Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62.562
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 40: 221-247, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35061510

ABSTRACT

As central effectors of the adaptive immune response, immunoglobulins, or antibodies, provide essential protection from pathogens through their ability to recognize foreign antigens, aid in neutralization, and facilitate elimination from the host. Mammalian immunoglobulins can be classified into five isotypes-IgA, IgD, IgE, IgG, and IgM-each with distinct roles in mediating various aspects of the immune response. Of these isotypes, IgA and IgM are the only ones capable of multimerization, arming them with unique biological functions. Increased valency of polymeric IgA and IgM provides high avidity for binding low-affinity antigens, and their ability to be transported across the mucosal epithelium into secretions by the polymeric immunoglobulin receptor allows them to play critical roles in mucosal immunity. Here we discuss the molecular assembly, structure, and function of these multimeric antibodies.


Subject(s)
Immunoglobulin A , Receptors, Polymeric Immunoglobulin , Animals , Humans , Immunity, Mucosal , Immunoglobulin M/chemistry , Immunoglobulin M/metabolism , Mammals/metabolism , Mucous Membrane , Receptors, Polymeric Immunoglobulin/chemistry
2.
Annu Rev Immunol ; 37: 97-123, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026412

ABSTRACT

The B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.


Subject(s)
B-Lymphocytes/immunology , Cell Membrane/metabolism , Receptors, Antigen, B-Cell/metabolism , Allosteric Regulation , Animals , Cell Compartmentation , Humans , Lymphocyte Activation , Nanomedicine , Protein Conformation
3.
Annu Rev Biochem ; 93(1): 211-231, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38603556

ABSTRACT

Almost all outer membrane proteins (OMPs) in Gram-negative bacteria contain a ß-barrel domain that spans the outer membrane (OM). To reach the OM, OMPs must be translocated across the inner membrane by the Sec machinery, transported across the crowded periplasmic space through the assistance of molecular chaperones, and finally assembled (folded and inserted into the OM) by the ß-barrel assembly machine. In this review, we discuss how considerable new insights into the contributions of these factors to OMP biogenesis have emerged in recent years through the development of novel experimental, computational, and predictive methods. In addition, we describe recent evidence that molecular machines that were thought to function independently might interact to form dynamic intermembrane supercomplexes. Finally, we discuss new results that suggest that OMPs are inserted primarily near the middle of the cell and packed into supramolecular structures (OMP islands) that are distributed throughout the OM.


Subject(s)
Bacterial Outer Membrane Proteins , Molecular Chaperones , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/chemistry , Protein Transport , Protein Folding , Gram-Negative Bacteria/metabolism , Gram-Negative Bacteria/genetics , Bacterial Outer Membrane/metabolism , Models, Molecular , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , SEC Translocation Channels/metabolism , SEC Translocation Channels/genetics , SEC Translocation Channels/chemistry , Periplasm/metabolism
4.
Annu Rev Biochem ; 93(1): 367-387, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38594929

ABSTRACT

Lysosomes are the degradative endpoints of material delivered by endocytosis and autophagy and are therefore particularly prone to damage. Membrane permeabilization or full rupture of lysosomal or late endosomal compartments is highly deleterious because it threatens cellular homeostasis and can elicit cell death and inflammatory signaling. Cells have developed a complex response to endo-lysosomal damage that largely consists of three branches. Initially, a number of repair pathways are activated to restore the integrity of the lysosomal membrane. If repair fails or if damage is too extensive, lysosomes are isolated and degraded by a form of selective autophagy termed lysophagy. Meanwhile, an mTORC1-governed signaling cascade drives biogenesis and regeneration of new lysosomal components to reestablish the full lysosomal capacity of the cell. This damage response is vital to counteract the effects of various conditions, including neurodegeneration and infection, and can constitute a critical vulnerability in cancer cells.


Subject(s)
Autophagy , Endosomes , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Signal Transduction , Lysosomes/metabolism , Humans , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Endosomes/metabolism , Endocytosis , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics
5.
Cell ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39197448

ABSTRACT

Animals defend a target level for their fundamental needs, including food, water, and sleep. Deviation from the target range, or "setpoint," triggers motivated behaviors to eliminate that difference. Whether and how the setpoint itself is encoded remains enigmatic for all motivated behaviors. Employing a high-throughput feeding assay in Drosophila, we demonstrate that the protein intake setpoint is set to different values in male, virgin female, and mated female flies to meet their varying protein demands. Leveraging this setpoint variability, we found, remarkably, that the information on the intake setpoint is stored within the protein hunger neurons as the resting membrane potential. Two RFamide G protein-coupled receptor (GPCR) pathways, by tuning the resting membrane potential in opposite directions, coordinately program and adjust the protein intake setpoint. Together, our studies map the protein intake setpoint to a single trackable physiological parameter and elucidate the cellular and molecular mechanisms underlying setpoint determination and modulation.

6.
Cell ; 187(16): 4213-4230.e19, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39013471

ABSTRACT

Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.


Subject(s)
Cryoelectron Microscopy , Spumavirus , Virus Assembly , Virus Internalization , Spumavirus/genetics , Capsid/metabolism , Capsid/chemistry , Capsid/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid Proteins/genetics , Humans , Evolution, Molecular , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Models, Molecular
7.
Cell ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38996527

ABSTRACT

Latent membrane protein 1 (LMP1) is the primary oncoprotein of Epstein-Barr virus (EBV) and plays versatile roles in the EBV life cycle and pathogenesis. Despite decades of extensive research, the molecular basis for LMP1 folding, assembly, and activation remains unclear. Here, we report cryo-electron microscopy structures of LMP1 in two unexpected assemblies: a symmetric homodimer and a higher-order filamentous oligomer. LMP1 adopts a non-canonical and unpredicted fold that supports the formation of a stable homodimer through tight and antiparallel intermolecular packing. LMP1 dimers further assemble side-by-side into higher-order filamentous oligomers, thereby allowing the accumulation and specific organization of the flexible cytoplasmic tails for efficient recruitment of downstream factors. Super-resolution microscopy and cellular functional assays demonstrate that mutations at both dimeric and oligomeric interfaces disrupt LMP1 higher-order assembly and block multiple LMP1-mediated signaling pathways. Our research provides a framework for understanding the mechanism of LMP1 and for developing potential therapies targeting EBV-associated diseases.

8.
Cell ; 187(9): 2224-2235.e16, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38614101

ABSTRACT

The membrane protein NINJ1 mediates plasma membrane rupture in pyroptosis and other lytic cell death pathways. Here, we report the cryo-EM structure of a NINJ1 oligomer segmented from NINJ1 rings. Each NINJ1 subunit comprises amphipathic (⍺1, ⍺2) and transmembrane (TM) helices (⍺3, ⍺4) and forms a chain of subunits, mainly by the TM helices and ⍺1. ⍺3 and ⍺4 are kinked, and the Gly residues are important for function. The NINJ1 oligomer possesses a concave hydrophobic side that should face the membrane and a convex hydrophilic side formed by ⍺1 and ⍺2, presumably upon activation. This structural observation suggests that NINJ1 can form membrane disks, consistent with membrane fragmentation by recombinant NINJ1. Live-cell and super-resolution imaging uncover ring-like structures on the plasma membrane that are released into the culture supernatant. Released NINJ1 encircles a membrane inside, as shown by lipid staining. Therefore, NINJ1-mediated membrane disk formation is different from gasdermin-mediated pore formation, resulting in membrane loss and plasma membrane rupture.


Subject(s)
Cell Adhesion Molecules, Neuronal , Cell Membrane , Cryoelectron Microscopy , Cell Membrane/metabolism , Humans , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/chemistry , Animals , Mice , HEK293 Cells , Pyroptosis , Models, Molecular , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Phosphate-Binding Proteins/metabolism
9.
Cell ; 187(2): 312-330.e22, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38157854

ABSTRACT

The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphotransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Pectins/metabolism , Phase Separation , GPI-Linked Proteins/metabolism
10.
Cell ; 186(7): 1337-1351.e20, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36870332

ABSTRACT

Leaf-feeding insects trigger high-amplitude, defense-inducing electrical signals called slow wave potentials (SWPs). These signals are thought to be triggered by the long-distance transport of low molecular mass elicitors termed Ricca's factors. We sought mediators of leaf-to-leaf electrical signaling in Arabidopsis thaliana and identified them as ß-THIOGLUCOSIDE GLUCOHYDROLASE 1 and 2 (TGG1 and TGG2). SWP propagation from insect feeding sites was strongly attenuated in tgg1 tgg2 mutants and wound-response cytosolic Ca2+ increases were reduced in these plants. Recombinant TGG1 fed into the xylem elicited wild-type-like membrane depolarization and Ca2+ transients. Moreover, TGGs catalyze the deglucosidation of glucosinolates. Metabolite profiling revealed rapid wound-induced breakdown of aliphatic glucosinolates in primary veins. Using in vivo chemical trapping, we found evidence for roles of short-lived aglycone intermediates generated by glucosinolate hydrolysis in SWP membrane depolarization. Our findings reveal a mechanism whereby organ-to-organ protein transport plays a major role in electrical signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Glycoside Hydrolases/metabolism , Glucosinolates/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Insecta
11.
Cell ; 186(9): 1912-1929.e18, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37044097

ABSTRACT

The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton. While an α-/ß-adducin hetero-tetramer binds to the barbed end of F-actin as a flexible cap, tropomodulin and SH3BGRL2 together create an absolute cap at the pointed end. The junctional complex is strengthened by ring-like structures of dematin in the middle actin layers and by patterned periodic interactions with tropomyosin over its entire length. This work serves as a structural framework for understanding the assembly and dynamics of membrane skeleton and offers insights into mechanisms of various ubiquitous F-actin-binding factors in other F-actin systems.


Subject(s)
Cytoskeleton , Erythrocytes , Animals , Humans , Actin Cytoskeleton/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Spectrin/analysis , Spectrin/metabolism , Swine
12.
Cell ; 186(15): 3245-3260.e23, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37369203

ABSTRACT

Terrestrial organisms developed circadian rhythms for adaptation to Earth's quasi-24-h rotation. Achieving precise rhythms requires diurnal oscillation of fundamental biological processes, such as rhythmic shifts in the cellular translational landscape; however, regulatory mechanisms underlying rhythmic translation remain elusive. Here, we identified mammalian ATXN2 and ATXN2L as cooperating master regulators of rhythmic translation, through oscillating phase separation in the suprachiasmatic nucleus along circadian cycles. The spatiotemporal oscillating condensates facilitate sequential initiation of multiple cycling processes, from mRNA processing to protein translation, for selective genes including core clock genes. Depleting ATXN2 or 2L induces opposite alterations to the circadian period, whereas the absence of both disrupts translational activation cycles and weakens circadian rhythmicity in mice. Such cellular defect can be rescued by wild type, but not phase-separation-defective ATXN2. Together, we revealed that oscillating translation is regulated by spatiotemporal condensation of two master regulators to achieve precise circadian rhythm in mammals.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/genetics , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/metabolism , Protein Processing, Post-Translational , Mammals
13.
Cell ; 186(14): 3049-3061.e15, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37311454

ABSTRACT

Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.


Subject(s)
Actins , Actomyosin , Actins/metabolism , Actomyosin/metabolism , Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cell Movement/physiology
14.
Cell ; 186(10): 2238-2255.e20, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37146613

ABSTRACT

ß-arrestin plays a key role in G protein-coupled receptor (GPCR) signaling and desensitization. Despite recent structural advances, the mechanisms that govern receptor-ß-arrestin interactions at the plasma membrane of living cells remain elusive. Here, we combine single-molecule microscopy with molecular dynamics simulations to dissect the complex sequence of events involved in ß-arrestin interactions with both receptors and the lipid bilayer. Unexpectedly, our results reveal that ß-arrestin spontaneously inserts into the lipid bilayer and transiently interacts with receptors via lateral diffusion on the plasma membrane. Moreover, they indicate that, following receptor interaction, the plasma membrane stabilizes ß-arrestin in a longer-lived, membrane-bound state, allowing it to diffuse to clathrin-coated pits separately from the activating receptor. These results expand our current understanding of ß-arrestin function at the plasma membrane, revealing a critical role for ß-arrestin preassociation with the lipid bilayer in facilitating its interactions with receptors and subsequent activation.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , beta-Arrestins , beta-Arrestins/metabolism , Cell Membrane/metabolism , Clathrin/metabolism , Endocytosis , Lipid Bilayers , Receptors, G-Protein-Coupled/metabolism , Molecular Dynamics Simulation
15.
Annu Rev Biochem ; 91: 629-649, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35287474

ABSTRACT

Transient receptor potential (TRP) ion channels are sophisticated signaling machines that detect a wide variety of environmental and physiological signals. Every cell in the body expresses one or more members of the extended TRP channel family, which consists of over 30 subtypes, each likely possessing distinct pharmacological, biophysical, and/or structural attributes. While the function of some TRP subtypes remains enigmatic, those involved in sensory signaling are perhaps best characterized and have served as models for understanding how these excitatory ion channels serve as polymodal signal integrators. With the recent resolution revolution in cryo-electron microscopy, these and other TRP channel subtypes are now yielding their secrets to detailed atomic analysis, which is beginning to reveal structural underpinnings of stimulus detection and gating, ion permeation, and allosteric mechanisms governing signal integration. These insights are providing a framework for designing and evaluating modality-specific pharmacological agents for treating sensory and other TRP channel-associated disorders.


Subject(s)
Transient Receptor Potential Channels , Cryoelectron Microscopy , Signal Transduction , Transient Receptor Potential Channels/chemistry , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
16.
Annu Rev Biochem ; 91: 651-678, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35287476

ABSTRACT

The endoplasmic reticulum (ER) is the site of membrane protein insertion, folding, and assembly in eukaryotes. Over the past few years, a combination of genetic and biochemical studies have implicated an abundant factor termed the ER membrane protein complex (EMC) in several aspects of membrane protein biogenesis. This large nine-protein complex is built around a deeply conserved core formed by the EMC3-EMC6 subcomplex. EMC3 belongs to the universally conserved Oxa1 superfamily of membrane protein transporters, whereas EMC6 is an ancient, widely conserved obligate partner. EMC has an established role in the insertion of transmembrane domains (TMDs) and less understood roles during the later steps of membrane protein folding and assembly. Several recent structures suggest hypotheses about the mechanism(s) of TMD insertion by EMC, with various biochemical and proteomics studies beginning to reveal the range of EMC's membrane protein substrates.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Protein Biosynthesis , Protein Domains , Protein Folding
17.
Cell ; 185(7): 1143-1156.e13, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35294859

ABSTRACT

Transmembrane ß barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the ß barrel assembly machinery (BAM) via a poorly understood process that occurs without known external energy sources. Here, we used single-particle cryo-EM to visualize the folding dynamics of a model ß barrel protein (EspP) by BAM. We found that BAM binds the highly conserved "ß signal" motif of EspP to correctly orient ß strands in the OM during folding. We also found that the folding of EspP proceeds via "hybrid-barrel" intermediates in which membrane integrated ß sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that ß sheets progressively fold toward BamA to form a ß barrel. Along with in vivo experiments that tracked ß barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate ß barrel folding.


Subject(s)
Bacterial Outer Membrane Proteins/ultrastructure , Protein Folding , Bacterial Outer Membrane Proteins/metabolism , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism
18.
Cell ; 185(19): 3520-3532.e26, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36041435

ABSTRACT

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 × 10-6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.


Subject(s)
Amides , Peptides , Amides/chemistry , Hydrogen , Hydrogen Bonding , Lipids , Peptides/chemistry
19.
Cell ; 185(26): 4971-4985.e16, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36462505

ABSTRACT

Intraflagellar transport (IFT) trains are massive molecular machines that traffic proteins between cilia and the cell body. Each IFT train is a dynamic polymer of two large complexes (IFT-A and -B) and motor proteins, posing a formidable challenge to mechanistic understanding. Here, we reconstituted the complete human IFT-A complex and obtained its structure using cryo-EM. Combined with AlphaFold prediction and genome-editing studies, our results illuminate how IFT-A polymerizes, interacts with IFT-B, and uses an array of ß-propeller and TPR domains to create "carriages" of the IFT train that engage TULP adaptor proteins. We show that IFT-A⋅TULP carriages are essential for cilia localization of diverse membrane proteins, as well as ICK-the key kinase regulating IFT train turnaround. These data establish a structural link between IFT-A's distinct functions, provide a blueprint for IFT-A in the train, and shed light on how IFT evolved from a proto-coatomer ancestor.


Subject(s)
Cilia , Kinesins , Humans , Cilia/metabolism , Biological Transport , Kinesins/metabolism , Dyneins/metabolism , Membrane Proteins/metabolism , Protein Transport , Flagella/metabolism
20.
Cell ; 185(1): 131-144.e18, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34919814

ABSTRACT

Two HIV fusion-inhibitory lipopeptides (LP-97 and LP-98) were designed with highly potent, long-acting antiviral activity. Monotherapy using a low dose of LP-98 sharply reduced viral loads and maintained long-term viral suppression in 21 SHIVSF162P3-infected rhesus macaques. We found that five treated monkeys achieved potential posttreatment control (PTC) efficacy and had lower viral DNA in deep lymph nodes, whereas monkeys with a stable viral rebound had higher viral DNA in superficial lymph nodes. The tissues of PTC monkeys exhibited significantly decreased quantitative viral outgrowth and fewer PD-1+ central memory CD4+ T cells, and CD8+ T cells contributed to virologic control efficacy. Moreover, LP-98 administrated as a pre-exposure prophylaxis (PrEP) provided complete protection against SHIVSF162P3 and SIVmac239 infections in 51 monkeys via intrarectal, intravaginal, or intravenous challenge. In conclusion, our lipopeptides exhibit high potential as an efficient HIV treatment or prevention strategy.


Subject(s)
HIV Fusion Inhibitors/administration & dosage , Lipopeptides/administration & dosage , Pre-Exposure Prophylaxis/methods , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Sustained Virologic Response , U937 Cells , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL