Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.329
Filter
Add more filters

Publication year range
1.
Mol Cell ; 84(3): 506-521.e11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38159565

ABSTRACT

Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.


Subject(s)
Catalytic Domain , Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Humans , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
2.
Am J Hum Genet ; 111(6): 1222-1238, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38781976

ABSTRACT

Heterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants. De novo variants consistently resulted in a decrease in GABA uptake, in keeping with haploinsufficiency underlying all neurodevelopmental phenotypes. Where present, ClinVar pathogenicity reports correlated well with GABA uptake data; the functional data can inform future reports for the remaining 72% of unscored variants. Surface localization was assessed for 86 variants; two-thirds of loss-of-function missense variants prevented GAT-1 from being present on the membrane while GAT-1 was on the surface but with reduced activity for the remaining third. Surprisingly, recurrent de novo missense variants showed moderate loss-of-function effects that reduced GABA uptake with no evidence for dominant-negative or gain-of-function effects. Using linear regression across multiple missense severity scores to extrapolate the functional data to all potential SLC6A1 missense variants, we observe an abundance of GAT-1 residues that are sensitive to substitution. The extent of this missense vulnerability accounts for the clinically observed missense enrichment; overlap with hypermutable CpG sites accounts for the recurrent missense variants. Strategies to increase the expression of the wild-type SLC6A1 allele are likely to be beneficial across neurodevelopmental disorders, though the developmental stage and extent of required rescue remain unknown.


Subject(s)
GABA Plasma Membrane Transport Proteins , Haploinsufficiency , Mutation, Missense , Humans , GABA Plasma Membrane Transport Proteins/genetics , Haploinsufficiency/genetics , gamma-Aminobutyric Acid/metabolism , Neurodevelopmental Disorders/genetics , Developmental Disabilities/genetics , Autistic Disorder/genetics , HEK293 Cells
3.
Hum Mol Genet ; 33(17): 1495-1505, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-38776952

ABSTRACT

Pulmonary arterial hypertension (PAH) is a disorder with a large genetic component. Biallelic mutations of EIF2AK4, which encodes the kinase GCN2, are causal in two ultra-rare subtypes of PAH, pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis. EIF2AK4 variants of unknown significance have also been identified in patients with classical PAH, though their relationship to disease remains unclear. To provide patients with diagnostic information and enable family testing, the functional consequences of such rare variants must be determined, but existing computational methods are imperfect. We applied a suite of bioinformatic and experimental approaches to sixteen EIF2AK4 variants that had been identified in patients. By experimentally testing the functional integrity of the integrated stress response (ISR) downstream of GCN2, we determined that existing computational tools have insufficient sensitivity to reliably predict impaired kinase function. We determined experimentally that several EIF2AK4 variants identified in patients with classical PAH had preserved function and are therefore likely to be non-pathogenic. The dysfunctional variants of GCN2 that we identified could be subclassified into three groups: misfolded, kinase-dead, and hypomorphic. Intriguingly, members of the hypomorphic group were amenable to paradoxical activation by a type-1½ GCN2 kinase inhibitor. This experiment approach may aid in the clinical stratification of EIF2AK4 variants and potentially identify hypomorophic alleles receptive to pharmacological activation.


Subject(s)
Mutation, Missense , Protein Serine-Threonine Kinases , Pulmonary Arterial Hypertension , Humans , Protein Serine-Threonine Kinases/genetics , Mutation, Missense/genetics , Pulmonary Arterial Hypertension/genetics , Genetic Predisposition to Disease , Hypertension, Pulmonary/genetics , Computational Biology/methods
4.
Am J Hum Genet ; 110(6): 963-978, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37196654

ABSTRACT

De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Animals , Facies , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Drosophila , Intellectual Disability/pathology , Jumonji Domain-Containing Histone Demethylases/genetics
5.
Am J Hum Genet ; 110(6): 940-949, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37236177

ABSTRACT

While pathogenic variants can significantly increase disease risk, it is still challenging to estimate the clinical impact of rare missense variants more generally. Even in genes such as BRCA2 or PALB2, large cohort studies find no significant association between breast cancer and rare missense variants collectively. Here, we introduce REGatta, a method to estimate clinical risk from variants in smaller segments of individual genes. We first define these regions by using the density of pathogenic diagnostic reports and then calculate the relative risk in each region by using over 200,000 exome sequences in the UK Biobank. We apply this method in 13 genes with established roles across several monogenic disorders. In genes with no significant difference at the gene level, this approach significantly separates disease risk for individuals with rare missense variants at higher or lower risk (BRCA2 regional model OR = 1.46 [1.12, 1.79], p = 0.0036 vs. BRCA2 gene model OR = 0.96 [0.85, 1.07] p = 0.4171). We find high concordance between these regional risk estimates and high-throughput functional assays of variant impact. We compare our method with existing methods and the use of protein domains (Pfam) as regions and find REGatta better identifies individuals at elevated or reduced risk. These regions provide useful priors and are potentially useful for improving risk assessment for genes associated with monogenic diseases.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Humans , Female , BRCA2 Protein/genetics , Mutation, Missense , Sequence Analysis, DNA , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cohort Studies
6.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39140857

ABSTRACT

Somatic variation is a major type of genetic variation contributing to human diseases including cancer. Of the vast quantities of somatic variants identified, the functional impact of many somatic variants, in particular the missense variants, remains unclear. Lack of the functional information prevents the translation of rich variation data into clinical applications. We previously developed a method named Ramachandran Plot-Molecular Dynamics Simulations (RP-MDS), aiming to predict the function of germline missense variants based on their effects on protein structure stability, and successfully applied to predict the deleteriousness of unclassified germline missense variants in multiple cancer genes. We hypothesized that regardless of their different genetic origins, somatic missense variants and germline missense variants could have similar effects on the stability of their affected protein structure. As such, the RP-MDS method designed for germline missense variants should also be applicable to predict the function of somatic missense variants. In the current study, we tested our hypothesis by using the somatic missense variants in TP53 as a model. Of the 397 somatic missense variants analyzed, RP-MDS predicted that 195 (49.1%) variants were deleterious as they significantly disturbed p53 structure. The results were largely validated by using a p53-p21 promoter-green fluorescent protein (GFP) reporter gene assay. Our study demonstrated that deleterious somatic missense variants can be identified by referring to their effects on protein structural stability.


Subject(s)
Mutation, Missense , Protein Stability , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/chemistry , Molecular Dynamics Simulation , Neoplasms/genetics , Protein Conformation
7.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38305456

ABSTRACT

Protein structure prediction is a longstanding issue crucial for identifying new drug targets and providing a mechanistic understanding of protein functions. To enhance the progress in this field, a spectrum of computational methodologies has been cultivated. AlphaFold2 has exhibited exceptional precision in predicting wild-type protein structures, with performance exceeding that of other methods. However, predicting the structures of missense mutant proteins using AlphaFold2 remains challenging due to the intricate and substantial structural alterations caused by minor sequence variations in the mutant proteins. Molecular dynamics (MD) has been validated for precisely capturing changes in amino acid interactions attributed to protein mutations. Therefore, for the first time, a strategy entitled 'MoDAFold' was proposed to improve the accuracy and reliability of missense mutant protein structure prediction by combining AlphaFold2 with MD. Multiple case studies have confirmed the superior performance of MoDAFold compared to other methods, particularly AlphaFold2.


Subject(s)
Amino Acids , Molecular Dynamics Simulation , Mutant Proteins , Reproducibility of Results , Mutation , Protein Conformation
8.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-39038933

ABSTRACT

Breast cancer (BC) is the most common malignancy affecting Western women today. It is estimated that as many as 10% of BC cases can be attributed to germline variants. However, the genetic basis of the majority of familial BC cases has yet to be identified. Discovering predisposing genes contributing to familial BC is challenging due to their presumed rarity, low penetrance, and complex biological mechanisms. Here, we focused on an analysis of rare missense variants in a cohort of 12 families of Middle Eastern origins characterized by a high incidence of BC cases. We devised a novel, high-throughput, variant analysis pipeline adapted for family studies, which aims to analyze variants at the protein level by employing state-of-the-art machine learning models and three-dimensional protein structural analysis. Using our pipeline, we analyzed 1218 rare missense variants that are shared between affected family members and classified 80 genes as candidate pathogenic. Among these genes, we found significant functional enrichment in peroxisomal and mitochondrial biological pathways which segregated across seven families in the study and covered diverse ethnic groups. We present multiple evidence that peroxisomal and mitochondrial pathways play an important, yet underappreciated, role in both germline BC predisposition and BC survival.


Subject(s)
Breast Neoplasms , Deep Learning , Genetic Predisposition to Disease , Humans , Breast Neoplasms/genetics , Female , Mutation, Missense , Pedigree , Germ-Line Mutation
9.
Proc Natl Acad Sci U S A ; 120(12): e2219029120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36917661

ABSTRACT

Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in animals, and it occurs in fungi specifically during sexual reproduction. However, it is debatable whether A-to-I RNA editing is adaptive. Deciphering the functional importance of individual editing sites is essential for the mechanistic understanding of the adaptive advantages of RNA editing. Here, by performing gene deletion for 17 genes with conserved missense editing (CME) sites and engineering underedited (ue) and overedited (oe) mutants for 10 CME sites using site-specific mutagenesis at the native locus in Fusarium graminearum, we demonstrated that two CME sites in CME5 and CME11 genes are functionally important for sexual reproduction. Although the overedited mutant was normal in sexual reproduction, the underedited mutant of CME5 had severe defects in ascus and ascospore formation like the deletion mutant, suggesting that the CME site of CME5 is co-opted for sexual development. The preediting residue of Cme5 is evolutionarily conserved across diverse classes of Ascomycota, while the postediting one is rarely hardwired into the genome, implying that editing at this site leads to higher fitness than a genomic A-to-G mutation. More importantly, mutants expressing only the underedited or the overedited allele of CME11 are defective in ascosporogenesis, while those expressing both alleles displayed normal phenotypes, indicating that concurrently expressing edited and unedited versions of Cme11 is more advantageous than either. Our study provides convincing experimental evidence for the long-suspected adaptive advantages of RNA editing in fungi and likely in animals.


Subject(s)
Ascomycota , RNA , Animals , RNA Editing/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mutation , Ascomycota/genetics
10.
J Biol Chem ; 300(9): 107666, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39128720

ABSTRACT

ABCA4 is an ATP-binding cassette (ABC) transporter that prevents the buildup of toxic retinoid compounds by facilitating the transport of N-retinylidene-phosphatidylethanolamine across membranes of rod and cone photoreceptor cells. Over 1500 missense mutations in ABCA4, many in the nucleotide-binding domains (NBDs), have been genetically linked to Stargardt disease. Here, we show by cryo-EM that ABCA4 is converted from an open outward conformation to a closed conformation upon the binding of adenylyl-imidodiphosphate. Structural information and biochemical studies were used to further define the role of the NBDs in the functional properties of ABCA4 and the mechanisms by which mutations lead to the loss in activity. We show that ATPase activity in both NBDs is required for the functional activity of ABCA4. Mutations in Walker A asparagine residues cause a severe reduction in substrate-activated ATPase activity due to the loss in polar interactions with residues within the D-loops of the opposing NBD. The structural basis for how disease mutations in other NBD residues, including the R1108C, R2077W, R2107H, and L2027F, affect the structure and function of ABCA4 is described. Collectively, our studies provide insight into the structure and function of ABCA4 and mechanisms underlying Stargardt disease.

11.
Am J Hum Genet ; 109(3): 457-470, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120630

ABSTRACT

We used a machine learning approach to analyze the within-gene distribution of missense variants observed in hereditary conditions and cancer. When applied to 840 genes from the ClinVar database, this approach detected a significant non-random distribution of pathogenic and benign variants in 387 (46%) and 172 (20%) genes, respectively, revealing that variant clustering is widespread across the human exome. This clustering likely occurs as a consequence of mechanisms shaping pathogenicity at the protein level, as illustrated by the overlap of some clusters with known functional domains. We then took advantage of these findings to develop a pathogenicity predictor, MutScore, that integrates qualitative features of DNA substitutions with the new additional information derived from this positional clustering. Using a random forest approach, MutScore was able to identify pathogenic missense mutations with very high accuracy, outperforming existing predictive tools, especially for variants associated with autosomal-dominant disease and cancer. Thus, the within-gene clustering of pathogenic and benign DNA changes is an important and previously underappreciated feature of the human exome, which can be harnessed to improve the prediction of pathogenicity and disambiguation of DNA variants of uncertain significance.


Subject(s)
Genome, Human , Mutation, Missense , Cluster Analysis , Exome/genetics , Genome, Human/genetics , Humans , Mutation, Missense/genetics , Virulence
12.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38018912

ABSTRACT

Dysfunctions caused by missense mutations in the tumour suppressor p53 have been extensively shown to be a leading driver of many cancers. Unfortunately, it is time-consuming and labour-intensive to experimentally elucidate the effects of all possible missense variants. Recent works presented a comprehensive dataset and machine learning model to predict the functional outcome of mutations in p53. Despite the well-established dataset and precise predictions, this tool was trained on a complicated model with limited predictions on p53 mutations. In this work, we first used computational biophysical tools to investigate the functional consequences of missense mutations in p53, informing a bias of deleterious mutations with destabilizing effects. Combining these insights with experimental assays, we present two interpretable machine learning models leveraging both experimental assays and in silico biophysical measurements to accurately predict the functional consequences on p53 and validate their robustness on clinical data. Our final model based on nine features obtained comparable predictive performance with the state-of-the-art p53 specific method and outperformed other generalized, widely used predictors. Interpreting our models revealed that information on residue p53 activity, polar atom distances and changes in p53 stability were instrumental in the decisions, consistent with a bias of the properties of deleterious mutations. Our predictions have been computed for all possible missense mutations in p53, offering clinical diagnostic utility, which is crucial for patient monitoring and the development of personalized cancer treatment.


Subject(s)
Mutation, Missense , Neoplasms , Humans , Tumor Suppressor Protein p53/genetics , Mutation , Neoplasms/genetics , Machine Learning
13.
Brief Bioinform ; 24(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37332013

ABSTRACT

We report the structure-based pathogenicity relationship identifier (SPRI), a novel computational tool for accurate evaluation of pathological effects of missense single mutations and prediction of higher-order spatially organized units of mutational clusters. SPRI can effectively extract properties determining pathogenicity encoded in protein structures, and can identify deleterious missense mutations of germ line origin associated with Mendelian diseases, as well as mutations of somatic origin associated with cancer drivers. It compares favorably to other methods in predicting deleterious mutations. Furthermore, SPRI can discover spatially organized pathogenic higher-order spatial clusters (patHOS) of deleterious mutations, including those of low recurrence, and can be used for discovery of candidate cancer driver genes and driver mutations. We further demonstrate that SPRI can take advantage of AlphaFold2 predicted structures and can be deployed for saturation mutation analysis of the whole human proteome.


Subject(s)
Mutation, Missense , Neoplasms , Humans , Virulence , Mutation , Neoplasms/genetics , Computational Biology/methods
14.
Hum Genomics ; 18(1): 6, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287462

ABSTRACT

BACKGROUND: Congenital heart defects (CHDs) are the heart structural malformations present at birth. Septal defects account for 40% of CHD, including atrial, ventricular and atrioventricular septal defects. In Pakistan, the prevalence of CHD is 3.4 in 1000, and a study estimated that 60,000 babies are born with CHD annually. Methylenetetrahydrofolate reductase (MTHFR), a chief enzyme, involved in the folate metabolism. The missense mutation, C677T (rs1801133), exists in MTHFR gene, results in a MTHFR thermolabile variant having low enzymatic activity. The study is aim to identify the MTHFR C677T variant association with septal defects. METHODS: Samples of 194 CHD patients (age [Formula: see text]= 5.8 ± 5.1) and 50 normal echo controls (age [Formula: see text]= 6.0 ± 4.9), confirmed by pediatric consultant, were collected. Extracted DNA, quantified by agarose gel electrophoresis and nanodrop, was screened for SNP by high-resolution melting (HRM). Further, HRM results were confirmed using restriction analysis and sequencing. HRM was simply and precisely genotyped the samples within 3 h at low cost. RESULTS: Genotypic data suggested that heterozygous mutant (CT) was frequent in congenital septal defect patients (0.26) which was higher than controls (0.143), p > 0.05. Mutant (TT) genotype was not found in this study. CONCLUSIONS: rs1801133 has lack of significant association with congenital septal defects. The absence of TT genotype in this study suggesting the role of natural selection in targeted population. HRM is an easy, fast and next generation of PCR, which may be used for applied genomics.


Subject(s)
Heart Defects, Congenital , Methylenetetrahydrofolate Reductase (NADPH2) , Infant, Newborn , Humans , Child , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Pakistan/epidemiology , Heart Defects, Congenital/genetics , Genotype , Polymerase Chain Reaction , Genetic Predisposition to Disease , Case-Control Studies
15.
Hum Genomics ; 18(1): 22, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424652

ABSTRACT

BACKGROUND: To report newly found TSPAN12 mutations with a unique form of familial exudative vitreoretinopathy (FEVR) and find out the possible mechanism of a repeated novel intronic variant in TSPAN12 led to FEVR. RESULTS: Nine TSPAN12 mutations with a unique form of FEVR were detected by panel-based NGS. MINI-Gene assay showed two splicing modes of mRNA that process two different bands A and B, and mutant-type shows replacement with the splicing mode of Exon11 hopping. Construction of wild-type and mutant TSPAN12 vector showed the appearance of premature termination codons (PTC). In vitro expression detection showed significant down-regulated expression level of TSPAN12 mRNAs and proteins in cells transfected with mutant vectors compared with in wild-type group. On the contrary, translation inhibitor CHX and small interfering RNA of UPF1 (si-UPF1) significantly increased mRNA or protein expression of TSPAN12 in cells transfected with the mutant vectors. CONCLUSIONS: Nine mutations in TSPAN12 gene are reported in 9 FEVR patients with a unique series of ocular abnormalities. The three novel TSPAN12 mutations trigger NMD would cause the decrease of TSPAN12 proteins that participate in biosynthesis and assembly of microfibers, which might lead to FEVR, and suggest that intronic sequence analysis might be a vital tool for genetic counseling and prenatal diagnoses.


Subject(s)
Codon, Nonsense , Tetraspanins , Humans , Familial Exudative Vitreoretinopathies/genetics , Familial Exudative Vitreoretinopathies/diagnosis , Tetraspanins/genetics , Tetraspanins/metabolism , Pedigree , Mutation , DNA Mutational Analysis , Trans-Activators/genetics , RNA Helicases/genetics
16.
Methods ; 222: 122-132, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185227

ABSTRACT

Predicting the functionality of missense mutations is extremely difficult. Large-scale genomic screens are commonly performed to identify mutational correlates or drivers of disease and treatment resistance, but interpretation of how these mutations impact protein function is limited. One such consequence of mutations to a protein is to impact its ability to bind and interact with partners or small molecules such as ATP, thereby modulating its function. Multiple methods exist for predicting the impact of a single mutation on protein-protein binding energy, but it is difficult in the context of a genomic screen to understand if these mutations with large impacts on binding are more common than statistically expected. We present a methodology for taking mutational data from large-scale genomic screens and generating functional and statistical insights into their role in the binding of proteins both with each other and their small molecule ligands. This allows a quantitative and statistical analysis to determine whether mutations impacting protein binding or ligand interactions are occurring more or less frequently than expected by chance. We achieve this by calculating the potential impact of any possible mutation and comparing an expected distribution to the observed mutations. This method is applied to examples demonstrating its ability to interpret mutations involved in protein-protein binding, protein-DNA interactions, and the evolution of therapeutic resistance.


Subject(s)
Genomics , Proteins , Protein Binding , Mutation , Binding Sites , Proteins/genetics
17.
Mol Ther ; 32(2): 352-371, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38104240

ABSTRACT

Missense mutations account for approximately 50% of pathogenic mutations in human genetic diseases, and most lack effective treatments. Gene therapies, gene editing, and RNA therapies, including transfer RNA (tRNA) modalities, are common strategies for genetic disease treatments. However, reported tRNA therapies are for nonsense mutations only. It has not been explored how tRNAs can be engineered to correct missense mutations. Here, we describe missense-correcting tRNAs (mc-tRNAs) as a potential therapeutic for correcting pathogenic missense mutations. Mc-tRNAs are engineered tRNAs charged with one amino acid, but read codons of another in translation. We first developed a series of fluorescent protein-based reporters that indicate the successful correction of missense mutations via restoration of fluorescence. We engineered mc-tRNAs that effectively corrected serine and arginine missense mutations in the reporters and confirmed the amino acid substitution by mass spectrometry and mc-tRNA expression by sequencing. We examined the transcriptome response to mc-tRNA expression and found some mc-tRNAs induced minimum transcriptomic changes. Furthermore, we applied an mc-tRNA to rescue a pathogenic CAPN3 Arg-to-Gln mutant involved in LGMD2A. These results establish a versatile pipeline for mc-tRNA engineering and demonstrate the potential of mc-tRNA as an alternative therapeutic platform for the treatment of genetic disorders.


Subject(s)
Mutation, Missense , RNA, Transfer , Humans , RNA, Transfer/genetics , Codon , Mutation , Amino Acids
18.
J Med Genet ; 61(2): 117-124, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37399313

ABSTRACT

BACKGROUND: Otosclerosis is a common cause of adult-onset progressive hearing loss, affecting 0.3%-0.4% of the population. It results from dysregulation of bone homeostasis in the otic capsule, most commonly leading to fixation of the stapes bone, impairing sound conduction through the middle ear. Otosclerosis has a well-known genetic predisposition including familial cases with apparent autosomal dominant mode of inheritance. While linkage analysis and genome-wide association studies suggested an association with several genomic loci and with genes encoding structural proteins involved in bone formation or metabolism, the molecular genetic pathophysiology of human otosclerosis is yet mostly unknown. METHODS: Whole-exome sequencing, linkage analysis, generation of CRISPR mutant mice, hearing tests and micro-CT. RESULTS: Through genetic studies of kindred with seven individuals affected by apparent autosomal dominant otosclerosis, we identified a disease-causing variant in SMARCA4, encoding a key component of the PBAF chromatin remodelling complex. We generated CRISPR-Cas9 transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue. Mutant Smarca4+/E1548K mice exhibited marked hearing impairment demonstrated through acoustic startle response and auditory brainstem response tests. Isolated ossicles of the auditory bullae of mutant mice exhibited a highly irregular structure of the incus bone, and their in situ micro-CT studies demonstrated the anomalous structure of the incus bone, causing disruption in the ossicular chain. CONCLUSION: We demonstrate that otosclerosis can be caused by a variant in SMARCA4, with a similar phenotype of hearing impairment and abnormal bone formation in the auditory bullae in transgenic mice carrying the human mutation in the mouse SMARCA4 orthologue.


Subject(s)
Hearing Loss , Otosclerosis , Adult , Humans , Mice , Animals , Otosclerosis/genetics , Otosclerosis/surgery , Blister/complications , Genome-Wide Association Study , Reflex, Startle , Phenotype , Mice, Transgenic , Mutation , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
19.
J Med Genet ; 61(2): 163-170, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37816627

ABSTRACT

BACKGROUND: Complex regional pain syndrome type 1 (CRPS-1) is a rare, disabling and sometimes chronic disorder usually arising after a trauma. This exploratory study examined whether patients with chronic CRPS-1 have a different genetic profile compared with those who do not have the condition. METHODS: Exome sequencing was performed to seek altered non-synonymous SNP allele frequencies in a discovery cohort of well-characterised patients with chronic CRPS-1 (n=34) compared with population databases. Identified SNP alleles were confirmed by Sanger sequencing and sought in a replication cohort (n=50). Gene expression of peripheral blood macrophages was assessed. RESULTS: In the discovery cohort, the rare allele frequencies of four non-synonymous SNPs were statistically increased. The replication cohort confirmed this finding. In a chronic pain cohort, these alleles were not overexpressed. In total, 25 out of 84 (29.8%) patients with CRPS-1 expressed a rare allele. The SNPs were rs41289586 in ANO10, rs28360457 in P2RX7, rs1126930 in PRKAG1 and rs80308281 in SLC12A9. Males were more likely than females to have a rare SNP allele, 8 out of 14 (57.1%) vs 17 out of 70 (24.3%) (Fisher's p=0.023). ANO10, P2RX7, PRKAG1 and SLC12A9 were all expressed in macrophages from healthy human controls. CONCLUSION: A single SNP in each of the genes ANO10, P2RX7, PRKAG1 and SLC12A9 was associated with developing chronic CRPS-1, with more males than females expressing these rare alleles. Our work suggests the possibility that a permissive genetic background is an important factor in the development of CRPS-1.


Subject(s)
Complex Regional Pain Syndromes , Male , Female , Humans , Complex Regional Pain Syndromes/genetics , Complex Regional Pain Syndromes/epidemiology , Gene Frequency , Polymorphism, Single Nucleotide/genetics , Alleles , Genetic Background
20.
J Med Genet ; 61(8): 817-821, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38508706

ABSTRACT

PURPOSE: To determine the degree to which likely causal missense variants of single-locus traits in domesticated species have features suggestive of pathogenicity in a human genomic context. METHODS: We extracted missense variants from the Online Mendelian Inheritance in Animals database for nine animals (cat, cattle, chicken, dog, goat, horse, pig, rabbit and sheep), mapped coordinates to the human reference genome and annotated variants using genome analysis tools. We also searched a private commercial laboratory database of genetic testing results from >400 000 individuals with suspected rare disorders. RESULTS: Of 339 variants that were mappable to the same residue and gene in the human genome, 56 had been previously classified with respect to pathogenicity: 31 (55.4%) pathogenic/likely pathogenic, 1 (1.8%) benign/likely benign and 24 (42.9%) uncertain/other. The odds ratio for a pathogenic/likely pathogenic classification in ClinVar was 7.0 (95% CI 4.1 to 12.0, p<0.0001), compared with all other germline missense variants in these same 220 genes. The remaining 283 variants disproportionately had allele frequencies and REVEL scores that supported pathogenicity. CONCLUSION: Cross-species comparisons could facilitate the interpretation of rare missense variation. These results provide further support for comparative medical genomics approaches that connect big data initiatives in human and veterinary genetics.


Subject(s)
Genomics , Mutation, Missense , Mutation, Missense/genetics , Animals , Humans , Genomics/methods , Cattle , Dogs , Gene Frequency , Horses , Rabbits , Databases, Genetic , Sheep , Swine , Cats , Genome, Human/genetics , Goats/genetics , Chickens/genetics , Rare Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL