Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Environ Manage ; 342: 118322, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37311346

ABSTRACT

There is an urgent need for developing eco-friendly adsorbents for dye wastewater treatment with high efficiency and low cost. Meanwhile, organoclay has received an increasing attention as a natural adsorbent for dye removal. However, no comprehensive investigation has been conducted to evaluate the feasibility of this approach in terms of operation cost and removal efficiency. In this research, we intend to answer this question: could organoclay be used as an efficient and cost-effective approach for dye wastewater treatment? In line with that, after characterization of the Na-bentonite and modified clay by using SEM, EDX, FTIR and XRD, the performance of the organoclay was optimized in terms of AO7 dye removal efficiency and adsorption cost using response surface methods (RSM). Then, the organoclay performance was compared with other typical adsorbents activated carbon and chitosan. The characterization results proved that Na-bentonite was successfully modified by CTAB. According to RSM results, the maximum dye removal of 95% and the minimum adsorption cost of 0.009 $/g were achieved under optimum conditions of: pH: 5, AO7 concentration: 56 mg/L, contact time: 53 min and organoclay dosage: 0.8 g/L. While, in the case of other adsorbents of Na-bentonite, chitosan and activated carbon the maximum removal of 11%, 84% and 92% were achieved with 0.0136, 0.0324 and 0.1011 $/g, respectively. The adsorption kinetics and isotherms analyses revealed that the experimental data fitted well with the pseudo-second-order (R2 = 0.993) and Langmuir (R2 = 0.988). This study proved that organoclay can be used as a promising adsorbent for dye removal with low cost and high removal efficiency.


Subject(s)
Chitosan , Water Pollutants, Chemical , Water Purification , Bentonite , Wastewater , Charcoal , Cost-Benefit Analysis , Water Purification/methods , Adsorption , Kinetics , Hydrogen-Ion Concentration
2.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012432

ABSTRACT

Polymer/layered silicate composites have gained huge attention in terms of research and industrial applications. Traditional nanocomposites contain particles regularly dispersed in a polymer matrix. In this work, a strategy for the formation of a composite thin film on the surface of a polycaprolactone (PCL) matrix was developed. In addition to the polymer, the composite layer was composed of the particles of saponite (Sap) modified with alkylammonium cations and functionalized with methylene blue. The connection between the phases of modified Sap and polymer was achieved by fusing the chains of molten polymer into the Sap film. The thickness of the film of several µm was confirmed using electron microscopy and X-ray tomography. Surfaces of precursors and composite materials were analyzed in terms of structure, composition, and surface properties. The penetration of polymer chains into the silicate, thus joining the phases, was confirmed by chemometric analysis of spectral data and changes in some properties upon PCL melting. Ultimately, this study was devoted to the spectral properties and photoactivity of methylene blue present in the ternary composite films. The results provide directions for future research aimed at the development of composite materials with photosensitizing, photodisinfection, and antimicrobial surfaces.


Subject(s)
Methylene Blue , Polymers , Polyesters/chemistry , Polymers/chemistry , Silicates/chemistry
3.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432190

ABSTRACT

Linseed oil-based composite films were prepared with cinnamaldehyde (Cin) using a modified clay (organoclay) through in situ polymerization, which is the result of the interaction between Cin and organoclay. The incorporation of organoclay reduces the polymer chain's mobility and, therefore, increases the thermal stability of the composite films. In some experimental conditions, the clay is located both inside and on the surface of the film, thus, affecting the mechanical and thermal properties as well as the surface properties of the composite films. The incorporation of organoclay decreases the water contact angle of the composite film by more than 15%, whatever the amount of cinnamaldehyde. However, the incorporation of cinnamaldehyde has the opposite effect on film surface properties. Indeed, for the water vapor permeability (WVP), the effect of cinnamaldehyde on the film barrier properties is much higher in the presence of organoclay. The incorporation of hydrophobic compounds into the polymer films reduces the water content, which acts as a plasticizer and, therefore, decreases the WVP by more than 17%. Linseed oil has a natural antioxidant activity (~97%) due to the higher content of unsaturated fatty acids, and this activity increased with the amount of organoclay and cinnamaldehyde.


Subject(s)
Linseed Oil , Polymers , Polymerization , Clay , Polymers/chemistry , Steam
4.
Mikrochim Acta ; 188(2): 36, 2021 01 09.
Article in English | MEDLINE | ID: mdl-33420843

ABSTRACT

An amperometric sensor based on an inkjet-printed graphene electrode (IPGE) modified with amine-functionalized montmorillonite (Mt-NH2) for the electroanalysis and quantification of gentisic acid (GA) has been developed. The organoclay used as IPGE modifier was prepared and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, CHN elemental analysis, and thermogravimetry. The electrochemical features of the Mt-NH2/IPGE sensor were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibited charge selectivity ability which was exploited for the electrochemical oxidation of GA. The GA amperometric response was high in acidic medium (Brinton-Robinson buffer, pH 2) due to favorable interactions between the protonated amine groups and the negatively charged GA. Kinetic studies were also performed by cyclic voltammetry, and the obtained electron transfer rate constant of 11.3 s-1 indicated a fast direct electron transfer rate of GA to the electrode. An approach using differential pulse voltammetry was then developed for the determination of GA (at + 0.233 V vs. a pseudo Ag/Ag+ reference electrode), and under optimized conditions, the sensor showed high sensitivity, a wide working linear range from 1 to 21 µM (R2 = 0.999), and a low detection limit of 0.33 µM (0.051 ± 0.01 mg L-1). The proposed sensor was applied to quantify GA in a commercial red wine sample. The simple and rapid method developed using a cheap clay material could be employed for the determination of various phenolic acids.


Subject(s)
Bentonite/chemistry , Gentisates/analysis , Graphite/chemistry , Electrochemical Techniques/methods , Electrodes , Gentisates/chemistry , Limit of Detection , Oxidation-Reduction , Printing , Wine/analysis
5.
Contact Dermatitis ; 82(5): 307-309, 2020 May.
Article in English | MEDLINE | ID: mdl-31879957

ABSTRACT

Patch tests are highly recommended in eczema patients with eyelid involvement. Sunscreen constitutes a potential cause of eyelid or facial allergic contact dermatitis, and should be considered in patients with refractory eczema on these locations. We report a patient sensitized to several emerging allergens such as bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), Scutellaria baicalensis extract, and propylene glycol with an eyelid dermatitis. Patch tests to the combined ingredients propylene carbonate, cyclopentasiloxane, and disteardimonium hectorite; and talc, Cl 77 491, and dimethicone/methicone copolymer were also positive. We highlight the importance of systematically patch testing with the cosmetics brought in by our patients, as well as with the individual ingredients whenever positive. The identification of emerging allergies to new compounds in cosmetics mainly depends on this practice.


Subject(s)
Dermatitis, Allergic Contact/etiology , Eyelid Diseases/chemically induced , Phenols/adverse effects , Plant Extracts/adverse effects , Propylene Glycol/adverse effects , Triazines/adverse effects , Adult , Female , Humans , Patch Tests , Scutellaria baicalensis
6.
J Environ Manage ; 216: 257-262, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-28372833

ABSTRACT

In this study, the stabilization of tannery sludge, which produced during the physico-chemical treatment of tannery wastewaters, was examined by the addition of ladle furnace slag. Moreover, the simultaneous addition of organoclay and ladle furnace slag for the stabilization of tannery sludge was also examined. Chromium and dissolved organic carbon in the leachate of raw tannery sludge, using the EN 12457-2 standard leaching test, were found to exceed the limit values for disposal in non-hazardous and even in hazardous waste landfills, according to the EU Decision 2003/33/EC. Tannery waste (air-dried sludge) was mixed with ladle furnace slag and water or ladle furnace slag, organoclay and water at different ratios, in order to study the stabilization of chromium and organic compounds. The mixtures were left for one week aging and then they were subjected to the standard leaching test EN 12457-2. The leachate of tannery waste stabilized with ladle furnace slag showed Cr concentrations below the respective regulation limit value for disposal in non-hazardous waste landfills; however, the dissolved organic carbon cannot meet the respective limit value. On the other hand, the leachate of tannery waste stabilized with a mixture of ladle furnace slag and organoclay, using 30:50:20 mass ratio, presented both Cr and dissolved organic carbon concentrations below the regulation limit values for disposal in non-hazardous waste landfills. Moreover, this leachate was further subjected to ecotoxicity test, using the Vibrio fischeri photo-bacterium. The leachate of stabilized tannery waste showed reduced ecotoxicity, in comparison with the toxicity effect of the leachate of the untreated tannery waste.


Subject(s)
Industrial Waste , Sewage , Wastewater , Chromium , Hazardous Waste
7.
Macromol Rapid Commun ; 38(3)2017 Feb.
Article in English | MEDLINE | ID: mdl-28009078

ABSTRACT

This article surveys the decade of progress accomplished in the application of isoconversional methods to thermally stimulated processes in polymers. The processes of interest include: crystallization and melting of polymers, gelation of polymer solutions and gel melting, denaturation (unfolding) of proteins, glass transition, polymerization and crosslinking (curing), and thermal and thermo-oxidative degradation. Special attention is paid to the kinetics of polymeric nanomaterials. The article discusses basic principles for understanding the variations in the activation energy and emphasizes the possibility of using models for linking such variations to the parameters of individual kinetic steps. It is stressed that many kinetic effects are not linked to a change in the activation energy alone and may arise from changes in the preexponential factor and reaction model. Also noted is that some isoconversional methods are inapplicable to processes taking place on cooling and cannot be used to study such processes as the melt crystallization.


Subject(s)
Polymers/chemistry , Kinetics , Nanostructures/chemistry , Oxidation-Reduction , Polymers/chemical synthesis , Temperature
8.
Mikrochim Acta ; 185(1): 80, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29594508

ABSTRACT

This work introduces a new gradient fiber coating for microextraction of chlorobenzenes. Nanoclusters of organoclay-Cu(II) on a copper wire were fabricated by wireless electrofunctionalization. The resultant gradient coatings are more robust, and thermally and mechanically stable. Wireless electrofunctionalization was carried out in a bipolar cell under a constant deposition potential and using an ethanolic electrolyte solution containing stearic acid and montmorillonite. Stearic acid acts as an inexpensive and green coating while montmorillonite acts as a modifier to impart thermal stability. The gradient morphology of the nanoclusters was investigated by scanning electron microscopy, thermogravimetric analysis and energy dispersive X-ray spectroscopy. The coated wire was placed in a hollow needle and used for headspace in-tube microextraction (HS-ITME) of chlorobenzenes (CBs). Effects of various parameters affecting synthesis and extraction were optimized. Following extraction, the needles were directly inserted into the GC injector, and the CBs (chlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, 1,2,3,4-tetrachlorobenzene) were quantified by GC-MS. The limits of detection under optimized conditions range from 0.5 to 10 ng.L-1. The intra- and inter-day relative standard deviations (RSDs) (for n = 10, 5 respectively) using a single fiber are 6-10 and 10-15%, respectively. The fiber-to-fiber RSDs (for n = 3) is between 17 and 24%. The method was successfully applied to the extraction of CBs from real water samples, and relative recoveries are between 91 and 110%. Graphical abstract A gradient coating of organoclay-Cu nanoclusters was fabricated on a copper wire by wireless electrofunctionalization. The oxidation of copper takes place at the anodic pole (red) while dissolved oxygen in ethanol solution is reduced at the cathodic pole (blue).

9.
J Microencapsul ; 34(1): 10-20, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27901355

ABSTRACT

This work presents the synthesis and characterisation of intercalated nanocomposites (NCs) from dispersed water solution blends of octadecyl amine-montmorillonite (ODA-MMT) (NC-0), folic acid (FA) conjugated ODA-MMT (NC-1) and Ag-MMT clay as a stable silver carrying agent (NC-2). The composition, chemical/physical and morphology of NCs with in situ intercalating nanostructures were investigated. Effect of organoclay, FA and Ag-MMT on L929 fibroblast (control), human colon carcinoma (DLD-1) cell lines, and the cytotoxicity, apoptosis and necrosis degree were estimated via WST-1/hemocytometric, double staining (as a ribonuclease A enzyme based method) and fluorescence microscopy methods in a dose-dependent manner. The mentioned cell lines integrated with NCs resulted in remarkable change in both morphology and nuclei of DLD-1 and fibroblast cells by apoptosis analysis. The number of necrotic cells were remarkably increased, as the toxic effects of nanocomposite nanoparticles were applied to both cell lines. Finally, the molecular mechanism of anticancer action of functionalised organoclays was elucidated.


Subject(s)
Antineoplastic Agents/administration & dosage , Bentonite/chemistry , Drug Carriers/chemistry , Folic Acid/chemistry , Nanoparticles/chemistry , Silver/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Colon/drug effects , Colon/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Silver/pharmacology
10.
J Environ Sci Health B ; 52(8): 584-599, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28494222

ABSTRACT

The incorporation of xenobiotics into soil, especially via covalent bonds or sequestration has a major influence on the environmental behavior including toxicity, mobility, and bioavailability. The incorporation mode of 4-chloro-2-methylphenoxyacetic acid (MCPA) into organo-clay complexes has been investigated under a low (8.5 mg MCPA/kg soil) and high (1000 mg MCPA/kg soil) applied concentration, during an incubation period of up to 120 days. Emphasis was laid on the elucidation of distinct covalent linkages between non-extractable MCPA residues and humic sub-fractions (humic acids, fulvic acids, and humin). The cleavage of compounds by a sequential chemical degradation procedure (OH-, BBr3, RuO4, TMAH thermochemolysis) revealed for both concentration levels ester/amide bonds as the predominate incorporation modes followed by ether linkages. A possible influence of the soil microbial activity on the mode of incorporation could be observed in case of the high level samples. Structure elucidation identified MCPA as the only nonextractable substance, whereas the metabolite 4-chloro-2-methylphenol was additionally found as bioavailable and bioaccessible compound.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid/chemistry , Soil Pollutants/chemistry , 2-Methyl-4-chlorophenoxyacetic Acid/metabolism , Aluminum Silicates/chemistry , Benzopyrans/chemistry , Biodegradation, Environmental , Clay , Cresols/chemistry , Germany , Herbicides/chemistry , Herbicides/metabolism , Humic Substances , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism
11.
Waste Manag Res ; 33(5): 453-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25750055

ABSTRACT

In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment.


Subject(s)
Electronic Waste/analysis , Plastics/analysis , Polymers/analysis , Recycling/methods , Waste Management/methods , Plastics/chemistry , Polymers/chemistry
12.
J Environ Manage ; 144: 197-202, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24956464

ABSTRACT

The role of organoclays in hydrocarbon removal during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The clays used for this study were Na-montmorillonite and saponite. These two clays were treated with didecyldimethylammonium bromide to produce organoclays which were used in this study. The study indicated that clays with high cation exchange capacity (CEC) such as Na-montmorillonite produced an organomontmorillonite that was inhibitory to biodegradation of the crude oil hydrocarbons. Extensive hydrophobic interaction between the organic phase of the organoclay and the crude oil hydrocarbons is suggested to render the hydrocarbons unavailable for biodegradation. However, untreated Na-montmorillonite was stimulatory to biodegradation of the hydrocarbons and is believed to have done so because of its high surface area for the accumulation of microbes and nutrients making it easy for the microbes to access the nutrients. This study indicates that unlike unmodified montmorillonites, organomontmorillonite may not serve any useful purpose in the bioremediation of crude oil spill sites where hydrocarbon removal by biodegradation is desired within a rapid time period.


Subject(s)
Aluminum Silicates/chemistry , Bacteria/metabolism , Environmental Restoration and Remediation/methods , Hydrocarbons/metabolism , Minerals/chemistry , Petroleum/metabolism , Biodegradation, Environmental , Clay
13.
Anal Sci ; 40(8): 1421-1428, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38727928

ABSTRACT

Combination of organoclay sorption with manganese(IV) oxide (MnO2) catalyzed catechol oxidation was studied for the removal of a dicarboximide fungicide, iprodione, from water. Iprodion in water was sorbed on didodecyldimethylammonium bromide (DDAB)-modified montmorillonite (MT) organoclay and converted into the degraded product, 3,5-dichloroaniline (DCA). The degree of sorption increased by the modification with DDAB, because of the formation of a hydrophobic region for the incorporation of iprodione and negligibly interfered by coexisting MnO2. The half-life for the degradation of irodione in water at 25 °C was 7 days, whreas it reduced to 15 min in the organoclay. The activation energy, 65.4 ± 4.8 kJ mol-1, for the first-order reaction in the aqueous solution (pH 7.0) decreased to 43.9 ± 1.8 kJ mol-1 in the organoclay, indicating the catalytic activity of the organoclay that accelerates the hydrolysis reaction of iprodione. In the coexistence of appropriate amounts of MnO2 and catechol, the degraded product, DCA, reacted with oxidized products of catechol to form a water-insoluble precipitate and was successfully eliminated from water. The results obtained in the present study strongly suggest the applicability of the combined method of organoclay sorption method and MnO2-catalyzed oxidation for the diffusion control of toxic agrochemicals.

14.
Sci Total Environ ; 939: 173501, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38797398

ABSTRACT

Biochars and organoclays have been proposed as efficient adsorbents to reduce the mobility of agrochemicals in soils. However, following their application to soils, these adsorbents undergo changes in their physicochemical properties over time due to their interaction with soil components. In this study, the adsorption capacity of a commercial biochar and a commercial organoclay for the antibiotic sulfamethoxazole (SFMX) and the pesticide ethofumesate (ETFM) was evaluated over aging periods of 3 months in the laboratory and 1 year in the field, subsequent to their application to a Mediterranean soil. The results showed that the adsorption of SFMX and ETFM in the soil amended with the adsorbents was greater than in the unamended soil, but for both chemicals, adsorption decreased with aging of the adsorbents in the soil. Characterization of the adsorbents before and after aging revealed physical blocking of adsorption sites by soil components. The loss of adsorption capacity of the adsorbents upon aging led to higher leaching of SFMX and ETFM in the soil containing field-aged adsorbents, although leaching remained lower than in unamended soil. Our findings reveal that, under the Mediterranean environment studied, the efficacy of the studied materials as adsorbents is maintained to a considerable extent for at least one year after their field application, which would have positive implications in their use for attenuating the dispersion of agricultural contaminants in the environment.


Subject(s)
Charcoal , Soil Pollutants , Soil , Sulfamethoxazole , Sulfamethoxazole/chemistry , Charcoal/chemistry , Adsorption , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/chemistry , Clay/chemistry
15.
Gels ; 10(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920951

ABSTRACT

The aim of this work was to synthesize and study the functional properties of polymer-clay nanocomposite (PCNCs) based on poly(sodium 4-styrene sulfonate) (NaPSS) and two types of clay in the dispersed phase: bentonite and kaolinite, in order to advance in the development of new geomimetic materials for agricultural and environmental applications. In this study, the effect of adding high concentrations of clay (10-20 wt. %) on the structural and functional properties of a polymer-clay nanocomposite was evaluated. The characterization by infrared spectroscopy made it possible to show that the PCNCs had a hybrid nature structure through the identification of typical vibration bands of the clay matrix and NaPSS. In addition, scanning electron microscopy allowed us to verify its hybrid composition and an amorphous particle-like morphology. The thermal characterization showed degradation temperatures higher than ~300 °C with Tg values higher than 100 °C and variables depending on the clay contents. In addition, the PCNCs showed a high water-retention capacity (>2900%) and cation exchange capacity (>112 meq/100 g). Finally, the results demonstrated the ability of geomimetic conditioners to mimic the structure and functional properties of soils, suggesting their potential application in improving soil quality for plant growth.

16.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930397

ABSTRACT

Modified clays with organic molecules have many applications, such as the adsorption of pollutants, catalysts, and drug delivery systems. Different methodologies for intercalating these structures with organic moieties can be found in the literature with many purposes. In this paper, a new methodology of modifying Sodium Montmorillonite clays (Na-Mt) with a faster drying time was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET, and thermogravimetric analysis (TG and DTG). In the modification process, a mixture of ethyl alcohol, DMSO, and Na-Mt were kept under magnetic stirring for one hour. Statistical analysis was applied to evaluate the effects of the amount of DMSO, temperature, and sonication time on the modified clay (DMSO-SMAT) using a 23-factorial design. XRD and FTIR analyses showed the DMSO intercalation into sodium montmorillonite Argel-T (SMAT). An average increase of 0.57 nm for the interplanar distance was found after swelling with DMSO intercalation. BET analysis revealed a decrease in the surface area (from 41.8933 m2/g to 2.1572 m2/g) of Na-Mt when modified with DMSO. The porosity increased from 1.74 (SMAT) to 1.87 nm (DMSO-SMAT) after the application of the methodology. Thermal analysis showed a thermal stability for the DMSO-SMAT material, and this was used to calculate the DMSO-SMAT formula of Na[Al5Mg]Si12O30(OH)6 · 0.54 DMSO. Statistical analysis showed that only the effect of the amount of DMSO was significant for increasing the interlayer space of DMSO-SMAT. In addition, at room temperature, the drying time of the sample using this methodology was 30 min.

17.
Nanomaterials (Basel) ; 14(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39269047

ABSTRACT

This study focuses on polyamide 6/organo-modified montmorillonite (PA6/OMMT) nanocomposites as potential liner materials, given the growing interest in enhancing the performance of type IV composite overwrapped hydrogen storage pressure vessels. The mechanical properties of PA6/OMMT composites with varying filler concentrations were investigated across a temperature range relevant to hydrogen storage conditions (-40 °C to +85 °C). Liner collapse, a critical issue caused by rapid gas discharge, was analyzed using an Ishikawa diagram to identify external and internal factors. Mechanical testing revealed that higher OMMT content generally increased stiffness, especially at elevated temperatures. The Young's modulus and first yield strength exhibited non-linear temperature dependencies, with 1 wt. per cent OMMT content enhancing yield strength at all tested temperatures. Dynamic mechanical analysis (DMA) indicated that OMMT improves the storage modulus, suggesting effective filler dispersion, but it also reduces the toughness and heat resistance, as evidenced by lower glass transition temperatures. This study underscores the importance of optimizing OMMT content to balance mechanical performance and thermal stability for the practical application of PA6/OMMT nanocomposites in hydrogen storage pressure vessels.

18.
Polymers (Basel) ; 16(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125183

ABSTRACT

Pultruded fiber reinforced polymer composites used in civil, power, and offshore/marine applications use fillers as resin extenders and for process efficiency. Although the primary use of fillers is in the form of an extender and processing aid, the appropriate selection of filler can result in enhancing mechanical performance characteristics, durability, and multifunctionality. This is of special interest in structural and high voltage applications where the previous use of specific fillers has been at levels that are too low to provide these enhancements. This study investigates the use of montmorillonite organoclay fillers of three different particle sizes as substitutes for conventional CaCO3 fillers with the intent of enhancing mechanical performance and hygrothermal durability. The study investigates moisture uptake and kinetics and reveals that uptake is well described by a two-stage process that incorporates both a diffusion dominated initial phase and a second slower phase representing relaxation and deterioration. The incorporation of the organoclay particles substantially decreases uptake levels in comparison to the use of CaCO3 fillers while also enhancing stage I, diffusion, dominated stability, with the use of the 1.5 mm organoclay fillers showing as much as a 41.5% reduction in peak uptake as compared to the CaCO3 fillers at the same 20% loading level (by weight of resin). The mechanical performance was characterized using tension, flexure, and short beam shear tests. The organoclay fillers showed a significant improvement in each, albeit with differences due to particle size. Overall, the best performance after exposure to four different temperatures of immersion in deionized water was shown by the 4.8 mm organoclay filler-based E-glass/vinylester composite system, which was the only one to have less than a 50% deterioration over all characteristics after immersion for a year in deionized water at the highest temperature investigated (70 °C). The fillers not only enhance resistance to uptake but also increase tortuosity in the path, thereby decreasing the overall effect of uptake. The observations demonstrate that the use of the exfoliated organoclay particles with intercalation, which have been previously used in very low amounts, and which are known to be beneficial in relation to enhanced thermal stability, flame retardancy, and decreased flammability, provide enhanced mechanical characteristics, decreased moisture uptake, and increased hygrothermal durability when used at particle loading levels comparable to those of conventional fillers, suggesting that these novel systems could be considered for critical structural applications.

19.
Polymers (Basel) ; 16(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276681

ABSTRACT

Polymer clay nanocomposites, which can exhibit many superior properties compared to virgin polymers, have gained increasing interest and importance in recent years. This study aimed to prepare composites of two organoclays with unusual ratios and different degrees of lyophilicity with low-density polyethylene and compare their textural structures and thermal and mechanical properties with those of virgin polymer. For this purpose, firstly, organoclays, hydrophobic and superhydrophobic organoclays (OC and SOC), were prepared by solution intercalation method using cetyltrimethylammonium bromide with and without addition of a hydrocarbon substance. Then, using both organoclays, polyethylene organoclay composites were prepared and characterized using X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR) techniques. Additionally, tensile and hardness tests were performed to determine the mechanical properties of the composites, and differential scanning calorimetry (DSC) thermograms were taken to examine their thermal behavior. XRD patterns and HRTEM images of hydrophobic and superhydrophobic organoclays and the composites show that the characteristic smectite peak of the clay shifts to the left and expands, that is, the interlayer space widens and, in the composites, it deforms immediately at low clay ratios. HRTEM images of the composites prepared especially with low clay ratios indicate that a heterogeneous dispersion of clay platelets occurs, indicating that nanocomposite formation has been achieved. On the contrary, in the composites prepared with high clay ratios, this dispersion behavior partially turns into aggregation. In the composites prepared using up to 20% by weight of superhydrophobic organoclay, extremely stable and continuous improvements in all mechanical properties were observed compared to those of the composites prepared using hydrophobic organoclay. This indicates that by using superhydrophobic organoclay, a ductile nanocomposite of polyethylene containing inorganic components in much higher than usual proportions can be prepared.

20.
J Hazard Mater ; 442: 130107, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36303347

ABSTRACT

Water pollution by toxic organic dyes is one of the most critical health and environmental problems worldwide. By means of molecular dynamics method, the present work aims to evaluate the applicability of montmorillonite (Mt) modified by hexadecyltrimethylammonium cations (HDTMA+) compared to unmodified Na-Mt for the adsorption of cationic methylene blue (MB) dye. The results showed that the adsorption energy of MB on both HDTMA-Mt and Na-Mt absorbent ranged from - 100 to - 250 kJ/mol, indicating the effectiveness of two types of adsorbents in dye water treatment. The highest adsorption energy was found at w = 50% in each adsorbent system. Adsorption mechanisms of MB depend on molecular orientations, which is influenced by the surfactant and water content. The adsorption mechanism of MB is chemisorption dominated by strong electrostatic interaction between CH3 groups of MB and oxygen atoms of Mt surfaces. Besides, physisorption also plays a minor role in MB orientations. It is found that the existence of cationic surfactants can slightly improve the adsorption capacity of MB only at higher water content through enlarging the interlayer space of Mt and reducing mobility of MB. However, there will be a negative impact on the reduction of adsorption sites for dyes especially at low water content. Our results provide a possible application for swelling clay minerals being a promising adsorbent for dyes-surfactants co-existing wastewater treatment.


Subject(s)
Bentonite , Water Pollutants, Chemical , Adsorption , Coloring Agents , Surface-Active Agents , Cations , Methylene Blue
SELECTION OF CITATIONS
SEARCH DETAIL