We used metabarcoding of invertebrate-derived DNA (iDNA) from carrion flies (Calliphoridae and Sarcophagidae) to track mammal populations in the wheat belt of southwestern Australia, where widespread clearing for agriculture has removed most of the native perennial vegetation and replaced it with an agricultural system. We investigated whether the localization of the iDNA signal reflected the predicted distribution of 4 native species-echidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), woylie (Bettongia penicillata), and chuditch (Dasyurus geoffroii)-and 2 non-native, invasive mammal species-fox (Vulpes vulpes) and feral cat (Felis catus). We collected bulk iDNA samples (n = 150 samples from 3428 carrion flies) at 3 time points from 3 conservation reserves and 35 road edges between them. We detected 14 of the 40 mammal species known from the region, including our target species. Most detections of target taxa were in conservation reserves. There were a few detections from road edges. We detected foxes and feral cats throughout the study area, including all conservation reserves. There was a significant difference between the diversity (F3, 98  = 5.91, p < 0.001) and composition (F3, 43  = 1.72, p < 0.01) of taxa detections on road edges and conservation reserves. Conservation reserves hosted more native biodiversity than road edges. Our results suggest that the signals from iDNA reflect the known distribution of target mammals in this region. The development of iDNA methods shows promise for future noninvasive monitoring of mammals. With further development, iDNA metabarcoding could inform decision-making related to conservation of endangered taxa, invasive species management, and impacts of habitat fragmentation.


Caracterización genética del ADNi de la mosca carroñera para monitorear mamíferos invasores y nativos Resumen Los hábitats con mucha fragmentación aumentan el riesgo de extirpación de las poblaciones de mamíferos nativos debido al aislamiento, el aumento de los efectos de borde y la depredación. Por lo tanto, el monitoreo del movimiento de las poblaciones de mamíferos a través de paisajes alterados antropogénicamente puede guiar a la conservación. Utilizamos la caracterización genética del ADN derivado de invertebrados (ADNi) de moscas de la carroña (Calliphoridae y Sarcophagidae) para rastrear poblaciones de mamíferos en la región de Wheatbelt del suroeste de Australia, en donde la tala generalizada ha sustituido la mayor parte de la vegetación perenne nativa por un sistema agrícola. Investigamos si la localización de la señal de ADNi reflejaba la distribución prevista de cuatro especies autóctonas: equidna (Tachyglossus aculeatus), numbat (Myrmecobius fasciatus), rata canguro (Bettongia penicillata) y cuol occidental (Dasyurus geoffroii), y dos especies de mamíferos invasores no autóctonos: el zorro (Vulpes vulpes) y el gato feral (Felis catus). Recogimos muestras masivas de ADNi (n = 150 muestras de 3,428 moscas de la carroña) en tres puntos temporales de tres reservas ecológicas y 35 bordes de carreteras entre ellas. Detectamos 14 de las 40 especies de mamíferos conocidas en la región, incluidas nuestras especies objetivo. La mayoría de las detecciones de los taxones objetivo se produjeron en las reservas ecológicas. Pocas detecciones ocurrieron en los bordes de las carreteras. Detectamos zorros y gatos ferales en toda la zona de estudio, incluidas todas las reservas ecológicas. Hubo una diferencia significativa entre la diversidad (F3, 98 = 5.91, p<0.001) y la composición (F3, 43 = 1.72, p<0.01) de los taxones detectados en los bordes de las carreteras y en las reservas ecológicas. Las reservas ecológicas albergaron más biodiversidad nativa que los bordes de las carreteras. Nuestros resultados sugieren que las señales de ADNi reflejan la distribución conocida de los mamíferos objetivo en esta región. El desarrollo de métodos de ADNi es prometedor para el futuro monitoreo no invasivo de mamíferos. Con un mayor desarrollo, la caracterización genética del ADNi podría servir de base para decidir sobre la conservación de taxones amenazados, la gestión de especies invasoras y los impactos de la fragmentación del hábitat.


Subject(s)
Diptera , Cats , Animals , Conservation of Natural Resources , Mammals , Foxes , Biodiversity , Ecosystem , Animals, Wild , Introduced Species
12.
Immunol Invest ; 52(6): 661-680, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37267050

ABSTRACT

The wild Tasmanian devil (Sarcophilus harrisii) population has suffered a devastating decline due to two clonal transmissible cancers. The first devil facial tumor 1 (DFT1) was observed in 1996, followed by a second genetically distinct transmissible tumor, the devil facial tumor 2 (DFT2), in 2014. DFT1/2 frequently metastasize, with lymph nodes being common metastatic sites. MHC-I downregulation by DFT1 cells is a primary means of evading allograft immunity aimed at polymorphic MHC-I proteins. DFT2 cells constitutively express MHC-I, and MHC-I is upregulated on DFT1/2 cells by interferon gamma, suggesting other immune evasion mechanisms may contribute to overcoming allograft and anti-tumor immunity. Human clinical trials have demonstrated PD1/PDL1 blockade effectively treats patients showing increased expression of PD1 in tumor draining lymph nodes, and PDL1 on peritumoral immune cells and tumor cells. The effects of DFT1/2 on systemic immunity remain largely uncharacterized. This study applied the open-access software QuPath to develop a semiautomated pipeline for whole slide analysis of stained tissue sections to quantify PD1/PDL1 expression in devil lymph nodes. The QuPath protocol provided strong correlations to manual counting. PD-1 expression was approximately 10-fold higher than PD-L1 expression in lymph nodes and was primarily expressed in germinal centers, whereas PD-L1 expression was more widely distributed throughout the lymph nodes. The density of PD1 positive cells was increased in lymph nodes containing DFT2 metastases, compared to DFT1. This suggests PD1/PDL1 exploitation may contribute to the poorly immunogenic nature of transmissible tumors in some devils and could be targeted in therapeutic or prophylactic treatments.Abbreviations: PD1: programmed cell death protein 1; PDL1: programmed death ligand 1; DFT1: devil facial tumor 1; DFT2: devil facial tumor 2; DFTD: devil facial tumor disease; MCC: Matthew's correlation coefficient; DAB: diaminobenzidine; ROI: region of interest.


Subject(s)
B7-H1 Antigen , Facial Neoplasms , Humans , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor/genetics , Lymph Nodes/pathology , Tumor Microenvironment
13.
Vet Radiol Ultrasound ; 64(4): 740-757, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37165997

ABSTRACT

The purpose of this prospective and anatomic study was to describe the ultrasonographic anatomy of the kidneys, urinary bladder, adrenal glands, spleen, liver, gall bladder, and gastrointestinal tract in healthy juvenile eastern grey kangaroos (Macropus giganteus). As ultrasonographic descriptions are lacking in marsupial species, it was also conducted to develop a systematic approach for abdominal ultrasonographic evaluation in the kangaroo and to provide preliminary quantitative and qualitative references. Ten macropod cadavers (eight eastern grey kangaroos and two swamp wallabies (Wallabia bicolor)) were used for initial dissections and preliminary ultrasonographic examinations. Seven eastern grey kangaroos (four females and three males; mean mass 18 kg (±4.5)) were ultrasonographically examined under heavy sedation in lateral recumbency. The gaseous forestomach occupied a large proportion of the entire abdomen ultrasonographically; therefore, the majority of cranial landmarks were based on an intercostal approach comparable to a deep-chested dog. Compared to domestic species, ultrasonographic differences in anatomy include the forestomach, hindstomach, liver orientation, distinguishable adrenal glands, splenic branching, and epipubic bones, all of which were described. The study was limited by the small sample size (7) and weight range (14-25 kg). The systematic approach and description of the normal ultrasonographic anatomy of the abdominal organs in the eastern grey kangaroo should provide a foundation for the ultrasonographic diagnosis and interpretation of abdominal disease in this species.


Subject(s)
Macropodidae , Urinary Tract , Female , Male , Animals , Dogs , Macropodidae/anatomy & histology , Spleen/diagnostic imaging , Prospective Studies , Abdomen/diagnostic imaging , Adrenal Glands/diagnostic imaging , Gastrointestinal Tract
14.
Mol Biol Evol ; 38(3): 1060-1074, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33185661

ABSTRACT

Mammalian pregnancy evolved in the therian stem lineage, that is, before the common ancestor of marsupials and eutherian (placental) mammals. Ancestral therian pregnancy likely involved a brief phase of attachment between the fetal and maternal tissues followed by parturition-similar to the situation in most marsupials including the opossum. In all eutherians, however, embryo attachment is followed by implantation, allowing for a stable fetal-maternal interface and an extended gestation. Embryo attachment induces an attachment reaction in the uterus that is homologous to an inflammatory response. Here, we elucidate the evolutionary mechanism by which the ancestral inflammatory response was transformed into embryo implantation in the eutherian lineage. We performed a comparative uterine transcriptomic and immunohistochemical study of three eutherians, armadillo (Dasypus novemcinctus), hyrax (Procavia capensis), and rabbit (Oryctolagus cuniculus); and one marsupial, opossum (Monodelphis domestica). Our results suggest that in the eutherian lineage, the ancestral inflammatory response was domesticated by suppressing one of its modules detrimental to pregnancy, namely, neutrophil recruitment by cytokine IL17A. Further, we propose that this suppression was mediated by decidual stromal cells, a novel cell type in eutherian mammals. We tested a prediction of this model in vitro and showed that decidual stromal cells can suppress the production of IL17A from helper T cells. Together, these results provide a mechanistic understanding of early stages in the evolution of eutherian pregnancy.


Subject(s)
Biological Evolution , Embryo Implantation , Eutheria/genetics , Interleukin-17/metabolism , Opossums/metabolism , Uterus/metabolism , Animals , Decidua/cytology , Eutheria/embryology , Female , Gene Expression , Models, Biological , Neutrophil Infiltration , Rabbits , Stromal Cells
15.
Am Nat ; 200(6): 790-801, 2022 12.
Article in English | MEDLINE | ID: mdl-36409984

ABSTRACT

AbstractWhen sons and daughters have different fitness costs and benefits, selection may favor deviations from an even offspring sex ratio. Most theories on sex ratio manipulation focus on maternal strategies and sex-biased maternal expenditure. Recent studies report paternal influences on both offspring sex ratio and postpartum sex-biased maternal expenditure. We used long-term data on marked kangaroos to investigate whether and how paternal mass and skeletal size, both determinants of male reproductive success, influenced (a) offspring sex in interaction with maternal mass and (b) postpartum sex-biased maternal expenditure. When mothers were light, the probability of having a son increased with paternal mass. Heavy mothers showed the opposite trend. A similar result emerged when considering paternal size instead of mass. Postpartum maternal sex-specific expenditure was independent of paternal mass or size. Studies of offspring sex manipulation or maternal expenditure would benefit from an explicit consideration of paternal traits, as paternal and maternal effects can modulate each other.


Subject(s)
Health Expenditures , Sex Ratio , Female , Male , Humans , Reproduction , Fathers
16.
Am Nat ; 200(3): 383-400, 2022 09.
Article in English | MEDLINE | ID: mdl-35977786

ABSTRACT

AbstractThe remarkable evolutionary success of placental mammals has been partly attributed to their reproductive strategy of prolonged gestation and birthing of relatively precocial, quickly weaned neonates. Although this strategy was conventionally considered derived relative to that of marsupials with highly altricial neonates and long lactation periods, mounting evidence has challenged this view. Until now the fossil record has been relatively silent on this debate, but here we find that proportions of different bone tissue microstructures in the femoral cortices of small extant marsupials and placentals correlate with length of lactation period, allowing us to apply this histological correlate of reproductive strategies to Late Cretaceous and Paleocene members of Multituberculata, an extinct mammalian clade that is phylogenetically stemward of Theria. Multituberculate bone histology closely resembles that of placentals, suggesting that they had similar life history strategies. A stem-therian clade exhibiting evidence of placental-like life histories supports the hypothesis that intense maternal-fetal contact characteristic of placentals is ancestral for therians. Alternatively, multituberculates and placentals may have independently evolved prolonged gestation and abbreviated lactation periods. Our results challenge the hypothesis that the rise of placental mammals was driven by unique life history innovations and shed new light on early mammalian diversification.


Subject(s)
Life History Traits , Marsupialia , Animals , Biological Evolution , Female , Mammals , Phylogeny , Placenta , Pregnancy
17.
Proc Biol Sci ; 289(1985): 20221589, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36285501

ABSTRACT

It is generally believed that marsupials are more primitive than placentals mammals and mainly solitary living, representing the ancestral form of social organization of all mammals. However, field studies have observed pair and group-living in marsupial species, but no comparative study about their social evolution was ever done. Here, we describe the results of primary literature research on marsupial social organization which indicates that most species can live in pairs or groups and many show intra-specific variation in social organization. Using Bayesian phylogenetic mixed-effects models with a weak phylogenetic signal of 0.18, we found that solitary living was the most likely ancestral form (35% posterior probability), but had high uncertainty, and the combined probability of a partly sociable marsupial ancestor (65%) should not be overlooked. For Australian marsupials, group-living species were less likely to be found in tropical rainforest, and species with a variable social organization were associated with low and unpredictable precipitation representing deserts. Our results suggest that modern marsupials are more sociable than previously believed and that there is no strong support that their ancestral state was strictly solitary living, such that the assumption of a solitary ancestral state of all mammals may also need reconsideration.


Subject(s)
Marsupialia , Animals , Phylogeny , Biological Evolution , Bayes Theorem , Australia , Mammals
18.
J Exp Biol ; 225(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36420835

ABSTRACT

Endothermy, understood as the maintenance of continuous and high body temperatures owing to the combination of metabolic heat production and an insulative cover, is severely challenged in small endotherms inhabiting cold environments. As a response, social clustering combined with nest use (=communal nesting) is a common strategy for heat conservation. To quantify the actual amount of energy that is saved by this strategy, we studied the social marsupial Dromiciops gliroides (monito del monte), an endemic species of the cold forests of southern South America. It is hypothesized that sociability in this marsupial was driven by cold conditions, but evidence supporting this hypothesis is unclear. Here, we used taxidermic models ('mannequins') to experimentally test the energetic benefits of clustering combined with nest use. To do this, we fitted and compared cooling curves of solitary and grouped mannequins, within and outside of a nest, at the typical winter ambient temperatures of their habitat (5°C). We found that the strategy that minimized euthermic cost of maintenance was the combination of nest use and clustering, thus supporting communal nesting as a social adaptation to cope with the cold. Considering the basal metabolic rate of monitos, our estimates suggest that the savings represents almost half of energy consumption per day (in resting conditions). This study shows how simple biophysical models could help to evaluate bioenergetic hypotheses for social behavior in cold-adapted endotherms.


Subject(s)
Marsupialia , Animals , Marsupialia/physiology , Hot Temperature , Basal Metabolism , Energy Metabolism/physiology , Thermogenesis
19.
Genome ; 65(5): 277-286, 2022 May.
Article in English | MEDLINE | ID: mdl-35030050

ABSTRACT

An albino infant wallaby was born to a mother with wild-type body color. PCR and sequencing analyses of TYR (encoding tyrosinase, which is essential for melanin biosynthesis) of this albino wallaby revealed a 7.1-kb-long DNA fragment inserted in the first exon. Since the fragment carried long terminal repeats, we assumed it to be a copy of an endogenous retrovirus, which we named walb. We cloned other walb copies residing in the genomes of this species and of another wallaby species. The copies exhibited length variation, and the longest copy (>8.0 kb) contained open reading frames whose deduced amino acid sequences were well aligned with those of gag, pol, and env of retroviruses. It is unknown through which of the following likely processes the walb copy was inserted into TYR: endogenization (infection of a germline cell by an exogenous virus), reinfection (infection by a virus produced from a previously endogenized provirus), or retrotransposition (intracellular relocation of a provirus). In any case, the insertion into TYR is considered to have been a recent event on an evolutionary timescale because albino mutant alleles generally do not persist for long because of their deleterious effects in wild circumstances.


Subject(s)
Endogenous Retroviruses , Amino Acid Sequence , Animals , Endogenous Retroviruses/genetics , Macropodidae/genetics , Proviruses/genetics , Terminal Repeat Sequences
20.
Parasitology ; : 1-6, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36259355

ABSTRACT

Here we present the genetic relationships of 26 specimens of the genus Breinlia (Nematoda: Filarioidea) from a range of Australian marsupials using markers in the small subunit of nuclear ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1 (cox1) genes and compare them with morphological determinations. The molecular data support the validity of most of the morpho-species included in the study and provide provisional insights into the phylogeny of the genus in Australian mammals, with dasyuroid marsupials appearing to be the original hosts. The recent discovery of Breinlia annulipapillata in the eye of a human brings this genus of parasites into the group of emerging infectious parasitic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL