Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.544
Filter
Add more filters

Publication year range
1.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32615086

ABSTRACT

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Subject(s)
Adipogenesis/genetics , Adipose Tissue, Beige/metabolism , Energy Metabolism/genetics , Focal Adhesion Kinase 1/metabolism , Signal Transduction/genetics , Stem Cells/metabolism , Tetraspanin 28/metabolism , Adipocytes/metabolism , Adipose Tissue, Beige/cytology , Adipose Tissue, Beige/growth & development , Adipose Tissue, White/metabolism , Adult , Animals , Ataxin-1/metabolism , Female , Fibronectins/pharmacology , Focal Adhesion Kinase 1/genetics , Humans , Inflammation/genetics , Inflammation/metabolism , Insulin Resistance/genetics , Integrins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/genetics , Obesity/metabolism , RNA-Seq , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction/drug effects , Single-Cell Analysis , Stem Cells/cytology , Tetraspanin 28/genetics
2.
Physiol Rev ; 104(3): 1061-1119, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38300524

ABSTRACT

Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.


Subject(s)
Cardiovascular Diseases , Ceramides , Ceramides/metabolism , Humans , Animals , Cardiovascular Diseases/metabolism , Metabolic Diseases/metabolism
3.
Physiol Rev ; 104(2): 727-764, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37882731

ABSTRACT

The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.


Subject(s)
Insulin Resistance , Lipid Metabolism , Humans , Myocardium/metabolism , Heart , Fatty Acids/metabolism , CD36 Antigens/metabolism
4.
Immunity ; 55(11): 1981-1992, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351373

ABSTRACT

Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.


Subject(s)
Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit , Immunotherapy , Homeostasis
5.
Immunol Rev ; 324(1): 52-67, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38666618

ABSTRACT

Regulatory T cells (Tregs) within the visceral adipose tissue (VAT) play a crucial role in controlling tissue inflammation and maintaining metabolic health. VAT Tregs display a unique transcriptional profile and T cell receptor (TCR) repertoire, and closely interact with adipocytes, stromal cells, and other immune components within the local VAT microenvironment. However, in the context of obesity, there is a notable decline in VAT Tregs, resulting in heightened VAT inflammation and insulin resistance. A comprehensive understanding of the biology of VAT Tregs is essential for the development of Treg-based therapies for mitigating obesity-associated metabolic diseases. Recent advancements in lineage tracing tools, genetic mouse models, and various single cell "omics" techniques have significantly progressed our understandings of the origin, differentiation, and regulation of this unique VAT Treg population at steady state and during obesity. The identification of VAT-Treg precursor cells in the secondary lymphoid organs has also provided important insights into the timing, location, and mechanisms through which VAT Tregs acquire their distinctive phenotype that enables them to function within a lipid-rich microenvironment. In this review, we highlight key recent breakthroughs in the VAT-Treg field while discussing pivotal questions that remain unanswered.


Subject(s)
Intra-Abdominal Fat , Obesity , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Humans , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/immunology , Obesity/immunology , Obesity/metabolism , Cell Differentiation
6.
Semin Immunol ; 65: 101699, 2023 01.
Article in English | MEDLINE | ID: mdl-36428172

ABSTRACT

Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.


Subject(s)
Anti-Inflammatory Agents , Biomimetic Materials , Lipoxins , Metabolic Diseases , Humans , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Inflammation/pathology , Lipoxins/therapeutic use , Metabolic Diseases/drug therapy , Phagocytosis/physiology , Biomimetic Materials/therapeutic use
7.
Am J Hum Genet ; 110(2): 273-283, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36649705

ABSTRACT

This study sought to examine the association between DNA methylation and body mass index (BMI) and the potential of BMI-associated cytosine-phosphate-guanine (CpG) sites to provide information about metabolic health. We pooled summary statistics from six trans-ethnic epigenome-wide association studies (EWASs) of BMI representing nine cohorts (n = 17,034), replicated these findings in the Women's Health Initiative (WHI, n = 4,822), and developed an epigenetic prediction score of BMI. In the pooled EWASs, 1,265 CpG sites were associated with BMI (p < 1E-7) and 1,238 replicated in the WHI (FDR < 0.05). We performed several stratified analyses to examine whether these associations differed between individuals of European and African descent, as defined by self-reported race/ethnicity. We found that five CpG sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the significant CpG sites in predicting BMI, we used elastic net regression to predict log-normalized BMI in the WHI (80% training/20% testing). This model found that 397 sites could explain 32% of the variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI overestimated their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides and lower HDL cholesterol and LDL cholesterol compared to accurately predicted BMI. Individuals whose methylome-predicted BMI underestimated their BMI (low epigenetic BMI) had significantly higher HDL cholesterol and lower glucose and triglycerides. This study confirmed 553 and identified 685 CpG sites associated with BMI. Participants with high epigenetic BMI had poorer metabolic health, suggesting that the overestimation may be driven in part by cardiometabolic derangements characteristic of metabolic syndrome.


Subject(s)
Epigenesis, Genetic , Epigenome , Humans , Female , Body Mass Index , Epigenesis, Genetic/genetics , Obesity/genetics , Cholesterol, HDL/genetics , Genome-Wide Association Study , DNA Methylation/genetics , Epigenomics , Triglycerides , CpG Islands/genetics
8.
Am J Hum Genet ; 110(12): 2003-2014, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37924808

ABSTRACT

The c.1222C>T (p.Arg408Trp) variant in the phenylalanine hydroxylase gene (PAH) is the most frequent cause of phenylketonuria (PKU), the most common inborn error of metabolism. This autosomal-recessive disorder is characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Using real-world data, we observed that despite dietary and medical interventions, most PKU individuals harboring at least one c.1222C>T variant experience chronic, severe Phe elevations and do not comply with Phe monitoring guidelines. Motivated by these findings, we generated an edited c.1222C>T hepatocyte cell line and humanized c.1222C>T mouse models, with which we demonstrated efficient in vitro and in vivo correction of the variant with prime editing. Delivery via adeno-associated viral (AAV) vectors reproducibly achieved complete normalization of blood Phe levels in PKU mice, with up to 52% whole-liver corrective PAH editing. These studies validate a strategy involving prime editing as a potential treatment for a large proportion of individuals with PKU.


Subject(s)
Phenylalanine Hydroxylase , Phenylketonurias , Mice , Animals , Phenylketonurias/genetics , Phenylketonurias/therapy , Phenylalanine Hydroxylase/genetics , Disease Models, Animal , Phenylalanine/genetics , Gene Editing
9.
Proc Natl Acad Sci U S A ; 120(1): e2214874120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574710

ABSTRACT

Adequate mass and function of adipose tissues (ATs) play essential roles in preventing metabolic perturbations. The pathological reduction of ATs in lipodystrophy leads to an array of metabolic diseases. Understanding the underlying mechanisms may benefit the development of effective therapies. Several cellular processes, including autophagy and vesicle trafficking, function collectively to maintain AT homeostasis. Here, we investigated the impact of adipocyte-specific deletion of the lipid kinase phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) on AT homeostasis and systemic metabolism in mice. We report that PIK3C3 functions in all ATs and that its absence disturbs adipocyte autophagy and hinders adipocyte differentiation, survival, and function with differential effects on brown and white ATs. These abnormalities cause loss of white ATs, whitening followed by loss of brown ATs, and impaired "browning" of white ATs. Consequently, mice exhibit compromised thermogenic capacity and develop dyslipidemia, hepatic steatosis, insulin resistance, and type 2 diabetes. While these effects of PIK3C3 largely contrast previous findings with the autophagy-related (ATG) protein ATG7 in adipocytes, mice with a combined deficiency in both factors reveal a dominant role of the PIK3C3-deficient phenotype. We have also found that dietary lipid excess exacerbates AT pathologies caused by PIK3C3 deficiency. Surprisingly, glucose tolerance is spared in adipocyte-specific PIK3C3-deficient mice, a phenotype that is more evident during dietary lipid excess. These findings reveal a crucial yet complex role for PIK3C3 in ATs, with potential therapeutic implications.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Adipocytes/metabolism , Lipids , Adipose Tissue, Brown/metabolism , Adipocytes, Brown/metabolism
10.
J Biol Chem ; 300(3): 105677, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272225

ABSTRACT

The emerging roles of O-GlcNAcylation, a distinctive post-translational modification, are increasingly recognized for their involvement in the intricate processes of protein trafficking and secretion. This modification exerts its influence on both conventional and unconventional secretory pathways. Under healthy and stress conditions, such as during diseases, it orchestrates the transport of proteins within cells, ensuring timely delivery to their intended destinations. O-GlcNAcylation occurs on key factors, like coat protein complexes (COPI and COPII), clathrin, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and GRASP55 (Golgi reassembly stacking protein of 55 kDa) that control vesicle budding and fusion in anterograde and retrograde trafficking and unconventional secretion. The understanding of O-GlcNAcylation offers valuable insights into its critical functions in cellular physiology and the progression of diseases, including neurodegeneration, cancer, and metabolic disorders. In this review, we summarize and discuss the latest findings elucidating the involvement of O-GlcNAc in protein trafficking and its significance in various human disorders.


Subject(s)
Clathrin , SNARE Proteins , Humans , Acetylglucosamine/metabolism , Clathrin/metabolism , Protein Processing, Post-Translational , Protein Transport/physiology , SNARE Proteins/metabolism , Animals , Acetylation , Glucose/metabolism
11.
J Biol Chem ; 300(10): 107746, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236875

ABSTRACT

Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a WT strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics among the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.

12.
Physiology (Bethesda) ; 39(2): 98-125, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38051123

ABSTRACT

The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.


Subject(s)
Diabetes Mellitus , Metabolic Diseases , Humans , Diabetes Mellitus/metabolism , Adipose Tissue/metabolism , Homeostasis , Metabolic Diseases/metabolism , Signal Transduction
13.
Mol Cell ; 66(6): 761-771, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28622521

ABSTRACT

Life is stressful. Organisms are repeatedly exposed to stressors that disrupt protein homeostasis (proteostasis), resulting in protein misfolding and aggregation. To sense and respond to proteotoxic perturbations, cells have evolved compartment-specific stress responses, such as the unfolded protein response of the endoplasmic reticulum (UPRER). However, UPRER function is impaired with age, which, we propose, creates a permissive environment for protein aggregation, unresolved ER stress, and chronic inflammation. Understanding age-related changes to the UPRER will provide new avenues for therapeutic intervention in metabolic disease, neurodegeneration, and aging.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Signal Transduction , Unfolded Protein Response , Aging/metabolism , Aging/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Endoplasmic Reticulum/pathology , Homeostasis , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators , NF-kappa B/metabolism , Protein Aggregates
14.
Subcell Biochem ; 104: 295-381, 2024.
Article in English | MEDLINE | ID: mdl-38963492

ABSTRACT

The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.


Subject(s)
Mitochondria , Humans , Mitochondria/metabolism , Mitochondria/enzymology , Animals , Citric Acid Cycle/physiology , Ketoglutarate Dehydrogenase Complex/metabolism , Ketoglutarate Dehydrogenase Complex/chemistry
15.
J Proteome Res ; 23(8): 3076-3087, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38407022

ABSTRACT

The co-occurrence of multiple chronic metabolic diseases is highly prevalent, posing a huge health threat. Clarifying the metabolic associations between them, as well as identifying metabolites which allow discrimination between diseases, will provide new biological insights into their co-occurrence. Herein, we utilized targeted serum metabolomics and lipidomics covering over 700 metabolites to characterize metabolic alterations and associations related to seven chronic metabolic diseases (obesity, hypertension, hyperuricemia, hyperglycemia, hypercholesterolemia, hypertriglyceridemia, fatty liver) from 1626 participants. We identified 454 metabolites were shared among at least two chronic metabolic diseases, accounting for 73.3% of all 619 significant metabolite-disease associations. We found amino acids, lactic acid, 2-hydroxybutyric acid, triacylglycerols (TGs), and diacylglycerols (DGs) showed connectivity across multiple chronic metabolic diseases. Many carnitines were specifically associated with hyperuricemia. The hypercholesterolemia group showed obvious lipid metabolism disorder. Using logistic regression models, we further identified distinguished metabolites of seven chronic metabolic diseases, which exhibited satisfactory area under curve (AUC) values ranging from 0.848 to 1 in discovery and validation sets. Overall, quantitative metabolome and lipidome data sets revealed widespread and interconnected metabolic disorders among seven chronic metabolic diseases. The distinguished metabolites are useful for diagnosing chronic metabolic diseases and provide a reference value for further clinical intervention and management based on metabolomics strategy.


Subject(s)
Lipidomics , Metabolic Diseases , Metabolomics , Humans , Lipidomics/methods , Metabolomics/methods , Male , Chronic Disease , Metabolic Diseases/blood , Metabolic Diseases/metabolism , Metabolic Diseases/diagnosis , Female , Middle Aged , Metabolome , Adult , Hypercholesterolemia/blood , Hypercholesterolemia/metabolism , Obesity/blood , Obesity/metabolism , Lipid Metabolism , Hyperuricemia/blood , Hyperuricemia/metabolism , Aged
16.
Diabetologia ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180580

ABSTRACT

The tight regulation of glucose and lipid metabolism is crucial for maintaining metabolic health. Dysregulation of these processes can lead to the development of metabolic diseases. Secreted factors, or hormones, play an essential role in the regulation of glucose and lipid metabolism, thus also playing an important role in the development of metabolic diseases such as type 2 diabetes and obesity. Given the important roles of secreted factors, there has been significant interest in identifying new secreted factors and new functions for existing secreted factors that control glucose and lipid metabolism. In this review, we evaluate novel secreted factors or novel functions of existing factors that regulate glucose and lipid metabolism discovered in the last decade, including secreted isoform of endoplasmic reticulum membrane complex subunit 10, vimentin, cartilage intermediate layer protein 2, isthmin-1, lipocalin-2, neuregulin-1 and neuregulin-4. We discuss their discovery, tissues of origin, mechanisms of action and sex differences, emphasising their potential to regulate metabolic processes central to diabetes. Additionally, we discuss the translational barriers, particularly the absence of identified receptors, that hamper their functional characterisation and further therapeutic development. Ultimately, the identification of new secreted factors may give insights into previously unidentified pathways of disease progression and mechanisms of glucose and lipid homeostasis.

17.
Diabetologia ; 67(3): 407-419, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38099962

ABSTRACT

The liver plays a crucial role in the control of glucose homeostasis and is therefore of great interest in the investigation of the development of type 2 diabetes. Hepatic glucose uptake (HGU) can be measured through positron emission tomography (PET) imaging with the tracer [18F]-2-fluoro-2-deoxy-D-glucose (FDG). HGU is dependent on many variables (e.g. plasma glucose, insulin and glucagon concentrations), and the metabolic state for HGU assessment should be chosen with care and coherence with the study question. In addition, as HGU is influenced by many factors, protocols and measurement conditions need to be standardised for reproducible results. This review provides insights into the protocols that are available for the measurement of HGU by FDG PET and discusses the current state of knowledge of HGU and its impairment in type 2 diabetes. Overall, a scanning modality that allows for the measurement of detailed kinetic information and influx rates (dynamic imaging) may be preferable to static imaging. The combination of FDG PET and insulin stimulation is crucial to measure tissue-specific insulin sensitivity. While the hyperinsulinaemic-euglycaemic clamp allows for standardised measurements under controlled blood glucose levels, some research questions might require a more physiological approach, such as oral glucose loading, with both advantages and complexities relating to fluctuations in blood glucose and insulin levels. The available approaches to address HGU hold great potential but await more systematic exploitation to improve our understanding of the mechanisms underlying metabolic diseases. Current findings from the investigation of HGU by FDG PET highlight the complex interplay between insulin resistance, hepatic glucose metabolism, NEFA levels and intrahepatic lipid accumulation in type 2 diabetes and obesity. Further research is needed to fully understand the underlying mechanisms and potential therapeutic targets for improving HGU in these conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Blood Glucose/metabolism , Fluorodeoxyglucose F18/metabolism , Fluorodeoxyglucose F18/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Positron-Emission Tomography , Glucose/metabolism , Liver/diagnostic imaging , Liver/metabolism , Insulin/metabolism
18.
J Cell Physiol ; 239(5): e31212, 2024 May.
Article in English | MEDLINE | ID: mdl-38308646

ABSTRACT

C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.


Subject(s)
C-Peptide , Humans , C-Peptide/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Signal Transduction
19.
J Cell Physiol ; : e31449, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351877

ABSTRACT

Alkaptonuria (AKU) is a progressive systemic inherited metabolic disorder primarily affecting the osteoarticular system, characterized by the degeneration of cartilage induced by ochronosis, ultimately leading to early osteoarthritis (OA). However, investigating AKU pathology in human chondrocytes, which is crucial for understanding the disease, encounters challenges due to limited availability and donor variability. To overcome this obstacle, an in vitro model has been established using homogentisic acid (HGA) to simulate AKU conditions. This model employed immortalized C20/A4 human chondrocytes and serves as a dependable platform for studying AKU pathogenesis. Significantly, the model demonstrates the accumulation of ochronotic pigment in HGA-treated cells, consistent with findings from previous studies. Furthermore, investigations into inflammatory processes during HGA exposure revealed notable oxidative stress, as indicated by elevated levels of reactive oxygen species and lipid peroxidation. Additionally, the model demonstrated HGA-induced inflammatory responses, evidenced by increased production of nitric oxide, overexpression of inducible nitric oxide synthase, and cyclooxygenase-2. These findings underscore the model's utility in studying inflammation associated with AKU. Moreover, analysis of serum amyloid A and serum amyloid P proteins revealed a potential interaction, corroborating evidence of amyloid fibril formation. This hypothesis was further supported by Congo red staining, which showed fibril formation exclusively in HGA-treated cells. Overall, the C20/A4 cell model provided valuable insights into AKU pathogenesis, emphasizing its potential for facilitating drug development and therapeutic interventions.

20.
Clin Infect Dis ; 78(2): 395-401, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37698083

ABSTRACT

BACKGROUND: Weight gain following initiation of antiretroviral therapy (ART) is common. We assessed the impact of changes in weight in the year following ART initiation with subsequent cardiometabolic disease among AIDS Clinical Trials Group (ACTG) participants. METHODS: Linear regression models were fit to examine the association between change in weight/waist circumference (WC) in weeks 0-48 and change in metabolic parameters in weeks 0-48 and 48-96. Cox proportional hazard models were fit to examine the association between changes in weight/WC in weeks 0-48 and diabetes mellitus (DM), metabolic syndrome, or cardiometabolic and cardiovascular events after week 48. RESULTS: Participants (N = 2624) were primarily male (81%) and non-White (60%). Mean weight gain from 0-48 weeks was 3.6 kg (SD 7.3); 130 participants developed DM; 360 metabolic syndrome; 424 any cardiometabolic event; 28 any cardiovascular event, over 480 weeks of follow-up. In adjusted models, total cholesterol increased by 0.63 mg/dL (95% confidence interval [CI] [.38, .089]) and LDL by 0.39 mg/dL (0.19, 0.59) per 1 kg increase in weight from weeks 0 to48. Participants who experienced >10% weight gain (vs -5% to 5%) had an increased risk of DM (hazard ratio [HR] 2.01, 95% CI [1.30, 3.08]), metabolic syndrome (HR 2.24, 95% CI [1.55, 2.62]), and cardiometabolic outcomes (HR 1.54, 95% CI [1.22, 1.95]). Participants who lost more than 5% of their baseline weight had a lower risk of incident metabolic syndrome (HR 0.67, 95% CI [0.42, 1.07]). Trends for WC were similar. CONCLUSIONS: Weight and body composition changes in the first year following ART initiation are associated with contemporaneous changes in metabolic parameters and subsequent cardiometabolic disease.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , HIV Infections , Metabolic Syndrome , Humans , Male , Metabolic Syndrome/chemically induced , Metabolic Syndrome/epidemiology , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Weight Gain , HIV Infections/drug therapy , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL