Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.562
Filter
Add more filters

Publication year range
1.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906101

ABSTRACT

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Subject(s)
Gametogenesis , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/chemistry , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Coenzyme A Ligases/metabolism , Cryoelectron Microscopy , Cytoplasm/metabolism , Electron Microscope Tomography , Meiosis , Mitochondria/metabolism , Mitochondria/ultrastructure , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Spores, Fungal/metabolism , Models, Molecular , Protein Structure, Quaternary
2.
Cell ; 186(20): 4310-4324.e23, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37703874

ABSTRACT

Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.


Subject(s)
Biomolecular Condensates , Caenorhabditis elegans , RNA, Messenger , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Oogenesis , Protein Biosynthesis , RNA Transport , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Proteins/chemistry , Proteins/metabolism , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism
3.
Cell ; 173(1): 11-19, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29570991

ABSTRACT

The construction of a predictive model of an entire eukaryotic cell that describes its dynamic structure from atomic to cellular scales is a grand challenge at the intersection of biology, chemistry, physics, and computer science. Having such a model will open new dimensions in biological research and accelerate healthcare advancements. Developing the necessary experimental and modeling methods presents abundant opportunities for a community effort to realize this goal. Here, we present a vision for creation of a spatiotemporal multi-scale model of the pancreatic ß-cell, a relevant target for understanding and modulating the pathogenesis of diabetes.


Subject(s)
Insulin-Secreting Cells/metabolism , Models, Biological , Computational Biology , Drug Discovery , Humans , Insulin-Secreting Cells/cytology , Proteins/chemistry , Proteins/metabolism
4.
Cell ; 169(5): 862-877.e17, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28502771

ABSTRACT

Herpes zoster (shingles) causes significant morbidity in immune compromised hosts and older adults. Whereas a vaccine is available for prevention of shingles, its efficacy declines with age. To help to understand the mechanisms driving vaccinal responses, we constructed a multiscale, multifactorial response network (MMRN) of immunity in healthy young and older adults immunized with the live attenuated shingles vaccine Zostavax. Vaccination induces robust antigen-specific antibody, plasmablasts, and CD4+ T cells yet limited CD8+ T cell and antiviral responses. The MMRN reveals striking associations between orthogonal datasets, such as transcriptomic and metabolomics signatures, cell populations, and cytokine levels, and identifies immune and metabolic correlates of vaccine immunity. Networks associated with inositol phosphate, glycerophospholipids, and sterol metabolism are tightly coupled with immunity. Critically, the sterol regulatory binding protein 1 and its targets are key integrators of antibody and T follicular cell responses. Our approach is broadly applicable to study human immunity and can help to identify predictors of efficacy as well as mechanisms controlling immunity to vaccination.


Subject(s)
Herpes Zoster Vaccine/immunology , Adaptive Immunity , Adult , Aged , Aging , Antibody Formation , CD4-Positive T-Lymphocytes/immunology , Female , Flow Cytometry , Gene Expression Profiling , Gene Regulatory Networks , Humans , Inositol Phosphates/immunology , Longitudinal Studies , Male , Metabolomics , Middle Aged , Sex Characteristics , Sterols/metabolism , Viral Load
5.
Trends Biochem Sci ; 49(7): 559-563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670884

ABSTRACT

In January 2024, a targeted conference, 'CellVis2', was held at Scripps Research in La Jolla, USA, the second in a series designed to explore the promise, practices, roadblocks, and prospects of creating, visualizing, sharing, and communicating physical representations of entire biological cells at scales down to the atom.

6.
Immunity ; 50(3): 616-628.e6, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30850343

ABSTRACT

Humoral immunity depends on efficient activation of B cells and their subsequent differentiation into antibody-secreting cells (ASCs). The transcription factor NFκB cRel is critical for B cell proliferation, but incorporating its known regulatory interactions into a mathematical model of the ASC differentiation circuit prevented ASC generation in simulations. Indeed, experimental ectopic cRel expression blocked ASC differentiation by inhibiting the transcription factor Blimp1, and in wild-type (WT) cells cRel was dynamically repressed during ASC differentiation by Blimp1 binding the Rel locus. Including this bi-stable circuit of mutual cRel-Blimp1 antagonism into a multi-scale model revealed that dynamic repression of cRel controls the switch from B cell proliferation to ASC generation phases and hence the respective cell population dynamics. Our studies provide a mechanistic explanation of how dysregulation of this bi-stable circuit might result in pathologic B cell population phenotypes and thus offer new avenues for diagnostic stratification and treatment.


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Proliferation/physiology , NF-kappa B/immunology , Animals , Antibody-Producing Cells/immunology , Cell Line , Female , Gene Expression Regulation/immunology , HEK293 Cells , Humans , Immunity, Humoral/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL
7.
Proc Natl Acad Sci U S A ; 121(27): e2320454121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923983

ABSTRACT

Biologically detailed models of brain circuitry are challenging to build and simulate due to the large number of neurons, their complex interactions, and the many unknown physiological parameters. Simplified mathematical models are more tractable, but harder to evaluate when too far removed from neuroanatomy/physiology. We propose that a multiscale model, coarse-grained (CG) while preserving local biological details, offers the best balance between biological realism and computability. This paper presents such a model. Generally, CG models focus on the interaction between groups of neurons-here termed "pixels"-rather than individual cells. In our case, dynamics are alternately updated at intra- and interpixel scales, with one informing the other, until convergence to equilibrium is achieved on both scales. An innovation is how we exploit the underlying biology: Taking advantage of the similarity in local anatomical structures across large regions of the cortex, we model intrapixel dynamics as a single dynamical system driven by "external" inputs. These inputs vary with events external to the pixel, but their ranges can be estimated a priori. Precomputing and tabulating all potential local responses speed up the updating procedure significantly compared to direct multiscale simulation. We illustrate our methodology using a model of the primate visual cortex. Except for local neuron-to-neuron variability (necessarily lost in any CG approximation) our model reproduces various features of large-scale network models at a tiny fraction of the computational cost. These include neuronal responses as a consequence of their orientation selectivity, a primary function of visual neurons.


Subject(s)
Models, Neurological , Neurons , Visual Cortex , Animals , Neurons/physiology , Visual Cortex/physiology , Humans , Nerve Net/physiology , Cerebral Cortex/physiology , Computer Simulation
8.
Proc Natl Acad Sci U S A ; 121(35): e2322077121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172779

ABSTRACT

2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.


Subject(s)
Deoxyadenine Nucleotides , Heart Failure , Heart Failure/drug therapy , Heart Failure/physiopathology , Deoxyadenine Nucleotides/metabolism , Animals , Humans , Ventricular Function , Models, Cardiovascular , Myocardial Contraction/drug effects , Myosins/metabolism , Sarcomeres/metabolism , Actomyosin/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Calcium/metabolism , Markov Chains
9.
Proc Natl Acad Sci U S A ; 121(23): e2318481121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814869

ABSTRACT

Living tissues display fluctuations-random spatial and temporal variations of tissue properties around their reference values-at multiple scales. It is believed that such fluctuations may enable tissues to sense their state or their size. Recent theoretical studies developed specific models of fluctuations in growing tissues and predicted that fluctuations of growth show long-range correlations. Here, we elaborated upon these predictions and we tested them using experimental data. We first introduced a minimal model for the fluctuations of any quantity that has some level of temporal persistence or memory, such as concentration of a molecule, local growth rate, or mechanical property. We found that long-range correlations are generic, applying to any such quantity, and that growth couples temporal and spatial fluctuations, through a mechanism that we call "fluctuation stretching"-growth enlarges the length scale of variation of this quantity. We then analyzed growth data from sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell growth using the previously developed cellular Fourier transform. Growth appears to have long-range correlations. We compared different genotypes and growth conditions: mutants with lower or higher response to mechanical stress have lower temporal correlations and longer-range spatial correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental data from all conditions and developmental stages into a unifying curve, validating the notion that temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.


Subject(s)
Arabidopsis , Models, Biological , Morphogenesis , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Flowers/growth & development , Flowers/genetics
10.
Proc Natl Acad Sci U S A ; 121(42): e2408431121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39392667

ABSTRACT

In the past decade, topological data analysis has emerged as a powerful algebraic topology approach in data science. Although knot theory and related subjects are a focus of study in mathematics, their success in practical applications is quite limited due to the lack of localization and quantization. We address these challenges by introducing knot data analysis (KDA), a paradigm that incorporates curve segmentation and multiscale analysis into the Gauss link integral. The resulting multiscale Gauss link integral (mGLI) recovers the global topological properties of knots and links at an appropriate scale and offers a multiscale geometric topology approach to capture the local structures and connectivities in data. By integration with machine learning or deep learning, the proposed mGLI significantly outperforms other state-of-the-art methods across various benchmark problems in 13 intricately complex biological datasets, including protein flexibility analysis, protein-ligand interactions, human Ether-à-go-go-Related Gene potassium channel blockade screening, and quantitative toxicity assessment. Our KDA opens a research area-knot deep learning-in data science.

11.
Proc Natl Acad Sci U S A ; 121(14): e2308668121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38551836

ABSTRACT

We introduce a machine learning-based approach called ab initio generalized Langevin equation (AIGLE) to model the dynamics of slow collective variables (CVs) in materials and molecules. In this scheme, the parameters are learned from atomistic simulations based on ab initio quantum mechanical models. Force field, memory kernel, and noise generator are constructed in the context of the Mori-Zwanzig formalism, under the constraint of the fluctuation-dissipation theorem. Combined with deep potential molecular dynamics and electronic density functional theory, this approach opens the way to multiscale modeling in a variety of situations. Here, we demonstrate this capability with a study of two mesoscale processes in crystalline lead titanate, namely the field-driven dynamics of a planar ferroelectric domain wall, and the dynamics of an extensive lattice of coarse-grained electric dipoles. In the first case, AIGLE extends the reach of ab initio simulations to a regime of noise-driven motions not accessible to molecular dynamics. In the second case, AIGLE deals with an extensive set of CVs by adopting a local approximation for the memory kernel and retaining only short-range noise correlations. The scheme is computationally more efficient than molecular dynamics by several orders of magnitude and mimics the microscopic dynamics at low frequencies where it reproduces accurately the dominant far-infrared absorption frequency.

12.
Proc Natl Acad Sci U S A ; 121(1): e2305890120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147554

ABSTRACT

Slow multiphase flow in porous media is intriguing because its underlying dynamics is almost deterministic, yet depends on a hierarchy of spatiotemporal processes. There has been great progress in the experimental study of such multiphase flows, but three-dimensional (3D) microscopy methods probing the pore-scale fluid dynamics with millisecond resolution have been lacking. Yet, it is precisely at these length and time scales that the crucial pore-filling events known as Haines jumps take place. Here, we report four-dimensional (4D) (3D + time) observations of multiphase flow in a consolidated porous medium as captured in situ by stroboscopic X-ray micro-tomography. With a total duration of 6.5 s and 2 kHz frame rate, our experiments provide unprecedented access to the multiscale liquid dynamics. Our tomography strategy relies on the fact that Haines jumps, although irregularly spaced in time, are almost deterministic, and therefore repeatable during imbibition-drainage cycling. We studied the time-dependent flow pattern in a porous medium consisting of sintered glass shards. Exploiting the repeatability, we could combine the radiographic projections recorded under different angles during successive cycles into a 3D movie, allowing us to reconstruct pore-scale events, such as Haines jumps, with a spatiotemporal resolution that is two orders of magnitude higher than was hitherto possible. This high resolution allows us to explore the detailed interfacial dynamics during drainage, including fluid-front displacements and velocities. Our experimental approach opens the way to the study of fast, yet deterministic mesoscopic processes also other than flow in porous media.

13.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38305457

ABSTRACT

The structural modeling of peptides can be a useful aid in the discovery of new drugs and a deeper understanding of the molecular mechanisms of life. Here we present a novel multiscale protocol for the structure prediction of linear and cyclic peptides. The protocol combines two main stages: coarse-grained simulations using the CABS-flex standalone package and an all-atom reconstruction-optimization process using the Modeller program. We evaluated the protocol on a set of linear peptides and two sets of cyclic peptides, with cyclization through the backbone and disulfide bonds. A comparison with other state-of-the-art tools (APPTEST, PEP-FOLD, ESMFold and AlphaFold implementation in ColabFold) shows that for most cases, AlphaFold offers the highest resolution. However, CABS-flex is competitive, particularly when it comes to short linear peptides. As demonstrated, the protocol performance can be further improved by combination with the residue-residue contact prediction method or more efficient scoring. The protocol is included in the CABS-flex standalone package along with online documentation to aid users in predicting the structure of peptides and mini-proteins.


Subject(s)
Peptides, Cyclic , Proteins , Proteins/chemistry , Peptides/chemistry , Protein Conformation
14.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38426327

ABSTRACT

Cluster assignment is vital to analyzing single-cell RNA sequencing (scRNA-seq) data to understand high-level biological processes. Deep learning-based clustering methods have recently been widely used in scRNA-seq data analysis. However, existing deep models often overlook the interconnections and interactions among network layers, leading to the loss of structural information within the network layers. Herein, we develop a new self-supervised clustering method based on an adaptive multi-scale autoencoder, called scAMAC. The self-supervised clustering network utilizes the Multi-Scale Attention mechanism to fuse the feature information from the encoder, hidden and decoder layers of the multi-scale autoencoder, which enables the exploration of cellular correlations within the same scale and captures deep features across different scales. The self-supervised clustering network calculates the membership matrix using the fused latent features and optimizes the clustering network based on the membership matrix. scAMAC employs an adaptive feedback mechanism to supervise the parameter updates of the multi-scale autoencoder, obtaining a more effective representation of cell features. scAMAC not only enables cell clustering but also performs data reconstruction through the decoding layer. Through extensive experiments, we demonstrate that scAMAC is superior to several advanced clustering and imputation methods in both data clustering and reconstruction. In addition, scAMAC is beneficial for downstream analysis, such as cell trajectory inference. Our scAMAC model codes are freely available at https://github.com/yancy2024/scAMAC.


Subject(s)
Data Analysis , Single-Cell Gene Expression Analysis , Cluster Analysis , Sequence Analysis, RNA , Gene Expression Profiling , Algorithms
15.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38605642

ABSTRACT

MicroRNAs (miRNAs) synergize with various biomolecules in human cells resulting in diverse functions in regulating a wide range of biological processes. Predicting potential disease-associated miRNAs as valuable biomarkers contributes to the treatment of human diseases. However, few previous methods take a holistic perspective and only concentrate on isolated miRNA and disease objects, thereby ignoring that human cells are responsible for multiple relationships. In this work, we first constructed a multi-view graph based on the relationships between miRNAs and various biomolecules, and then utilized graph attention neural network to learn the graph topology features of miRNAs and diseases for each view. Next, we added an attention mechanism again, and developed a multi-scale feature fusion module, aiming to determine the optimal fusion results for the multi-view topology features of miRNAs and diseases. In addition, the prior attribute knowledge of miRNAs and diseases was simultaneously added to achieve better prediction results and solve the cold start problem. Finally, the learned miRNA and disease representations were then concatenated and fed into a multi-layer perceptron for end-to-end training and predicting potential miRNA-disease associations. To assess the efficacy of our model (called MUSCLE), we performed 5- and 10-fold cross-validation (CV), which got average the Area under ROC curves of 0.966${\pm }$0.0102 and 0.973${\pm }$0.0135, respectively, outperforming most current state-of-the-art models. We then examined the impact of crucial parameters on prediction performance and performed ablation experiments on the feature combination and model architecture. Furthermore, the case studies about colon cancer, lung cancer and breast cancer also fully demonstrate the good inductive capability of MUSCLE. Our data and code are free available at a public GitHub repository: https://github.com/zht-code/MUSCLE.git.


Subject(s)
Colonic Neoplasms , Lung Neoplasms , MicroRNAs , Humans , Muscles , Learning , MicroRNAs/genetics , Algorithms , Computational Biology
16.
Trends Immunol ; 44(7): 551-563, 2023 07.
Article in English | MEDLINE | ID: mdl-37301677

ABSTRACT

Single cell genomics has revolutionized our ability to map immune heterogeneity and responses. With the influx of large-scale data sets from diverse modalities, the resolution achieved has supported the long-held notion that immune cells are naturally organized into hierarchical relationships, characterized at multiple levels. Such a multigranular structure corresponds to key geometric and topological features. Given that differences between an effective and ineffective immunological response may not be found at one level, there is vested interest in characterizing and predicting outcomes from such features. In this review, we highlight single cell methods and principles for learning geometric and topological properties of data at multiple scales, discussing their contributions to immunology. Ultimately, multiscale approaches go beyond classical clustering, revealing a more comprehensive picture of cellular heterogeneity.


Subject(s)
Genomics , Immunity , Humans
17.
Proc Natl Acad Sci U S A ; 120(48): e2309995120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37983502

ABSTRACT

The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal model for insight into the initial stages of aggregation of larger tau fragments. Even for this small peptide, however, the large length and time scales associated with fibrillization pose challenges for simulation studies of its dynamic assembly, equilibrium configurational landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained model of PHF6 for large-scale simulations of its aggregation, which we use to uncover molecular interactions and thermodynamic driving forces governing its assembly. The model, not trained on any explicit information about fibrillar structure, predicts coexistence of formed fibrils with monomers in solution, and we calculate a putative equilibrium phase diagram in concentration-temperature space. We also characterize the configurational and free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model of heparin that this widely studied cofactor enhances the aggregation propensity of PHF6 by ordering monomers during nucleation and remaining associated with growing fibrils, consistent with experimentally characterized heparin-tau interactions. Overall, this effort provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways and, furthermore, demonstrates the potential of modern multiscale modeling techniques to produce predictive models of amyloidogenic peptides simultaneously capturing sequence-specific effects and emergent aggregate structures.


Subject(s)
Peptides , tau Proteins , tau Proteins/metabolism , Peptides/chemistry , Protein Isoforms , Computer Simulation , Heparin
18.
Proc Natl Acad Sci U S A ; 120(27): e2305899120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364095

ABSTRACT

Microtubules (MTs) are large cytoskeletal polymers, composed of αß-tubulin heterodimers, capable of stochastically converting from polymerizing to depolymerizing states and vice versa. Depolymerization is coupled with hydrolysis of guanosine triphosphate (GTP) within ß-tubulin. Hydrolysis is favored in the MT lattice compared to a free heterodimer with an experimentally observed rate increase of 500- to 700-fold, corresponding to an energetic barrier lowering of 3.8 to 4.0 kcal/mol. Mutagenesis studies have implicated α-tubulin residues, α:E254 and α:D251, as catalytic residues completing the ß-tubulin active site of the lower heterodimer in the MT lattice. The mechanism for GTP hydrolysis in the free heterodimer, however, is not understood. Additionally, there has been debate concerning whether the GTP-state lattice is expanded or compacted relative to the GDP state and whether a "compacted" GDP-state lattice is required for hydrolysis. In this work, extensive quantum mechanics/molecular mechanics simulations with transition-tempered metadynamics free-energy sampling of compacted and expanded interdimer complexes, as well as a free heterodimer, have been carried out to provide clear insight into the GTP hydrolysis mechanism. α:E254 was found to be the catalytic residue in a compacted lattice, while in the expanded lattice, disruption of a key salt bridge interaction renders α:E254 less effective. The simulations reveal a barrier decrease of 3.8 ± 0.5 kcal/mol for the compacted lattice compared to a free heterodimer, in good agreement with experimental kinetic measurements. Additionally, the expanded lattice barrier was found to be 6.3 ± 0.5 kcal/mol higher than compacted, demonstrating that GTP hydrolysis is variable with lattice state and slower at the MT tip.


Subject(s)
Microtubules , Tubulin , Guanosine Triphosphate , Tubulin/chemistry , Hydrolysis , Guanosine Diphosphate/chemistry , Microtubules/chemistry
19.
Proc Natl Acad Sci U S A ; 120(6): e2208253120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36716363

ABSTRACT

The ability of cells to sense and communicate their shape is central to many of their functions. Much is known about how cells generate complex shapes, yet how they sense and respond to geometric cues remains poorly understood. Septins are GTP-binding proteins that localize to sites of micrometer-scale membrane curvature. Assembly of septins is a multistep and multiscale process, but it is unknown how these discrete steps lead to curvature sensing. Here, we experimentally examine the time-dependent binding of septins at different curvatures and septin bulk concentrations. These experiments unexpectedly indicated that septins' curvature preference is not absolute but rather is sensitive to the combinations of membrane curvatures present in a reaction, suggesting that there is competition between different curvatures for septin binding. To understand the physical underpinning of this result, we developed a kinetic model that connects septins' self-assembly and curvature-sensing properties. Our experimental and modeling results are consistent with curvature-sensitive assembly being driven by cooperative associations of septin oligomers in solution with the bound septins. When combined, the work indicates that septin curvature sensing is an emergent property of the multistep, multiscale assembly of membrane-bound septins. As a result, curvature preference is not absolute and can be modulated by changing the physicochemical and geometric parameters involved in septin assembly, including bulk concentration, and the available membrane curvatures. While much geometry-sensitive assembly in biology is thought to be guided by intrinsic material properties of molecules, this is an important example of how curvature sensing can arise from multiscale assembly of polymers.


Subject(s)
Cell Membrane , Septins , Septins/metabolism , Cell Membrane/physiology
20.
Proc Natl Acad Sci U S A ; 120(50): e2311528120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38060562

ABSTRACT

Regular spatial patterns of vegetation are a common sight in drylands. Their formation is a population-level response to water stress that increases water availability for the few via partial plant mortality. At the individual level, plants can also adapt to water stress by changing their phenotype. Phenotypic plasticity of individual plants and spatial patterning of plant populations have extensively been studied independently, but the likely interplay between the two robust mechanisms has remained unexplored. In this paper, we incorporate phenotypic plasticity into a multi-level theory of vegetation pattern formation and use a fascinating ecological phenomenon, the Namibian "fairy circles," to demonstrate the need for such a theory. We show that phenotypic changes in the root structure of plants, coupled with pattern-forming feedback within soil layers, can resolve two puzzles that the current theory fails to explain: observations of multi-scale patterns and the absence of theoretically predicted large-scale stripe and spot patterns along the rainfall gradient. Importantly, we find that multi-level responses to stress unveil a wide variety of more effective stress-relaxation pathways, compared to single-level responses, implying a previously underestimated resilience of dryland ecosystems.


Subject(s)
Dehydration , Ecosystem , Plants/metabolism , Feedback , Adaptation, Physiological , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL