Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271585

ABSTRACT

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Subject(s)
Carbon , Rainforest , Carbon/metabolism , Ecosystem , Droughts , Water/metabolism , Trees/metabolism , Carbohydrates , Plant Leaves/metabolism
2.
Tree Physiol ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281259

ABSTRACT

Woody plants rely on the remobilization of carbon (C) and nitrogen (N) reserves to support growth and survival when resource demand exceeds supply at seasonally predictable times like spring leaf flush and following unpredictable disturbances like defoliation. However, we have a poor understanding of how reserves are regulated and whether distance between source and sink tissues affects remobilization. This leads to uncertainty about which reserves-and how much-are available to support plant functions like leaf growth. To better understand the source of remobilized reserves and constraints on their allocation, we created aspen saplings with organ-specific labeled reserves by using stable isotopes (13C,15N) and grafting unlabeled or labeled stems to labeled or unlabeled root stocks. We first determined which organs had imported root or stem-derived C and N reserves after spring leaf flush. We then further tested spatial and temporal variation in reserve remobilization and import by comparing 1) upper and lower canopy leaves, 2) early and late leaves, and 3) early flush and re-flush leaves after defoliation. During spring flush, remobilized root C and N reserves were preferentially allocated to sinks closer to the reserve source (i.e., lower vs upper canopy leaves). However, the reduced import of 13C in late versus early leaves indicates reliance on C reserves declined over time. Following defoliation, re-flush leaves imported the same proportion of root N as spring flush leaves, but they imported a lower proportion of root C. This lower import of reserve C suggests that, after defoliation, leaf re-flush rely more heavily on current photosynthate, which may explain the reduced leaf mass recovery of re-flush canopies (31% of initial leaf mass). The reduced reliance on reserves occurred even though roots retained significant starch concentrations (~5% dry wt), suggesting aspen prioritizes the maintenance of root reserves at the expense of fast canopy recovery.

3.
Tree Physiol ; 40(7): 928-942, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32268379

ABSTRACT

A mechanistic understanding of how trees balance the trade-offs between growth, storage and defense is limited but crucial for predicting tree responses to abiotic and biotic stresses. Here we investigated how trees allocate storage of non-structural carbohydrates (NSC) to growth and constitutive and induced secondary metabolites (SM). We exposed Norway spruce (Picea abies) saplings to 5 weeks of complete darkness to induce light and/or carbon limitation and then applied methyl jasmonate (MeJA) to simulate biotic attack. We measured changes in biomass, NSC (sum of soluble sugars and starches), and constitutive and induced SM (sum of phenolic compounds and terpenoids) in current-year developing and previous-year mature needles and branches, as well as volatiles emitted from the canopy. Under darkness, NSC storage was preferentially used for constitutive biosynthesis of monoterpenes rather than biosynthesis of stilbenes and growth of developing organs, while SM stored in mature organs cannot be remobilized and recycled. Furthermore, MeJA-induced production of SM was constrained by low NSC availability in developing organs but not in mature organs grown in the dark. Emissions of volatiles were suppressed in the dark but after 1 h of re-illumination, emissions of both constitutive and induced monoterpene hydrocarbons recovered rapidly, whereas emissions of linalool and sesquiterpene produced via de novo synthesis did not recover. Our results highlight that light and/or carbon limitation may constrain constitutive and JA-induced biosynthesis of SM in coordination with growth, NSC storage and mobilization.


Subject(s)
Picea , Carbon , Norway , Terpenes , Trees
SELECTION OF CITATIONS
SEARCH DETAIL