Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Am J Med Genet A ; 191(1): 112-119, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36282026

ABSTRACT

Most chromosomal aberrations revealed by chromosomal microarray testing (CMA) are simple; however, very complex chromosomal structural rearrangements can also be found. Although the mechanism of structural rearrangements has been gradually revealed, not all mechanisms have been elucidated. We analyzed the breakpoint-junctions (BJs) of two or more clustered copy number variations (CNVs) in the same chromosome arms to understand their conformation and the mechanism of complex structural rearrangements. Combining CMA with long-read whole-genome sequencing (WGS) analysis, we successfully determined all BJs for the clustered CNVs identified in four patients. Multiple CNVs were intricately intertwined with each other, and clustered CNVs in four patients were involved in global complex chromosomal rearrangements. The BJs of two clustered deletions identified in two patients showed microhomologies, and their characteristics were explained by chromothripsis. In contrast, the BJs in the other two patients, who showed clustered deletions and duplications, consisted of blunt-end and nontemplated insertions. These findings could be explained only by alternative nonhomologous end-joining, a mechanism related to polymerase theta. All the patients had at least one inverted segment. Three patients showed cryptic aberrations involving a disruption and a deletion/duplication, which were not detected by CMA but were first identified by WGS. This result suggested that complex rearrangements should be considered if clustered CNVs are observed in the same chromosome arms. Because CMA has potential limitations in genotype-phenotype correlation analysis, a more detailed analysis by whole genome examination is recommended in cases of suspected complex structural aberrations.


Subject(s)
DNA Copy Number Variations , Genome, Human , Humans , DNA Copy Number Variations/genetics , Gene Rearrangement/genetics , Chromosome Aberrations , Sequence Analysis
2.
Biotechnol Lett ; 44(9): 1063-1072, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35918621

ABSTRACT

AIM: To investigate the impact of deficiency of LIG4 gene on site-specific integration in CHO cells. RESULTS: CHO cells are considered the most valuable mammalian cells in the manufacture of biological medicines, and genetic engineering of CHO cells can improve product yield and stability. The traditional method of inserting foreign genes by random integration (RI) requires multiple rounds of screening and selection, which may lead to location effects and gene silencing, making it difficult to obtain stable, high-yielding cell lines. Although site-specific integration (SSI) techniques may overcome the challenges with RI, its feasibility is limited by the very low efficiency of the technique. Recently, SSI efficiency has been enhanced in other mammalian cell types by inhibiting DNA ligase IV (Lig4) activity, which is indispensable in DNA double-strand break repair by NHEJ. However, this approach has not been evaluated in CHO cells. In this study, the LIG4 gene was knocked out of CHO cells using CRISPR/Cas9-mediated genome editing. Efficiency of gene targeting in LIG4-/--CHO cell lines was estimated by a green fluorescence protein promoterless reporter system. Notably, the RI efficiency, most likely mediated by NHEJ in CHO, was inhibited by LIG4 knockout, whereas SSI efficiency strongly increased 9.2-fold under the precise control of the promoter in the ROSA26 site in LIG4-/--CHO cells. Moreover, deletion of LIG4 had no obvious side effects on CHO cell proliferation. CONCLUSIONS: Deficiency of LIG4 represents a feasible strategy to improve SSI efficiency and suggests it can be applied to develop and engineer CHO cell lines in the future.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CHO Cells , CRISPR-Cas Systems/genetics , Cricetinae , Cricetulus , DNA End-Joining Repair/genetics , DNA Ligase ATP/genetics
3.
Adv Exp Med Biol ; 1275: 71-100, 2021.
Article in English | MEDLINE | ID: mdl-33539012

ABSTRACT

Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.


Subject(s)
Telomere , Telomeric Repeat Binding Protein 2 , Animals , Ataxia Telangiectasia Mutated Proteins , DNA Damage , DNA End-Joining Repair , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism
4.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681628

ABSTRACT

The processing of DNA double-strand breaks (DSBs) depends on the dynamic characteristics of chromatin. To investigate how abrupt changes in chromatin compaction alter these dynamics and affect DSB processing and repair, we exposed irradiated cells to hypotonic stress (HypoS). Densitometric and chromosome-length analyses show that HypoS transiently decompacts chromatin without inducing histone modifications known from regulated local chromatin decondensation, or changes in Micrococcal Nuclease (MNase) sensitivity. HypoS leaves undisturbed initial stages of DNA-damage-response (DDR), such as radiation-induced ATM activation and H2AX-phosphorylation. However, detection of ATM-pS1981, γ-H2AX and 53BP1 foci is reduced in a protein, cell cycle phase and cell line dependent manner; likely secondary to chromatin decompaction that disrupts the focal organization of DDR proteins. While HypoS only exerts small effects on classical nonhomologous end-joining (c-NHEJ) and alternative end-joining (alt-EJ), it markedly suppresses homologous recombination (HR) without affecting DNA end-resection at DSBs, and clearly enhances single-strand annealing (SSA). These shifts in pathway engagement are accompanied by decreases in HR-dependent chromatid-break repair in the G2-phase, and by increases in alt-EJ and SSA-dependent chromosomal translocations. Consequently, HypoS sensitizes cells to ionizing radiation (IR)-induced killing. We conclude that HypoS-induced global chromatin decompaction compromises regulated chromatin dynamics and genomic stability by suppressing DSB-processing by HR, and allowing error-prone processing by alt-EJ and SSA.


Subject(s)
Chromatin/metabolism , DNA End-Joining Repair/drug effects , Homologous Recombination/drug effects , Hypotonic Solutions/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/radiation effects , Cell Line , Cell Proliferation/drug effects , Chromatin/chemistry , DNA Breaks, Double-Stranded/radiation effects , DNA End-Joining Repair/radiation effects , Histones/metabolism , Homologous Recombination/radiation effects , Humans , Hypotonic Solutions/chemistry , RNA Interference , RNA, Small Interfering/metabolism , Rad52 DNA Repair and Recombination Protein/antagonists & inhibitors , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Radiation, Ionizing
5.
Neuropathol Appl Neurobiol ; 46(4): 375-390, 2020 06.
Article in English | MEDLINE | ID: mdl-31628877

ABSTRACT

AIMS: Accumulating studies have suggested that base excision repair (BER) is the major repair pathway of oxidative DNA damage in neurons, and neurons are deficient in other DNA repair pathways, including nucleotide excision repair and homologous recombination repair. However, some studies have demonstrated that neurons could efficiently repair glutamate- and menadione-induced double-strand breaks (DSBs), suggesting that the DSB repair mechanisms might be implicated in neuronal health. In this study, we hypothesized that BER and nonhomologous end joining (NHEJ) work together to repair oxidative DNA damage in neurons. METHODS: Immunohistochemistry and confocal microscopy were employed to examine the colocalization of apyrimidinic endonuclease 1 (APE1), histone variant 2AX (γH2AX) and phosphorylated p53-binding protein (53BP1). APE1 inhibitor and shRNA were respectively applied to suppress APE1 activity and protein expression to determine the correlation of APE1 and DSB formation. The neutral comet assay was used to determine and quantitate the formation of DSB. RESULTS: Both γH2AX and 53BP1 were upregulated and colocalized with APE1 in the nuclei of rat cortical neurons subjected to menadione-induced oxidative insults. Phospho53BP1 foci were efficiently abolished, but γH2AX foci persisted following the suppression of APE1 activity. Comet assays demonstrated that the inhibition of APE1 decreased the DSB formation. CONCLUSIONS: Our results indicate that APE1 can engage the NHEJ mechanism in the repair of oxidative DNA damage in neurons. These findings provide insights into the mechanisms underlying the efficient repair of oxidative DNA damage in neurons despite the high oxidative burden.


Subject(s)
DNA Damage/genetics , DNA End-Joining Repair/genetics , DNA Repair/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Neurons/metabolism , Animals , Cells, Cultured , Oxidative Stress/genetics , Rats , Rats, Sprague-Dawley
6.
Strahlenther Onkol ; 195(7): 648-658, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30997540

ABSTRACT

BACKGROUND: We examined the expression of nonhomologous end-joining (NHEJ) proteins by breast cancer cells in patients with or without ipsilateral breast tumor recurrence (IBTR) after breast-conserving therapy. We also investigated whether there was a difference of NHEJ-related protein expression by tumor cells between two types of IBTR, i.e., true recurrence (TR) with regrowth from the tumor bed or development of a new primary tumor (NP). PATIENTS AND METHODS: The original cohort comprised 560 breast cancer patients who received breast-conserving therapy between February 1995 and March 2006, including 520 patients without IBTR and 40 patients with IBTR. Propensity score matching was employed to select 40 trios (120 patients) consisting of 1 patient with IBTR and 2 patients without IBTR. Immunohistochemical examination of proteins related to NHEJ was performed in surgical specimens. RESULTS: The 40 patients with IBTR included 22 patients who developed TR and 18 who had NP. The 15-year overall survival rate was 85.9% for patients with NP and 95.5% for those with TR, while it was 96.5% for patients without IBTR. Patients with high XRCC4 expression in tumor cells had significantly higher IBTR rates than those with low XRCC4 expression (P < 0.001). The frequency of TR was significantly higher in patients with high expression of XRCC4 than in those with low XRCC4 expression (p < 0.001). XRCC4 expression by tumor cells was not significantly related to development of NP. CONCLUSION: IBTR due to TR may be related to low radiosensitivity of tumor cells, possibly related to high XRCC4 expression.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/surgery , Carcinoma, Ductal/genetics , Carcinoma, Lobular/genetics , DNA-Binding Proteins/genetics , Mastectomy, Segmental , Neoplasm Recurrence, Local/genetics , Adult , Aged , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Carcinoma, Ductal/mortality , Carcinoma, Ductal/pathology , Carcinoma, Lobular/mortality , Carcinoma, Lobular/pathology , Cohort Studies , Female , Humans , Middle Aged , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/mortality , Neoplasms, Second Primary/pathology , Prognosis , Propensity Score , Survival Rate
7.
Hematol Oncol ; 37(4): 474-482, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31325181

ABSTRACT

LncRNAs play critical roles in various pathophysiological and biological processes, such as protein translation, RNA splicing, and epigenetic modification. Indeed, abundant evidences demonstrated that lncRNA act as competing endogenous RNAs (ceRNAs) to participate in tumorigenesis. However, little is known about the underlying function of lncRNA in nonhomologous end joining (NHEJ) pathway 1 (LINP1) in pediatric and adolescent acute myeloid leukemia (AML). The expression of LINP1 was examined in AML patient samples by qRT-PCR. Cell proliferation was examined by CCK-8 and Edu assays. ß-Galactosidase senescence assay, mGlucose uptake assay, lactate production assay, and Gene Ontology (GO) analysis were performed for functional analysis. We found that LINP1 was significantly overexpressed in AML patients at diagnosis, whereas downregulated after complete remission (CR). Furthermore, knockdown of LINP1 expression remarkably suppressed glucose uptake and AML cell maintenance. Mechanistically, LINP1 was found to inhibit the glucose metabolism by suppressing the expression of HNF4a. Both LINP1 and HNF4a knockdown reduced the expression levels of AMPK phosphorylation and WNT5A, indicating for the first time that LINP1 strengthened the HNF4a-AMPK/WNT5A signaling pathway involved in cell glucose metabolism modulation and AML cell survival. Taken together, our results indicated that LINP1 promotes the malignant phenotype of AML cells and stimulates glucose metabolism, which can be regarded as a potential prognostic marker and therapeutic target for AML.


Subject(s)
Adenylate Kinase/physiology , Hepatocyte Nuclear Factor 4/physiology , Leukemia, Myeloid, Acute/genetics , RNA, Long Noncoding/physiology , RNA, Neoplasm/physiology , Signal Transduction/physiology , Wnt-5a Protein/physiology , Adolescent , Animals , Bone Marrow/pathology , Cell Division , Child , Gene Expression Regulation, Leukemic , Gene Knockdown Techniques , Gene Ontology , Glucose/metabolism , Hepatocyte Nuclear Factor 4/biosynthesis , Hepatocyte Nuclear Factor 4/genetics , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Purpura, Thrombocytopenic, Idiopathic/metabolism , RNA Interference , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , RNA, Small Interfering/genetics , Random Allocation , Remission Induction , Signal Transduction/genetics , THP-1 Cells
8.
Semin Cell Dev Biol ; 54: 177-87, 2016 06.
Article in English | MEDLINE | ID: mdl-26880205

ABSTRACT

During meiosis, numerous DNA double-strand breaks (DSBs) are formed as part of the normal developmental program. This seemingly destructive behavior is necessary for successful meiosis, since repair of the DSBs through homologous recombination (HR) helps to produce physical links between the homologous chromosomes essential for correct chromosome segregation later in meiosis. However, DSB formation at such a massive scale also introduces opportunities to generate gross chromosomal rearrangements. In this review, we explore ways in which meiotic DSBs can result in such genomic alterations.


Subject(s)
Genomic Instability , Germ Cells/metabolism , Animals , Chromothripsis , DNA Breaks, Double-Stranded , Gene Rearrangement/genetics , Humans , Meiosis/genetics
9.
New Phytol ; 214(4): 1712-1721, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28245065

ABSTRACT

In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.


Subject(s)
Arabidopsis/genetics , DNA Breaks, Double-Stranded , DNA Repair/physiology , Genome, Plant , Hordeum/genetics , Capsella/genetics , DNA End-Joining Repair , Genome Size , Mutation , Sequence Deletion
10.
Nucleus ; 15(1): 2296243, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38146123

ABSTRACT

DNA double-strand break (DSB) is the most dangerous type of DNA damage, which may lead to cell death or oncogenic mutations. Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are two typical DSB repair mechanisms. Recently, many studies have revealed that liquid-liquid phase separation (LLPS) plays a pivotal role in DSB repair and response. Through LLPS, the crucial biomolecules are quickly recruited to damaged sites with a high concentration to ensure DNA repair is conducted quickly and efficiently, which facilitates DSB repair factors activating downstream proteins or transmitting signals. In addition, the dysregulation of the DSB repair factor's phase separation has been reported to promote the development of a variety of diseases. This review not only provides a comprehensive overview of the emerging roles of LLPS in the repair of DSB but also sheds light on the regulatory patterns of phase separation in relation to the DNA damage response (DDR).


Subject(s)
DNA Breaks, Double-Stranded , Phase Separation , DNA Repair , Homologous Recombination , DNA/genetics
11.
Synth Syst Biotechnol ; 8(4): 584-596, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37711546

ABSTRACT

To improve the performance of yeast cell factories for industrial production, extensive CRISPR-mediated genome editing systems have been applied by artificially creating double-strand breaks (DSBs) to introduce mutations with the assistance of intracellular DSB repair. Diverse strategies of DSB repair are required to meet various demands, including precise editing or random editing with customized gRNAs or a gRNA library. Although most yeasts remodeling techniques have shown rewarding performance in laboratory verification, industrial yeast strain manipulation relies only on very limited strategies. Here, we comprehensively reviewed the molecular mechanisms underlying recent industrial applications to provide new insights into DSB cleavage and repair pathways in both Saccharomyces cerevisiae and other unconventional yeast species. The discussion of DSB repair covers the most frequently used homologous recombination (HR) and nonhomologous end joining (NHEJ) strategies to the less well-studied illegitimate recombination (IR) pathways, such as single-strand annealing (SSA) and microhomology-mediated end joining (MMEJ). Various CRISPR-based genome editing tools and corresponding gene editing efficiencies are described. Finally, we summarize recently developed CRISPR-based strategies that use optimized DSB repair for genome-scale editing, providing a direction for further development of yeast genome editing.

12.
ACS Infect Dis ; 9(12): 2494-2503, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37955405

ABSTRACT

The emergence of virulent, resistant, and rapidly evolving fungal pathogens poses a significant threat to public health, agriculture, and the environment. Targeting cellular processes with standard small-molecule intervention may be effective but requires long development times and is prone to antibiotic resistance. To overcome the current limitations of antibiotic development and treatment, this study harnesses CRISPR-Cas systems as antifungals by capitalizing on their adaptability, specificity, and efficiency in target design. The conventional design of CRISPR-Cas antimicrobials, based on induction of DNA double-strand breaks (DSBs), is potentially less effective in fungi due to robust eukaryotic DNA repair machinery. Here, we report a novel design principle to formulate more effective CRISPR-Cas antifungals by cotargeting essential genes with DNA repair defensive genes that remove the fungi's ability to repair the DSB sites of essential genes. By evaluating this design on the model fungus Saccharomyces cerevisiae, we demonstrated that essential and defensive gene cotargeting is more effective than either essential or defensive gene targeting alone. The top-performing CRISPR-Cas antifungals performed as effectively as the antibiotic Geneticin. A gene cotargeting interaction analysis revealed that cotargeting essential genes with RAD52 involved in homologous recombination (HR) was the most synergistic combination. Fast growth kinetics of S. cerevisiae induced resistance to CRISPR-Cas antifungals, where genetic mutations mostly occurred in defensive genes and guide RNA sequences.


Subject(s)
Antifungal Agents , CRISPR-Cas Systems , Antifungal Agents/pharmacology , Saccharomyces cerevisiae/genetics , RNA, Guide, CRISPR-Cas Systems , DNA Repair , Anti-Bacterial Agents
13.
Front Genet ; 13: 887088, 2022.
Article in English | MEDLINE | ID: mdl-35923694

ABSTRACT

Cells assemble compartments around DNA double-strand breaks (DSBs). The assembly of this compartment is dependent on the phosphorylation of histone H2AX, the binding of MDC1 to phosphorylated H2AX, and the assembly of downstream signaling and repair components. The decision on whether to use homologous recombination or nonhomologous end-joining repair depends on competition between 53BP1 and BRCA1. A major point of control appears to be DNA replication and associated changes in the epigenetic state. This includes dilution of histone H4 dimethylation and an increase in acetylation of lysine residues on H2A and H4 that impair 53BP1 binding. In this article, we examined more closely the spatial relationship between 53BP1 and BRCA1 within the cell cycle. We find that 53BP1 can associate with early S-phase replicated chromatin and that the relative concentration of BRCA1 in DSB-associated compartments correlates with increased BRCA1 nuclear abundance as cells progress into and through S phase. In most cases during S phase, both BRCA1 and 53BP1 are recruited to these compartments. This occurs for both IR-induced DSBs and breaks targeted to an integrated LacO array through a LacI-Fok1-mCherry fusion protein. Having established that the array system replicates this heterogeneity, we further examined the spatial relationship between DNA repair components. This enabled us to precisely locate the DNA containing the break and map other proteins relative to that DNA. We find evidence for at least three subcompartments. The damaged DNA, single-stranded DNA generated from end resection of the array, and nuclease CtIP all localized to the center of the compartment. BRCA1 and 53BP1 largely occupied discrete regions of the focus. One of BRCA1 or 53BP1 overlaps with the array, while the other is more peripherally located. The array-overlapping protein occupied a larger volume than the array, CtIP, or single-stranded DNA (ssDNA). Rad51 often occupied a much larger volume than the array itself and was sometimes observed to be depleted in the array volume where the ssDNA exclusively localizes. These results highlight the complexity of molecular compartmentalization within DSB repair compartments.

14.
Genes (Basel) ; 13(1)2021 12 22.
Article in English | MEDLINE | ID: mdl-35052363

ABSTRACT

8-oxo-guanine (8OG) is a common base lesion, generated by reactive oxygen species, which has been associated with human diseases such as cancer, aging-related neurodegenerative disorders and atherosclerosis. 8OG is highly mutagenic, due to its dual-coding potential it can pair both with adenine or cytidine. Therefore, it creates a challenge for DNA polymerases striving to correctly replicate and/or repair genomic or mitochondrial DNA. Numerous structural studies provide insights into the mechanistic basis of the specificity of 8OG bypass by DNA polymerases from different families. Here, we focus on how repair polymerases from Family X (Pols ß, λ and µ) engage DNA substrates containing the oxidized guanine. We review structures of binary and ternary complexes for the three polymerases, which represent distinct steps in their catalytic cycles-the binding of the DNA substrate and the incoming nucleotide, followed by its insertion and extension. At each of these steps, the polymerase may favor or exclude the correct C or incorrect A, affecting the final outcome, which varies depending on the enzyme.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/metabolism , DNA-Directed DNA Polymerase/metabolism , Catalytic Domain/genetics , DNA/genetics , DNA/metabolism , DNA Repair/genetics , DNA Replication/genetics , DNA-Directed DNA Polymerase/genetics , Humans
15.
J Allergy Clin Immunol Pract ; 9(2): 723-732.e3, 2021 02.
Article in English | MEDLINE | ID: mdl-32818697

ABSTRACT

BACKGROUND: The introduction of newborn screening for severe combined immunodeficiencies (NBS SCID) in 2010 was a significant public health milestone. Although SCID was the primary target, several other conditions associated with severe T-cell lymphopenia have subsequently been identified as secondary targets. The differential diagnosis in infants with an abnormal T-cell receptor excision circle result on NBS SCID who do not meet criteria for typical SCID is often broad, and often the evaluation of these conditions requires immunological and functional testing, in conjunction with genetic analysis, to obtain an accurate diagnosis and develop an appropriate management and treatment plan. OBJECTIVE: We describe here 3 infants identified by NBS SCID, who required additional workup as they did not have a typical SCID phenotype and meet the relevant diagnostic criteria. Genetic testing identified pathogenic variants in ATM in all 3 patients, and the pathogenicity of the variants was confirmed by a functional flow cytometry assay. METHODS: The patients underwent immunological and genetic workup to identify an underlying cause of their abnormal NBS SCID. Ataxia telangiectasia (AT) was suspected based on clinical and family history, and immunological analyses. The diagnosis was confirmed in all patients with a rapid functional flow cytometric assay and genetic testing. RESULTS: A rapid functional flow cytometry assay was used as a diagnostic and confirmatory tool, in conjunction with genetic testing, to make a diagnosis of AT. Experimental validation of the causal relationship between genotype and phenotype allowed for expeditious diagnosis, which facilitated early discussions with families regarding prognosis, treatment, and management. CONCLUSIONS: Even with increased rapidity and access to genetic results, functional testing is required for clinical diagnosis in infants identified by NBS SCID who do not fit into the classic categories or have novel genetic variants to confirm the diagnosis. Consideration should be given to the use of functional assays as an essential component of an integrated evaluation to characterize the genetics and mechanisms of inborn errors of immunity.


Subject(s)
Ataxia Telangiectasia , Severe Combined Immunodeficiency , Ataxia Telangiectasia/diagnosis , Ataxia Telangiectasia/genetics , DNA Repair , Genetic Testing , Humans , Infant , Infant, Newborn , Neonatal Screening , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics
16.
Biomolecules ; 10(2)2020 01 30.
Article in English | MEDLINE | ID: mdl-32019147

ABSTRACT

The catalytic active site of the Polymerization Domain (PolDom) of bacterial Ligase D is designed to promote realignments of the primer and template strands and extend mispaired 3' ends. These features, together with the preferred use of ribonucleotides (NTPs) over deoxynucleotides (dNTPs), allow PolDom to perform efficient double strand break repair by nonhomologous end joining when only a copy of the chromosome is present and the intracellular pool of dNTPs is depleted. Here, we evaluate (i) the role of conserved histidine and serine/threonine residues in NTP insertion, and (ii) the importance in the polymerization reaction of a conserved lysine residue that interacts with the templating nucleotide. To that extent, we have analyzed the biochemical properties of variants at the corresponding His651, Ser768, and Lys606 of Pseudomonas aeruginosa PolDom (Pa-PolDom). The results show that preferential insertion of NMPs is principally due to the histidine that also contributes to the plasticity of the active site to misinsert nucleotides. Additionally, Pa-PolDom Lys606 stabilizes primer dislocations. Finally, we show that the active site of PolDom allows the efficient use of 7,8-dihydro-8-oxo-riboguanosine triphosphate (8oxoGTP) as substrate, a major nucleotide lesion that results from oxidative stress, inserting with the same efficiency both the anti and syn conformations of 8oxoGMP.


Subject(s)
Bacterial Proteins/chemistry , DNA-Directed DNA Polymerase/chemistry , Ligases/metabolism , Ribonucleotides/chemistry , Amino Acid Sequence , Catalytic Domain , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Repair , Guanosine Triphosphate/chemistry , Histidine/chemistry , Kinetics , Lysine/chemistry , Mutagenesis, Site-Directed , Mutation , Nucleotides/chemistry , Protein Binding , Protein Conformation , Pseudomonas aeruginosa/enzymology , Threonine/chemistry
17.
Methods Mol Biol ; 1960: 23-40, 2019.
Article in English | MEDLINE | ID: mdl-30798518

ABSTRACT

Transgenic mouse models can be subdivided into two main categories based on genomic location: (1) targeted genomic manipulation and (2) random integration into the genome. Despite the potential confounding insertional mutagenesis and host locus-dependent expression, random integration transgenics allowed for rapid in vivo assessment of gene/protein function. Since precise genomic manipulation required the time-consuming prerequisite of first generating genetically modified embryonic stem cells, the rapid nature of generating random integration transgenes remained a strong benefit outweighing various disadvantages. The advent of targetable nucleases, such as CRISPR/Cas9, has eliminated the prerequisite of first generating genetically modified embryonic stem cells for some types of targeted genomic mutations. This chapter outlines the generation of mouse models with targeted genomic manipulation using the CRISPR/Cas9 system directly into single cell mouse embryos.


Subject(s)
CRISPR-Cas Systems/physiology , Embryo, Mammalian/metabolism , Animals , CRISPR-Cas Systems/genetics , DNA End-Joining Repair/genetics , DNA End-Joining Repair/physiology , Gene Editing , Mice , Mice, Transgenic
18.
Methods Mol Biol ; 1917: 3-24, 2019.
Article in English | MEDLINE | ID: mdl-30610624

ABSTRACT

Remarkable progress in the development of technologies for sequence-specific modification of primary DNA sequences has enabled the precise engineering of crops with novel characteristics. These programmable sequence-specific modifiers include site-directed nucleases (SDNs) and base editors (BEs). Currently, these genome editing machineries can be targeted to specific chromosomal locations to induce sequence changes. However, the sequence mutation outcomes are often greatly influenced by the type of DNA damage being generated, the status of host DNA repair machinery, and the presence and structure of DNA repair donor molecule. The outcome of sequence modification from repair of DNA double-strand breaks (DSBs) is often uncontrollable, resulting in unpredictable sequence insertions or deletions of various sizes. For base editing, the precision of intended edits is much higher, but the efficiency can vary greatly depending on the type of BE used or the activity of the endogenous DNA repair systems. This article will briefly review the possible DNA repair pathways present in the plant cells commonly used for generating edited variants for genome engineering applications. We will discuss the potential use of DNA repair mechanisms for developing and improving methodologies to enhance genome engineering efficiency and to direct DNA repair processes toward the desired outcomes.


Subject(s)
DNA, Plant/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , DNA End-Joining Repair/physiology , DNA Repair/genetics , DNA Repair/physiology , Gene Editing , Genetic Engineering , Genome, Plant/genetics
19.
Methods Mol Biol ; 1864: 295-310, 2019.
Article in English | MEDLINE | ID: mdl-30415344

ABSTRACT

With ever-increasing genomic information combined with modern tools for genome modification, we are entering a new era of plant biotechnology. One major tool used for genome modification is the zinc finger nuclease (ZFN). Here, we discuss how ZFNs have proven useful in many genome modification applications. In order to remove the function of a gene or genes, targeted mutagenesis using ZFNs has been readily demonstrated creating numerous gene knockouts, and gene deletion has been demonstrated with removal of gene segments both native and transgenic up to 9 Mb. Applications for gain of function have also been demonstrated. Precision gene editing using ZFNs has resulted in the development of herbicide tolerance, and numerous forms of targeted gene addition have been exhibited. In addition to genome modification, this chapter also describes the use of zinc finger protein transcription factors (ZFP-TFs) for gene regulation in order to provide useful modification of gene expression resulting in altered phenotypes.


Subject(s)
Biotechnology/methods , Gene Editing/methods , Genetic Engineering/methods , Zinc Finger Nucleases/metabolism , Biotechnology/instrumentation , Gain of Function Mutation/genetics , Gene Deletion , Gene Editing/instrumentation , Gene Expression Regulation, Plant/genetics , Gene Knock-In Techniques/instrumentation , Gene Knock-In Techniques/methods , Genetic Engineering/instrumentation , Genome, Plant/genetics , Zinc Finger Nucleases/genetics
20.
Methods Mol Biol ; 1769: 231-251, 2018.
Article in English | MEDLINE | ID: mdl-29564828

ABSTRACT

The highly complex structural genome variations chromothripsis, chromoanasynthesis, and chromoplexy are subsumed under the term chromoanagenesis, which means chromosome rebirth. Precipitated by numerous DNA double-strand breaks, they differ in number of and distances between breakpoints, associated copy number variations, order and orientation of segments, and flanking sequences at joining points. Results from patients with the autosomal dominant cancer susceptibility disorder Li-Fraumeni syndrome implicated somatic TP53 mutations in chromothripsis. TP53 participates in the G2/M phase checkpoint, halting cell cycling after premature chromosome compaction during the second half of the S phase, thus preventing chromosome shattering. By experimental TP53 ablation and micronucleus induction, one or a few isolated chromosomes underwent desynchronized replication and chromothripsis. Secondly, chromothripsis occurred after experimental induction of telomere crisis after which dicentric chromosomes sustained TREX1-mediated resolution of chromosome bridges and kataegis. Third, DNA polymerase Polθ-dependent chromothripsis has been documented. Finally, a family with chromothripsis after L1 element-dependent retrotransposition and Alu/Alu homologous recombination has been reported. Human chromosomal instability syndromes share defects in responses to DNA double-strand breaks, characteristic cell cycle perturbations, elevated rates of micronucleus formation, premature chromosome compaction, and apoptosis. They are also associated with elevated susceptibility to malignant disease, such as medulloblastomas and gliomas in ataxia-telangiectasia, leukemia and lymphoma in Bloom syndrome, and osteosarcoma and soft tissue sarcoma in Werner syndrome. The latter syndrome is characterized by a premature aging-like progressive decline of mesenchymal tissues. In all thus far studied cases, constitutional chromothripsis occurred in the male germline and male patients with defects in the double-strand break response genes ATM, MRE11, BLM, LIG4, WRN, and Ku70 show impaired fertility. Conceivably, chromothripsis may, in a stochastic rather than deterministic way, be implicated in germline structural variation, malignant disease, premature aging, genome mosaicism in somatic tissues, and male infertility.


Subject(s)
Chromothripsis , DNA-Binding Proteins/metabolism , Genes , Signal Transduction , Animals , Cell Cycle/genetics , DNA Breaks, Double-Stranded , DNA Repair , Germ Cells , Humans , Mice , Micronuclei, Chromosome-Defective , Mutation , Retroelements , Telomere/genetics , Telomere/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL