Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Publication year range
1.
Nutr Neurosci ; 25(1): 64-69, 2022 Jan.
Article in English | MEDLINE | ID: mdl-31900092

ABSTRACT

Background: Glutamine synthetase (GS) is the only enzyme known to synthesize significant amounts of glutamine in mammals, and loss of GS in the hippocampus has been implicated in the pathophysiology of medication refractory mesial temporal lobe epilepsy (MTLE). Moreover, loss-of-function mutations of the GS gene causes severe epileptic encephalopathy, and supplementation with glutamine has been shown to normalize EEG and possibly improve the outcome in these patients. Here we examined whether oral glutamine supplementation is an effective treatment for MTLE by assessing the frequency and severity of seizures after supplementation in a translationally relevant model of the disease.Methods: Male Sprague Dawley rats (380-400 g) were allowed to drink unlimited amounts of glutamine in water (3.6% w/v; n = 8) or pure water (n = 8) for several weeks. Ten days after the start of glutamine supplementation, GS was chronically inhibited in the hippocampus to induce MTLE. Continuous video-intracranial EEG was collected for 21 days to determine the frequency and severity of seizures.Results: While there was no change in seizure frequency between the groups, the proportion of convulsive seizures was significantly higher in glutamine treated animals during the first three days of GS inhibition.Conclusion: The results suggest that oral glutamine supplementation transiently increases seizure severity in the initial stages of an epilepsy model, indicating a potential role of the amino acid in seizure propagation and epileptogenesis.


Subject(s)
Epilepsy, Temporal Lobe/physiopathology , Glutamine/administration & dosage , Seizures/chemically induced , Severity of Illness Index , Animals , Dietary Supplements , Disease Models, Animal , Epilepsy, Temporal Lobe/etiology , Glutamate-Ammonia Ligase/antagonists & inhibitors , Glutamate-Ammonia Ligase/metabolism , Hippocampus/enzymology , Male , Rats , Rats, Sprague-Dawley
2.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681786

ABSTRACT

Initial seizures observed in young rats during the 60 min after administration of pilocarpine (Pilo) were delayed and attenuated by pretreatment with a non-convulsive dose of methionine sulfoximine (MSO). We hypothesized that the effect of MSO results from a) glutamine synthetase block-mediated inhibition of conversion of Glu/Gln precursors to neurotransmitter Glu, and/or from b) altered synaptic Glu release. Pilo was administered 60 min prior to sacrifice, MSO at 75 mg/kg, i.p., 2.5 h earlier. [1,2-13C]acetate and [U-13C]glucose were i.p.-injected either together with Pilo (short period) or 15 min before sacrifice (long period). Their conversion to Glu and Gln in the hippocampus and entorhinal cortex was followed using [13C] gas chromatography-mass spectrometry. Release of in vitro loaded Glu surrogate, [3H]d-Asp from ex vivo brain slices was monitored in continuously collected superfusates. [3H]d-Asp uptake was tested in freshly isolated brain slices. At no time point nor brain region did MSO modify incorporation of [13C] to Glu or Gln in Pilo-treated rats. MSO pretreatment decreased by ~37% high potassium-induced [3H]d-Asp release, but did not affect [3H]d-Asp uptake. The results indicate that MSO at a non-convulsive dose delays the initial Pilo-induced seizures by interfering with synaptic Glu-release but not with neurotransmitter Glu recycling.


Subject(s)
Brain/drug effects , Glutamic Acid/metabolism , Glutamine/metabolism , Methionine Sulfoximine/pharmacology , Seizures , Animals , Brain/metabolism , Disease Progression , Dose-Response Relationship, Drug , Lithium/adverse effects , Male , Methionine Sulfoximine/administration & dosage , Pilocarpine/adverse effects , Rats , Rats, Sprague-Dawley , Secretory Pathway/drug effects , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Seizures/pathology
3.
Cell Physiol Biochem ; 54(5): 917-927, 2020 Sep 19.
Article in English | MEDLINE | ID: mdl-32946687

ABSTRACT

BACKGROUND/AIMS: Glutamine is the most abundant amino acid in the body and has a metabolic role as a precursor for protein, amino sugar and nucleotide synthesis. After glucose, glutamine is the main source of energy in cells and has recently been shown to be an important carbon source for de novo lipogenesis. Glutamine is synthesized by the enzyme glutamine synthetase, a mitochondrial enzyme that is active during adipocyte differentiation suggesting a regulatory role in this process. The aim of our study was therefore to investigate whether glutamine status impacts on the differentiation of adipocytes and lipid droplet accumulation. METHODS: Mouse mesenchymal stem cells (MSCs) were submitted to glutamine deprivation (i.e. glutamine-free adipogenic medium in conjunction with irreversible glutamine synthetase inhibitor, methionine sulfoximine - MSO) during differentiation and their response was compared with MSCs differentiated in glutamine-supplemented medium (5, 10 and 20 mM). Differentiated MSCs were assessed for lipid content using Oil Red O (ORO) staining and gene expression was analysed by qPCR. Intracellular glutamine levels were determined using a colorimetric assay, while extracellular glutamine was measured using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Glutamine deprivation largely abolished adipogenic differentiation and lipid droplet formation. This was accompanied with a reduction in intracellular glutamine concentration, and downregulation of gene expression for classical adipogenic markers including PPARγ. Furthermore, glutamine restriction suppressed isocitrate dehydrogenase 1 (IDH1) gene expression, an enzyme which produces citrate for lipid synthesis. In contrast, glutamine supplementation promoted adipogenic differentiation in a dose-dependent manner. CONCLUSION: These results suggest that the glutamine pathway may have a previously over-looked role in adipogenesis. The underlying mechanism involved the glutamine-IDH1 pathway and could represent a potential therapeutic strategy to treat excessive lipid accumulation and thus obesity.


Subject(s)
Adipogenesis/genetics , Glutamate-Ammonia Ligase/metabolism , Glutamine/biosynthesis , Adipocytes/metabolism , Adipocytes, Beige/metabolism , Adipogenesis/physiology , Animals , Cell Differentiation/genetics , Cells, Cultured , Culture Media , Glutamate-Ammonia Ligase/physiology , Glutamine/metabolism , Lipid Droplets/metabolism , Lipid Droplets/physiology , Mesenchymal Stem Cells/metabolism , Mice , PPAR gamma/metabolism , Stem Cells/metabolism
4.
Fish Shellfish Immunol ; 101: 198-204, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32251762

ABSTRACT

Ammonia is toxic to most bony fishes. However, little information is available on the toxicology mechanisms induced by ammonia and the means to mitigate the effects by various fishes. In this study, four groups of experiments were designed and carried out to test the response of dolly varden char to ammonia toxicity and their mitigation through methionine sulfoximine (MSO). NaCl group was injected with NaCl, NH3 group was injected with ammonium acetate, NH3+MSO group was injected with ammonium acetate and MSO, MSO group was injected with MSO. Results showed that ammonia toxicity could lead to blood deterioration (elevation in white blood cell and blood ammonia), free amino acid imbalance (elevation in glutamine, glutamate, arginine and ornithine, coupled with reduction of citrulline and aspartate), ammonia metabolism enzyme activity inhibition (reduction in carbamyl phosphate synthetase, ornithine transcarbamylase and arginase), oxidative stress (reduction in superoxide dismutase, catalase and glutathione peroxidase) and immunosuppression (reduction in lysozyme, 50% hemolytic complement, total immunoglobulin and phagocytic index), but the MSO can eliminate fatal effect of oxidative damage. In addition, ammonia poisoning could induce down-regulation of antioxidant enzymes coding genes (SOD, CAT and GPx) and up-regulation of inflammatory cytokine genes (TNFα, IL-1ß and IL-8) transcription, suggesting that immunosuppression and inflammation may relate to oxidative stress in fish.


Subject(s)
Amino Acids/metabolism , Ammonia/poisoning , Gene Expression/immunology , Immunity , Methionine Sulfoximine/administration & dosage , Protective Agents/administration & dosage , Trout/immunology , Animals , Blood Chemical Analysis/veterinary , Trout/blood , Trout/genetics
5.
BMC Plant Biol ; 19(1): 425, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31615403

ABSTRACT

BACKGROUND: Nitrogen (N) nutrition significantly affected metabolism and accumulation of quality-related compounds in tea plant (Camellia sinensis L.). Little is known about the physiological and molecular mechanisms underlying the effects of short-term repression of N metabolism on tea roots and leaves for a short time. RESULTS: In this study, we subjected tea plants to a specific inhibitor of glutamine synthetase (GS), methionine sulfoximine (MSX), for a short time (30 min) and investigated the effect of the inhibition of N metabolism on the transcriptome and metabolome of quality-related compounds. Our results showed that GS activities in tea roots and leaves were significantly inhibited upon MSX treatment, and both tissue types showed a sensitive metabolic response to GS inhibition. In tea leaves, the hydrolysis of theanine decreased with the increase in theanine and free ammonium content. The biosynthesis of all other amino acids was repressed, and the content of N-containing lipids declined, suggesting that short-term inhibition of GS reduces the level of N reutilization in tea leaves. Metabolites related to glycolysis and the tricarboxylic acid (TCA) cycle accumulated after GS repression, whereas the content of amino acids such as glycine, serine, isoleucine, threonine, leucine, and valine declined in the MXS treated group. We speculate that the biosynthesis of amino acids is affected by glycolysis and the TCA cycle in a feedback loop. CONCLUSIONS: Overall, our data suggest that GS repression in tea plant leads to the reprogramming of amino acid and lipid metabolic pathways.


Subject(s)
Amino Acids/metabolism , Camellia sinensis/metabolism , Glutamate-Ammonia Ligase/antagonists & inhibitors , Lipid Metabolism , Methionine Sulfoximine/pharmacology , Plant Proteins/antagonists & inhibitors , Camellia sinensis/drug effects , Camellia sinensis/enzymology , Lipid Metabolism/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism
6.
Biotechnol Bioeng ; 115(5): 1367-1372, 2018 05.
Article in English | MEDLINE | ID: mdl-29359789

ABSTRACT

Previously, it was inferred that a high glutamine synthetase (GS) activity in human embryonic kidney (HEK) 293E cells results in elevated resistance to methionine sulfoximine (MSX) and consequently hampers GS-mediated gene amplification and selection by MSX. To overcome this MSX resistance in HEK293E cells, a GS-knockout HEK293E cell line was generated using the CRISPR/Cas9 system to target the endogenous human GS gene. The GS-knockout in the HEK293E cell line (RK8) was confirmed by Western blot analysis of GS and by observation of glutamine-dependent growth. Unlike the wild type HEK293E cells, the RK8 cells were successfully used as host cells to generate a recombinant HEK293E cell line (rHEK293E) producing a monoclonal antibody (mAb). When the RK8 cells were transfected with the GS expression vector containing the mAb gene, rHEK293E cells producing the mAb could be selected in the absence as well as in the presence of MSX. The gene copies and mRNA expression levels of the mAb in rHEK293E cells were also quantified using qRT-PCR. Taken together, the GS-knockout HEK293E cell line can be used as host cells to generate stable rHEK293E cells producing a mAb through GS-mediated gene selection in the absence as well as in the presence of MSX.


Subject(s)
Antibodies, Monoclonal/metabolism , Gene Knockout Techniques , Glutamate-Ammonia Ligase/deficiency , Recombinant Proteins/metabolism , Blotting, Western , Glutamate-Ammonia Ligase/analysis , HEK293 Cells , Humans
7.
Glia ; 65(2): 401-415, 2017 02.
Article in English | MEDLINE | ID: mdl-27862359

ABSTRACT

Glutamate transporters (EAATs) are important to maintain spatial and temporal specificity of synaptic transmission. Their efficiency to uptake and transport glutamate into the intracellular space depends on several parameters including the intracellular concentrations of Na+ and glutamate, the elevations of which may slow down the cycling rate of EAATs. In astrocytes, glutamate is maintained at low concentration due to the presence of specific enzymes such as glutamine synthase (GS). GS inhibition results in cytosolic accumulation of glutamate suggesting that the conversion of glutamate by GS is important for EAATs operation. Here we recorded astrocytes from juvenile rat neocortical slices and analyzed the consequences of elevated intracellular glutamate concentrations and of GS inhibition on the time course of synaptically evoked transporter current (STC). In slices from rats treated with methionine sulfoximine (MSO), a GS inhibitor, STC evoked by short burst of high frequency stimulation (HFS; 100 Hz for 100 ms) but not by low frequency stimulation (LFS; 0.1 Hz) was twice slower than STC evoked from saline injected rats. Same results were obtained for astrocytes recorded with pipette containing 3-10 mM glutamate and compared with cells recorded with 0 or1 mM glutamate in the patch pipette. We also showed that HFS elicited significantly larger NMDAR-excitatory postsynaptic currents (EPSCs) with a stronger peri/extrasynaptic component in pyramidal cells from MSO-treated compared with saline treated rats. Taken together our data demonstrate that the conversion of glutamate by GS is fundamental to ensure an efficient clearance of glutamate by EAATs and to prevent glutamate spillover. GLIA 2017;65:401-415.


Subject(s)
Astrocytes/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamic Acid/metabolism , Neocortex/cytology , Receptors, N-Methyl-D-Aspartate/metabolism , Amino Acids/metabolism , Animals , Animals, Newborn , Biophysics , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Agents/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Female , GABA Agents/pharmacology , Humans , Male , Membrane Potentials , Methionine/analogs & derivatives , Methionine/pharmacology , Rats , Rats, Wistar , Time Factors
8.
Antonie Van Leeuwenhoek ; 110(9): 1157-1168, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28631172

ABSTRACT

In the present work we studied the expression of genes from nitrogen central metabolism in the yeast Dekkera bruxellensis and under regulation by the Nitrogen Catabolite Repression mechanism (NCR). These analyses could shed some light on the biological mechanisms involved in the adaptation and survival of this yeast in the sugarcane fermentation process for ethanol production. Nitrogen sources (N-sources) in the form of ammonium, nitrate, glutamate or glutamine were investigated with or without the addition of methionine sulfoximine, which inhibits the activity of the enzyme glutamine synthetase and releases cells from NCR. The results showed that glutamine might act as an intracellular sensor for nitrogen availability in D. bruxellensis, by activating NCR. Gene expression analyses indicated the existence of two different GATA-dependent NCR pathways, identified as glutamine-dependent and glutamine-independent mechanisms. Moreover, nitrate is sensed as a non-preferential N-source and releases NCR to its higher level. After grouping genes according to their regulation pattern, we showed that genes for ammonium assimilation represent a regulon with almost constitutive expression, while permease encoding genes are mostly affected by the nitrogen sensor mechanism. On the other hand, nitrate assimilation genes constitute a regulon that is primarily subjected to induction by nitrate and, to a lesser extent, to a repressive mechanism by preferential N-sources. This observation explains our previous reports showing that nitrate is co-consumed with ammonium, a trait that enables D. bruxellensis cells to scavenge limiting N-sources in the industrial substrate and, therefore, to compete with Saccharomyces cerevisiae in this environment.


Subject(s)
Catabolite Repression/physiology , Dekkera/metabolism , Gene Expression Regulation, Fungal , Glutamine/metabolism , Nitrogen/metabolism , Ammonium Compounds/metabolism , Catabolite Repression/genetics , Dekkera/genetics , Dekkera/growth & development , Glutamate-Ammonia Ligase/metabolism , Glutamic Acid/metabolism , Glutamine/biosynthesis , Industrial Microbiology , Methionine Sulfoximine/metabolism , Methionine Sulfoximine/toxicity , Nitrates/metabolism , Promoter Regions, Genetic , Real-Time Polymerase Chain Reaction , Regulon
9.
Protein Expr Purif ; 105: 8-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25286402

ABSTRACT

We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5-30mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4-6months to produce. To shorten the construction time, we replaced the multi-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ∼5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines.


Subject(s)
Glutamate-Ammonia Ligase/chemistry , L-Selectin/isolation & purification , L-Selectin/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Glutamate-Ammonia Ligase/metabolism , HEK293 Cells , Humans , L-Selectin/genetics , Methionine Sulfoximine , Mutation/genetics , Recombinant Proteins/genetics
10.
Article in English | MEDLINE | ID: mdl-25582543

ABSTRACT

Increased internal ammonia (hyperammonemia) and ischemic/anoxic insults are known to result in a cascade of deleterious events that can culminate in potentially fatal brain swelling in mammals. It is less clear, however, if the brains of fishes respond to ammonia in a similar manner. The present study demonstrated that the crucian carp (Carassius carassius) was not only able to endure high environmental ammonia exposure (HEA; 2 to 22 mmol L(-1)) but that they experienced 30% increases in brain water content at the highest ammonia concentrations. This swelling was accompanied by 4-fold increases in plasma total ammonia (TAmm) concentration, but both plasma TAmm and brain water content were restored to pre-exposure levels following depuration in ammonia-free water. The closely related, ammonia-tolerant goldfish (Carassius auratus) responded similarly to HEA (up to 3.6 mmol L(-1)), which was accompanied by 4-fold increases in brain glutamine. Subsequent administration of the glutamine synthetase inhibitor, methionine sulfoximine (MSO), reduced brain glutamine accumulation by 80% during HEA. However, MSO failed to prevent ammonia-induced increases in brain water content suggesting that glutamine may not be directly involved in initiating ammonia-induced brain swelling in fishes. Although the mechanisms of brain swelling are likely different, exposure to anoxia for 96 h caused similar, but lesser (10%) increases in brain water content in crucian carp. We conclude that brain swelling in some fishes may be a common response to increased internal ammonia or lower oxygen but further research is needed to deduce the underlying mechanisms behind such responses.


Subject(s)
Ammonia/administration & dosage , Brain Edema/etiology , Hypoxia , Animals , Body Water , Carps , Ethanol/metabolism , Goldfish
11.
J Biol Chem ; 288(38): 27243-27262, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23935103

ABSTRACT

Five different physiological conditions have been used interchangeably to establish the sequence of molecular events needed to achieve nitrogen-responsive down-regulation of TorC1 and its subsequent regulation of downstream reporters: nitrogen starvation, methionine sulfoximine (Msx) addition, nitrogen limitation, rapamycin addition, and leucine starvation. Therefore, we tested a specific underlying assumption upon which the interpretation of data generated by these five experimental perturbations is premised. It is that they generate physiologically equivalent outcomes with respect to TorC1, i.e. its down-regulation as reflected by TorC1 reporter responses. We tested this assumption by performing head-to-head comparisons of the requirements for each condition to achieve a common outcome for a downstream proxy of TorC1 inactivation, nuclear Gln3 localization. We demonstrate that the five conditions for down-regulating TorC1 do not elicit physiologically equivalent outcomes. Four of the methods exhibit hierarchical Sit4 and PP2A phosphatase requirements to elicit nuclear Gln3-Myc(13) localization. Rapamycin treatment required Sit4 and PP2A. Nitrogen limitation and short-term nitrogen starvation required only Sit4. G1 arrest-correlated, long-term nitrogen starvation and Msx treatment required neither PP2A nor Sit4. Starving cells of leucine or treating them with leucyl-tRNA synthetase inhibitors did not elicit nuclear Gln3-Myc(13) localization. These data indicate that the five commonly used nitrogen-related conditions of down-regulating TorC1 are not physiologically equivalent and minimally involve partially differing regulatory mechanisms. Further, identical requirements for Msx treatment and long-term nitrogen starvation raise the possibility that their effects are achieved through a common regulatory pathway with glutamine, a glutamate or glutamine metabolite level as the sensed metabolic signal.


Subject(s)
Down-Regulation/physiology , Gene Expression Regulation, Fungal/physiology , Multiprotein Complexes/biosynthesis , Saccharomyces cerevisiae/metabolism , TOR Serine-Threonine Kinases/biosynthesis , Antifungal Agents/pharmacology , Down-Regulation/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/physiology , Gene Expression Regulation, Fungal/drug effects , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes/genetics , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Eur J Neurosci ; 39(12): 2050-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24666367

ABSTRACT

To evaluate the mechanisms underlying orofacial motor dysfunction associated with trigeminal nerve injury, we studied the astroglial cell activation following chronic constriction injury (CCI) of the infraorbital nerve (ION) immunohistochemically, nocifensive behavior in ION-CCI rats, and the effect of the glutamine synthase (GS) blocker methionine sulfoximine (MSO) on the jaw-opening reflex (JOR), and also studied whether glutamate-glutamine shuttle mechanism is involved in orofacial motor dysfunction. GFAP-immunoreactive (IR) cells were observed in the trigeminal motor nucleus (motV) 3 and 14 days after ION-CCI, and the nocifensive behavior and JOR amplitude were also strongly enhanced at these times. The number of GS- and GFAP-IR cells was also significantly higher in ION-CCI rats on day 7. The amplitude and duration of the JOR were strongly suppressed after MSO microinjection (m.i.) into the motV compared with that before MSO administration in ION-CCI rats. After MSO administration, the JOR amplitude was strongly suppressed, and the duration of the JOR was shortened. Forty minutes after m.i. of glutamine, the JOR amplitude was gradually returned to the control level and the strongest attenuation of the suppressive effect of MSO was observed at 180 min after glutamine m.i. In addition, glutamine also attenuated the MSO effect on the JOR duration, and the JOR duration was extended and returned to the control level thereafter. The present findings suggest that astroglial glutamate-glutamine shuttle in the motV is involved in the modulation of excitability of the trigeminal motoneurons affecting the enhancement of various jaw reflexes associated with trigeminal nerve injury.


Subject(s)
Astrocytes/physiology , Glutamic Acid/metabolism , Jaw/physiopathology , Maxillary Nerve/injuries , Maxillary Nerve/physiopathology , Reflex/physiology , Animals , Constriction, Pathologic , Enzyme Inhibitors/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Glutamate-Ammonia Ligase/antagonists & inhibitors , Glutamate-Ammonia Ligase/metabolism , Jaw/drug effects , Male , Mandibular Nerve/drug effects , Mandibular Nerve/physiopathology , Maxillary Nerve/drug effects , Methionine Sulfoximine/pharmacology , Movement Disorders/etiology , Movement Disorders/physiopathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Rats, Sprague-Dawley , Reflex/drug effects , Skin Physiological Phenomena/drug effects , Trigeminal Motor Nucleus/drug effects , Trigeminal Motor Nucleus/physiopathology
13.
Heliyon ; 10(15): e34854, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39144999

ABSTRACT

Stiripentol (STP, Diacomit©) is an antiseizure medication indicated for Dravet syndrome, a rare developmental and epileptic encephalopathy characterized by drug-resistant seizures, including status epilepticus (SE). SE is a life-threatening event that may lead to increased risk of morbidity and mortality. Here, we evaluated the effect of STP on SE and SE-associated mortality using a CBA mouse model induced by systemic administration of methionine sulfoximine (MSO), an irreversible inhibitor of glutamine synthetase. MSO induces convulsions, prolonged seizure (SE) and death, with an increase of blood ammonia level. A single acute intraperitoneal pretreatment with 200-300-400 mg/kg of STP significantly inhibited the number of seizures, SE occurrence and death in MSO-treated animals in a dose-dependent manner. Regarding blood ammonia level, STP significantly reduced by 41 % the hyperammonemia induced by MSO. In conclusion, our results show protective effects of STP to reduce and or suppress the occurrence of SE as well as its associated mortality in mice.

14.
J Agric Food Chem ; 72(34): 19040-19050, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39159198

ABSTRACT

In the brewing process, methionine is a decisive amino acid for (off-)flavor formation. A significant part of methionine is oxidized to methionine sulfoxide (MetSO) in malt. We hypothesized that MetSO and MetSO2 are metabolized to volatile compounds during yeast fermentation and examined whether the yeast Saccharomyces cerevisiae is able to catabolize l-MetSO and l-MetSO2 in free and dipeptide-bound forms. We also investigated the stability of l-methionine sulfoximine and S-methylmethionine. Cell viability in the presence of the test compounds was at least 90%. Both free and peptide-bound test substances were metabolized by Saccharomyces cerevisiae. l-MetSO was degraded most rapidly as the free amino acid, while l-MetSO2 was degraded most rapidly bound in dipeptides. We observed a different degradation behavior of the (R) and (S) diastereoisomers for l-MetSO and l-methionine sulfoximine. Furthermore, we detected methionol as the only metabolite of MetSO. Methionol sulfoxide was not formed. MetSO2 was not converted to methionol or methionol sulfone but to the respective α-hydroxy acid. We conclude that the reduction of MetSO to methionine proceeds faster than transamination. The occurrence of MetSO or MetSO2 in brewing malt will not lead to the formation of hitherto unknown volatile metabolites of the Ehrlich pathway.


Subject(s)
Fermentation , Methionine , Oxidation-Reduction , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Methionine/metabolism , Methionine/chemistry , Methionine/analogs & derivatives , Peptides/metabolism , Peptides/chemistry , Models, Biological
15.
Sci Total Environ ; 848: 157596, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35905951

ABSTRACT

High-strength ammonium (NH4+), the main characteristic of swine wastewater, poses a significant threat to the rural ecological environment. As a novel phytoremediation technology, Myriophyllum aquaticum wetlands have high tolerance and removal rate of NH4+. Glutamine synthetase (GS), a pivotal enzyme in nitrogen (N) metabolism, is hypothesized to play an important role in the tolerance of M. aquaticum to high NH4+. Herein, the responses of M. aquaticum to GS inhibition by 0.1 mM methionine sulfoximine (MSX) under 15 mM NH4+ were investigated. After 5 days, visible NH4+ toxicity symptoms were observed in MSX-treated plants. Compared with the control, the NH4+ accumulation in the leaves increased by 20.99 times, while that of stems and roots increased by 3.27 times and 47.76 %, suggesting that GS inhibition had a greater impact on the leaves. GS inhibition decreased pigments in the leaves by 8.64 %-41.06 %, triggered oxidative stress, and affected ions concentrations in M. aquaticum. The concentrations of glutamine (Gln) and asparagine decreased by 63.46 %-97.43 % and 12.37 %-76.41 %, respectively, while the concentrations of most other amino acids increased after 5 days of MSX treatment, showing that GS inhibition reprogrammed the amino acids synthesis. A decrease in Gln explains the regulations of N-related genes, including increased expression of AMT in roots and decreased expression of GS, GOGAT, GDH, and AS, which would cause further NH4+ accumulation via promoting NH4+ uptake and decreasing NH4+ assimilation in M. aquaticum. This study revealed for the first time that GS inhibition under high NH4+ condition can lead to phytotoxicity in M. aquaticum due to NH4+ accumulation. The physiological and molecular responses of the leaves, stems, and roots confirmed the importance of GS in the high NH4+ tolerance of M. aquaticum. These findings provide new insights into NH4+ tolerance mechanisms in M. aquaticum and a theoretical foundation for the phytoremediation of high NH4+-loaded swine wastewater.


Subject(s)
Ammonium Compounds , Saxifragales , Ammonium Compounds/metabolism , Animals , Asparagine/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamine/metabolism , Methionine Sulfoximine/metabolism , Nitrogen/analysis , Swine , Wastewater/chemistry
16.
Brain Res ; 1753: 147253, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33422530

ABSTRACT

The contribution of glutamatergic transmission to generation of initial convulsive seizures (CS) is debated. We tested whether pretreatment with a glutamine synthetase (GS) inhibitor, methionine sulfoximine (MSO), affects the onset and progression of initial CS by cholinergic stimulus in juvenile rats. Male rats (24 days old, Sprague Dawley) sequentially received i.p. injections of lithium-carbonate, MSO, methyl-scopolamine, and pilocarpine (Pilo). Pilo was given 150 min after MSO. Animals were continuously monitored using the Racine scale, EEG/EMG and intrahippocampal glutamate (Glu) biosensors. GS activity as measured in hippocampal homogenates, was not altered by MSO at 150 min, showed initial, varied inhibition at 165 (15 min post-Pilo), and dropped down to 11% of control at 60 min post-Pilo, whereas GS protein expression remained unaltered throughout. Pilo did neither modulate the effect of MSO on GS activity nor affect GS activity itself, at any time point. MSO reduced from 32% to 4% the number of animals showing CS during the first 12 min post-Pilo, delayed by ~6 min the appearance of electrographic seizures, and tended to decrease EMG power during ~15 min post-Pilo. The results indicate that MSO impairs an aspect of glutamatergic transmission involved in the transition from the first cholinergic stimulus to the onset of seizures. A continuous rise of extracellular Glu lasting 60 min was insignificantly affected by MSO, leaving the nature of the Glu pool(s) involved in altered glutamatergic transmission undefined.


Subject(s)
Brain/drug effects , Glutamate-Ammonia Ligase/drug effects , Pilocarpine/pharmacology , Seizures , Animals , Brain/metabolism , Disease Models, Animal , Glutamate-Ammonia Ligase/metabolism , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Glutamine/metabolism , Male , Methionine Sulfoximine/pharmacology , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/drug therapy
17.
J Biotechnol ; 325: 389-394, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32961202

ABSTRACT

Bioavailable glutamine (Gln) is critical for metabolism, intestinal health, immune function, and cell signaling. Routine measurement of serum Gln concentrations could facilitate improved diagnosis and treatment of severe infections, anorexia nervosa, chronic kidney disease, diabetes, and cancer. Current methods for quantifying tissue Gln concentrations rely mainly on HPLC, which requires extensive sample preparation and expensive equipment. Consequently, patient Gln levels may be clinically underutilized. Cell-free protein synthesis (CFPS) is an emerging sensing platform with promising clinical applications, including detection of hormones, amino acids, nucleic acids, and other biomarkers. In this work, in vitro E. coli amino acid metabolism is engineered with methionine sulfoximine to inhibit glutamine synthetase and create a CFPS Gln sensor. The sensor features a strong signal-to-noise ratio and a detection range ideally suited to physiological Gln concentrations. Furthermore, it quantifies Gln concentration in the presence of human serum. This work demonstrates that CFPS reactions which harness the metabolic power of E. coli lysate may be engineered to detect clinically relevant analytes in human samples. This approach could lead to transformative point-of-care diagnostics and improved treatment regimens for a variety of diseases including cancer, diabetes, anorexia nervosa, chronic kidney disease, and severe infections.


Subject(s)
Escherichia coli , Glutamine , Amino Acids , Escherichia coli/genetics , Glutamate-Ammonia Ligase , Humans , Methionine Sulfoximine
18.
Life Sci ; 265: 118860, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33301813

ABSTRACT

AIMS: The retinal pigment epithelium (RPE) is a highly specialized cell monolayer, that plays a key role in the maintenance of photoreceptor function and the blood-retina barrier (BRB). In this study, we found that a myristoylated pseudosubstrate of PKC-ζ (PKCζ PS), considered as a PKC-ζ inhibitor, plays a distinct role in RPE. MAIN METHODS: We demonstrated that PKCζ PS stimulates the release of Glutamate (Glu) using in vitro3H-Glutamate release experiments. By western blot, kinase assays, and Fluoresence Ca+2 Concentration Measurements, we determined the cellular mechanisms involved in such release. KEY FINDINGS: Surprisingly, PKCζ PS has no effect on either phosphorylation of T560, essential for catalytic activity, nor it has an effect on kinase activity. It induces the dose-dependent release of Glu by increasing intracellular Ca+2 levels. Interestingly, this release was not observed upon stimulation by other non-competitive PKC-ζ inhibitors. We here demonstrated that the PKCζ PS stimulates the release of Glutamate from RPE by activating the Ca2+-dependent Cl channel Bestrophin 1 (Best1). SIGNIFICANCE: These results question PKCζ PS specificity as an inhibitor of this enzyme. Furthermore, the present results underline the relevance of clarifying the molecular mechanisms involved in glutamate release from the retina under conditions derived from excitotoxic stimuli.


Subject(s)
Bestrophins/metabolism , Glutamic Acid/metabolism , Peptides/pharmacology , Protein Kinase C/antagonists & inhibitors , Retinal Pigment Epithelium/metabolism , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Peptides/administration & dosage , Rats , Rats, Long-Evans , Retinal Pigment Epithelium/cytology
19.
Eng Life Sci ; 20(3-4): 112-125, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32874175

ABSTRACT

Increasing cell culture productivity of recombinant proteins via process improvements is the primary focus for research groups within biologics manufacturing. Any recommendations to improve a manufacturing process obviously must be effective, but also be robust, scalable, and with product quality comparable to the original process. In this study, we report that three different GS-/- CHO cell lines developed in media containing a standard concentration of the selection agent methionine sulfoximine (MSX), but then exposed to increased MSX concentrations during seed train expansion, achieved titer increases of 10-19%. This result was observed in processes already considerably optimized. Expanding the cells with a higher MSX concentration improved cell line production stability with increased culture age. Production cultures in 500-L and 1000-L bioreactors replicated laboratory results using 5-L bioreactors, demonstrating process robustness and scalability. Furthermore, product quality attributes of the final drug substance using the higher MSX process were comparable with those from cells expanded in media with the standard selection MSX concentration. Subsequent mechanistic investigations confirmed that the cells were not altered at the genetic level in terms of integration profiles or gene copy number, nor transcriptional levels of glutamine synthetase, heavy chain, or light chain genes. This study provides an effective and applicable strategy to improve the productivity of therapeutic proteins for biologics manufacturing.

20.
Plant Signal Behav ; 14(4): e1582263, 2019.
Article in English | MEDLINE | ID: mdl-30810449

ABSTRACT

Foliar uptake of nitrogen dioxide (NO2) is governed by its reactive absorption mechanism, by which NO2 molecules diffuse through cell wall layers and simultaneously react with apoplastic ascorbate to form nitrous acid, which freely diffuses across plasmalemma. However, whether free diffusion of nitrous acid is the sole mechanism of foliar uptake of NO2 remains unknown. The involvement of ammonia-inhibitable nitrite transporters in the foliar uptake of NO2, as reported in nitrite transport in Arabidopsis roots, is also unknown. In this study, we treated Arabidopsis thaliana leaves with methionine sulfoximine (MSX) to inhibit incorporation of ammonia into glutamate and exposed them to 4 ppm 15N-labeled NO2 for 4 h in light followed by quantification of total nitrogen, reduced nitrogen, and ammonia nitrogen derived from NO2 using mass spectrometry and capillary electrophoresis. The total nitrogen derived from NO2 in leaves without MSX treatment was 587.0 nmol NO2/g fresh weight, of which more than 65% was recovered as reduced nitrogen. In comparison, MSX treatment decreased the total nitrogen and reduced nitrogen derived from NO2 by half. Thus, half of the foliar uptake of NO2 is not attributable to passive diffusion of nitrous acid but to ammonia-inhibitable nitrite transport. Foliar uptake of NO2 is mediated by a dual mechanism in A. thaliana: nitrous acid-free diffusion and nitrite transporter-mediated transport.


Subject(s)
Arabidopsis/metabolism , Nitrogen Cycle/physiology , Nitrogen Dioxide/metabolism , Ammonia/metabolism , Ascorbic Acid/metabolism , Methionine Sulfoximine/pharmacology , Nitrites/metabolism , Nitrogen/metabolism , Nitrous Acid/metabolism , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL