Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 24(8): e56227, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37341148

ABSTRACT

Hypoxia can occur in pancreatic ß-cells in type 2 diabetes. Although hypoxia exerts deleterious effects on ß-cell function, the associated mechanisms are largely unknown. Here, we show that the transcriptional repressor basic helix-loop-helix family member e40 (BHLHE40) is highly induced in hypoxic mouse and human ß-cells and suppresses insulin secretion. Conversely, BHLHE40 deficiency in hypoxic MIN6 cells or ß-cells of ob/ob mice reverses defects in insulin secretion. Mechanistically, BHLHE40 represses the expression of Mafa, encoding the transcription factor musculoaponeurotic fibrosarcoma oncogene family A (MAFA), by attenuating the binding of pancreas/duodenum homeobox protein 1 (PDX1) to its enhancer region. Impaired insulin secretion in hypoxic ß-cells was recovered by MAFA re-expression. Collectively, our work identifies BHLHE40 as a key hypoxia-induced transcriptional repressor in ß-cells that inhibit insulin secretion by suppressing MAFA expression.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Mice , Humans , Animals , Insulin Secretion , Insulin/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Insulin-Secreting Cells/metabolism , Pancreas/metabolism , Mice, Inbred Strains , Hypoxia/genetics , Hypoxia/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
2.
Biochem Biophys Res Commun ; 733: 150596, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39197196

ABSTRACT

PURPOSE: The high morbidity and mortality associated with type 2 diabetes mellitus (T2DM) pose a significant global health challenge, necessitating the development of more efficient anti-diabetic drugs with fewer side effects. This study investigated the intervention of vitamin D3 combined with glibenclamide in rats with T2DM to elucidate its effects on pancreatic ß-cells through the NF-κB pathway. METHODS: Twenty-four healthy male Sprague-Dawley (SD) rats were randomly assigned to four groups: the control group (CG), the model group (MG), the glibenclamide group (GG), and the glibenclamide + vitamin D3 group (GDG). After inducing the T2DM model using high-fat and high-sugar diet and intraperitoneal injection of streptozotocin, the rats in the GG group were administered glibenclamide orally (0.6 mg/kg/day), while those in the GDG group received both glibenclamide (0.6 mg/kg/day) and vitamin D3 (500 IU/kg/day) in corn oil for a duration of 8 weeks. Biochemical indices were measured, and histopathological changes in pancreatic tissue and islet ß cells were observed using hematoxylin and eosin staining. The expression of pancreatic nuclear factor κB (NF-κB), islet ß-cells, and inflammatory cytokines were assessed using the TUNEL method and PCR. RESULTS: According to the data from this current study, the GDG group showed significant positive differences in plasma biochemical indices, as well as in the expression of ß cells, NF-κB p65, TNF-α, IL-1ß, INF-γ, and Fas, compared to the GG and CG groups (P < 0.05). CONCLUSION: The results suggest that vitamin D has beneficial effects on T2DM by improving the functions of islet ß cells through inhibition of the NF-κB signaling pathway. Therefore, it is suggested that vitamin D supplementation, when used alongside antidiabetic drugs, may more effectively prevent and treat T2DM.

3.
Arch Biochem Biophys ; 755: 109982, 2024 May.
Article in English | MEDLINE | ID: mdl-38570110

ABSTRACT

Diabetes mellitus (DM) is a group of chronic metabolic disorders characterized by persistent hyperglycemia. In our study, we analyzed the level and location of RAP1 changes in the development of ß-cell dysfunction induced by glucotoxicity. We employed three pancreatic ß-cell lines, namely INS-1, 1.2B4, and NIT-1, as well as a streptozotocin-induced diabetes rat model. We demonstrate that after high glucose treatment, RAP1 is increased, probably through induction by AKT, allowing RAP1 to shuttle from the nucleus to the cytoplasm and activate NF-κB signaling. Furthermore, non-enzymatic post-translational modifications of RAP1, such as advanced glycation end products and carbonylation may affect the function of RAP1, such as activation of the NF-κB signaling. Taken together, we showed that RAP1 is a new player in the mechanism of glucotoxicity in pancreatic ß-cells.

4.
Mol Cell Biochem ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642274

ABSTRACT

Loss and functional failure of pancreatic ß-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for ß-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional ß-cells. In this review, we first introduce the development of functional ß-cells and their heterogeneity and then turn to highlight recent advances in the generation of ß-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.

5.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000139

ABSTRACT

Epinephrine influences the function of pancreatic ß-cells, primarily through the α2A-adrenergic receptor (α2A-AR) on their plasma membrane. Previous studies indicate that epinephrine transiently suppresses insulin secretion, whereas prolonged exposure induces its compensatory secretion. Nonetheless, the impact of epinephrine-induced α2A-AR signaling on the survival and function of pancreatic ß-cells, particularly the impact of reprogramming after their removal from sustained epinephrine stimulation, remains elusive. In the present study, we applied MIN6, a murine insulinoma cell line, with 3 days of high concentration epinephrine incubation and 2 days of standard incubation, explored cell function and activity, and analyzed relevant regulatory pathways. The results showed that chronic epinephrine incubation led to the desensitization of α2A-AR and enhanced insulin secretion. An increased number of docked insulin granules and impaired Syntaxin-2 was found after chronic epinephrine exposure. Growth curve and cell cycle analyses showed the inhibition of cell proliferation. Transcriptome analysis showed the occurrence of endoplasmic reticulum stress (ER stress) and oxidative stress, such as the presence of BiP, CHOP, IRE1, ATF4, and XBP, affecting cellular endoplasmic reticulum function and survival, along with UCP2, OPA1, PINK, and PRKN, associated with mitochondrial dysfunction. Consequently, we conclude that chronic exposure to epinephrine induces α2A-AR desensitization and leads to ER and oxidative stress, impairing protein processing and mitochondrial function, leading to modified pancreatic ß-cell secretory function and cell fate.


Subject(s)
Endoplasmic Reticulum Stress , Epinephrine , Insulin-Secreting Cells , Insulin , Oxidative Stress , Animals , Epinephrine/pharmacology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Oxidative Stress/drug effects , Mice , Endoplasmic Reticulum Stress/drug effects , Insulin/metabolism , Insulin Secretion/drug effects , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, alpha-2/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Signal Transduction/drug effects , Mitochondria/metabolism , Mitochondria/drug effects
6.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673770

ABSTRACT

Type 2 diabetes is a chronic disease marked by hyperglycemia; impaired insulin secretion by pancreatic ß-cells is a hallmark of this disease. Recent studies have shown that hypoxia occurs in the ß-cells of patients with type 2 diabetes and hypoxia, in turn, contributes to the insulin secretion defect and ß-cell loss through various mechanisms, including the activation of hypoxia-inducible factors, induction of transcriptional repressors, and activation of AMP-activated protein kinase. This review focuses on advances in our understanding of the contribution of ß-cell hypoxia to the development of ß-cell dysfunction in type 2 diabetes. A better understanding of ß-cell hypoxia might be useful in the development of new strategies for treating type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Animals , Disease Progression , Cell Hypoxia , Insulin Secretion , Hypoxia/metabolism , Insulin/metabolism
7.
Medicina (Kaunas) ; 60(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39202492

ABSTRACT

Abelmoschus manihot (L.) Medic flower (AMf) exhibits both nutritional value and bioactivities such as antioxidative, anti-inflammatory, neuroprotective, cardioprotective, and hepatoprotective effects. The aim of this investigation was to examine the potential impact of three different solvent extracts of AMf: supercritical CO2 extraction extract, water extract, and ethanol extract (AME), on management of diabetes. All three extracts demonstrated significant inhibitory effects on α-glucosidase (IC50 = 157-261 µg/mL) and lipase (IC50 = 401-577 µg/mL) activities while enhancing the α-amylase activity (32.4-41.8 folds at 200 µg/mL). Moreover, all three extracts exhibited notable inhibition of the formation of advanced glycation end-products, including the Amadori products (inhibition rates = 15.7-36.6%) and the dicarbonyl compounds (inhibition rates = 18.6-28.3%). Among the three extracts, AME exhibited the most pronounced inhibitory effect. AME displayed substantial in vitro and intracellular antioxidative activity, and effectively reduced ROS production (135% at 500 µg/mL) in ß-cells under hyperglycemic (HG) conditions. AME also enhanced the activity and gene expression of antioxidant enzymes, which were markedly decreased in the HG-induced ß-cells. Furthermore, AME protected ß-cell viability and maintained normal insulin secretion under HG conditions, likely due to its ability to reduce oxidative stress within ß-cells. This study demonstrated the potential of AME in preventing and managing diabetes and its associated complications. Further in vivo research is necessary to thoroughly elucidate the preventive effects and their underlying mechanisms.


Subject(s)
Abelmoschus , Flowers , Hypoglycemic Agents , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Flowers/chemistry , Abelmoschus/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Animals , Rats
8.
J Cell Biochem ; 124(9): 1309-1323, 2023 09.
Article in English | MEDLINE | ID: mdl-37555250

ABSTRACT

Prolonged administration of dexamethasone, a potent anti-inflammatory drug, can lead to steroid-induced diabetes. Imatinib, a medication commonly prescribed for chronic myeloid leukemia (CML), has been shown to improve diabetes in CML patients. Our recent study demonstrated that dexamethasone induces pancreatic ß-cell apoptosis by upregulating the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5). We hypothesized that imatinib may protect against dexamethasone-induced pancreatic ß-cell apoptosis by reducing the expression of TRAIL and DR5, thereby favorably modulating downstream effectors in apoptotic pathways. We test this hypothesis by assessing the effects of imatinib on dexamethasone-induced apoptosis in rat insulinoma cell line cells. As anticipated, dexamethasone treatment led to increased TRAIL and DR5 expression, as well as an elevation in superoxide production. Conversely, expression of the TRAIL decoy receptor (DcR1) was decreased. Moreover, key effectors in the extrinsic and intrinsic apoptosis pathways, such as B-cell lymphoma 2 (BCL-2) associated X (BAX), nuclear factor kappa B (NF-κb), P73, caspase 8, and caspase 9, were upregulated, while the antiapoptotic protein BCL-2 was downregulated. Interestingly and importantly, imatinib at a concentration of 10 µM reversed the effect of dexamethasone on TRAIL, DR5, DcR1, superoxide production, BAX, BCL-2, NF-κB, P73, caspase 3, caspase 8, and caspase 9. Similar effects of imatinib on dexamethasone-induced TRAIL and DR5 expression were also observed in isolated mouse islets. Taken together, our findings suggest that imatinib protects against dexamethasone-induced pancreatic ß-cell apoptosis by reducing TRAIL and DR5 expression and modulating downstream effectors in the extrinsic and intrinsic apoptosis pathways.


Subject(s)
NF-kappa B , Superoxides , Animals , Mice , Rats , Apoptosis , bcl-2-Associated X Protein/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Dexamethasone/pharmacology , Imatinib Mesylate/pharmacology , Ligands , NF-kappa B/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Superoxides/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Am J Physiol Endocrinol Metab ; 324(1): E97-E113, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36383639

ABSTRACT

Glucagon-secreting pancreatic α-cells play pivotal roles in the development of diabetes. Glucagon promotes insulin secretion from ß-cells. However, the long-term effect of glucagon on the function and phenotype of ß-cells had remained elusive. In this study, we found that long-term glucagon intervention or glucagon intervention with the presence of palmitic acid downregulated ß-cell-specific markers and inhibited insulin secretion in cultured ß-cells. These results suggested that glucagon induced ß-cell dedifferentiation under pathological conditions. Glucagon blockage by a glucagon receptor (GCGR) monoclonal antibody (mAb) attenuated glucagon-induced ß-cell dedifferentiation. In primary islets, GCGR mAb treatment upregulated ß-cell-specific markers and increased insulin content, suggesting that blockage of endogenous glucagon-GCGR signaling inhibited ß-cell dedifferentiation. To investigate the possible mechanism, we found that glucagon decreased FoxO1 expression. FoxO1 inhibitor mimicked the effect of glucagon, whereas FoxO1 overexpression reversed the glucagon-induced ß-cell dedifferentiation. In db/db mice and ß-cell lineage-tracing diabetic mice, GCGR mAb lowered glucose level, upregulated plasma insulin level, increased ß-cell area, and inhibited ß-cell dedifferentiation. In aged ß-cell-specific FoxO1 knockout mice (with the blood glucose level elevated as a diabetic model), the glucose-lowering effect of GCGR mAb was attenuated and the plasma insulin level, ß-cell area, and ß-cell dedifferentiation were not affected by GCGR mAb. Our results proved that glucagon induced ß-cell dedifferentiation under pathological conditions, and the effect was partially mediated by FoxO1. Our study reveals a novel cross talk between α- and ß-cells and is helpful to understand the pathophysiology of diabetes and discover new targets for diabetes treatment.NEW & NOTEWORTHY Glucagon-secreting pancreatic α-cells can interact with ß-cells. However, the long-term effect of glucagon on the function and phenotype of ß-cells has remained elusive. Our new finding shows that long-term glucagon induces ß-cell dedifferentiation in cultured ß-cells. FoxO1 inhibitor mimicks whereas glucagon signaling blockage by GCGR mAb reverses the effect of glucagon. In type 2 diabetic mice, GCGR mAb increases ß-cell area, improves ß-cell function, and inhibits ß-cell dedifferentiation, and the effect is partially mediated by FoxO1.


Subject(s)
Diabetes Mellitus, Experimental , Insulins , Mice , Animals , Receptors, Glucagon/metabolism , Glucagon/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Cell Dedifferentiation , Mice, Knockout , Insulin/metabolism , Forkhead Box Protein O1
10.
Mol Biol Rep ; 50(2): 1311-1320, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36454432

ABSTRACT

BACKGROUND: Oxidative stress is known to impair cellular functions and, therefore, plays a significant role in the pathophysiology of various diseases, including diabetes. The persistently elevated glucose levels may cause enhanced mitochondrial reactive oxygen species generation, which in turn can damage the pancreatic ß-cells. In this study, we have investigated the effect of vanillic acid on preventing H2O2-induced ß-cells death and retaining its insulin secretion potentiating effect in the presence of H2O2. METHODS: The insulin secretion from the BRIN-BD11 cells was quantified using ELISA-based assays. The viability of the cells was assessed by estimated by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) colorimetric assay and DAPI staining. The expression levels of apoptotic and antioxidant proteins were estimated by western blot experiments. RESULTS: Vanillic acid protected pancreatic ß-cells viability and function under the H2O2 oxidative stress condition. The Erk1/2 activation appears to play an important role in vanillic acid potentiated insulin secretion and protection of the ß-cells in the presence of H2O2. Vanillic acid pretreated cells exhibited enhanced expression of antioxidant enzymes such as catalase and SOD-2 and reduced the expression of proapoptotic markers such as BAX and BAD. In addition, it also enhanced the expression of oxidative stress-sensitive transcription factor Nrf-2 and cell survival protein Akt. CONCLUSION: The present study shows that vanillic acid potentiates insulin secretion and protects pancreatic ß-cells from H2O2-induced oxidative stress.


Subject(s)
Antioxidants , Insulin-Secreting Cells , Antioxidants/pharmacology , Antioxidants/metabolism , Insulin Secretion , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/metabolism , Vanillic Acid/pharmacology , Apoptosis , Oxidative Stress , Reactive Oxygen Species/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism
11.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982731

ABSTRACT

Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven ß-cell loss or by the progressive loss of ß-cell function, due to continued metabolic stresses. Although both α- and ß-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect ß-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two ß-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-ßH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-ßH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced ß-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-ßH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in ß-cells, participating both in cellular processes related to ß-cell physiology and in fostering survival against pro-apoptotic insults.


Subject(s)
Cytokines , Insulin-Secreting Cells , Animals , Humans , Rats , Apoptosis/genetics , Cell Line , Cytokines/metabolism , Insulin-Secreting Cells/metabolism , Palmitates/pharmacology , Palmitates/metabolism
12.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614256

ABSTRACT

Pancreatic ß-cells synthesize and secrete insulin. A key feature of diabetes mellitus is the loss of these cells. A decrease in the number of ß-cells results in decreased biosynthesis of insulin. Increasing the number of ß-cells should restore adequate insulin biosynthesis leading to adequate insulin secretion. Therefore, identifying proteins that regulate the number of ß-cells is a high priority in diabetes research. In this review article, we summerize the results of three sophisticated transgenic mouse models showing that the transcription factors Elk-1 and Egr-1 and the Ca2+/calmodulin-regulated protein phosphatase calcineurin control the formation of sufficiently large pancreatic islets. Impairment of the biological activity of Egr-1 and Elk-1 in pancreatic ß-cells leads to glucose intolerance and dysregulation of glucose homeostasis, the process that maintains glucose concentration in the blood within a narrow range. Transgenic mice expressing an activated calcineurin mutant also had smaller islets and showed hyperglycemia. Calcineurin induces dephosphorylation of Elk-1 which subsequently impairs Egr-1 biosynthesis and the biological functions of Elk-1 and Egr-1 to regulate islet size and glucose homeostasis.


Subject(s)
Calcineurin , Islets of Langerhans , Mice , Animals , Calcineurin/genetics , Calcineurin/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism , Mice, Transgenic , Glucose/metabolism , Homeostasis
13.
Semin Cell Dev Biol ; 103: 68-75, 2020 07.
Article in English | MEDLINE | ID: mdl-31948775

ABSTRACT

Diabetes is a serious, costly, and major health problem worldwide. Whereas diabetes could be alleviated by medication, this disease could not be fully cured at the present time due to the lack of effective therapeutic treatment for ß-cell loss and/or dysfunction. Increased ß-cell mass or volume could be achieved via differentiation of embryonic stem (ES) cells or pluripotent stem cells or through ß-cell renewal, including proliferation, redifferentiation, and transdifferentiation. Data cumulated over the past several years suggest that increased ß-cell dedifferentiation plays a crucial role in the progression of diabetes, shedding new light on potential targets for ß-cell replacement therapy. In this review, we summarize current views on ß-cell dedifferentiation, redifferentiation, and transdifferentiation. We also discuss potential mechanisms regulating these key processes to maintain ß-cell homeostasis. Understanding pancreatic ß-cell differentiation and dedifferentiation could be provide important information on developing effective strategies to cure diabetes.


Subject(s)
Cell Dedifferentiation/physiology , Cell Differentiation/physiology , Cell Transdifferentiation/physiology , Cell Proliferation , Humans
14.
J Cell Physiol ; 237(2): 1119-1142, 2022 02.
Article in English | MEDLINE | ID: mdl-34636428

ABSTRACT

Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic ß-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in ß-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards ß-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in ß-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved ß-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Amyloid/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/genetics , Islet Amyloid Polypeptide/metabolism , Islets of Langerhans/metabolism
15.
Am J Physiol Endocrinol Metab ; 323(6): E467-E479, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459047

ABSTRACT

Preptin is a 34-amino acid peptide derived from the E-peptide of pro-insulin-like growth factor 2 and is co-secreted with insulin from ß-cells. Little is understood about the effects of endogenous preptin on whole body glucose metabolism. We developed a novel mouse model in which the preptin portion of Igf2 was genetically ablated in all tissues, hereafter referred to as preptin knockout (KO), and tested the hypothesis that the removal of preptin will lead to a decreased insulin response to a metabolic challenge. Preptin KO and wild-type (WT) mice underwent weekly fasting blood glucose measurements, intraperitoneal insulin tolerance tests (ITT) at 9, 29, and 44 wk of age, and an oral glucose tolerance test (GTT) at 45 wk of age. Preptin KO mice of both sexes had similar Igf2 exon 2-3 mRNA expression in the liver and kidney compared with WT mice, but Igf2 exon 3-4 (preptin) expression was not detectable. Western blot analysis of neonatal serum indicated that processing of pro-IGF2 translated from the KO allele may be altered. Preptin KO mice had similar body weight, body composition, ß-cell area, and fasted glucose concentrations compared with WT mice in both sexes up to 47 wk of age. Female KO mice had a diminished ability to mount an insulin response following glucose stimulation in vivo. This effect was absent in male KO mice. Although preptin is not essential for glucose homeostasis, when combined with previous in vitro and ex vivo findings, these data show that preptin positively impacts ß-cell function.NEW & NOTEWORTHY This is the first study to describe a model in which the preptin-coding portion of the Igf2 gene has been genetically ablated in mice. The mice do not show reduced size at birth associated with Igf2 knockout suggesting that IGF2 functionality is maintained, yet we demonstrate a change in the processing of mature Igf2. Female knockout mice have diminished glucose-stimulated insulin secretion, whereas the insulin response in males is not different to wild type.


Subject(s)
Insulin , Peptide Fragments , Female , Male , Mice , Animals , Mice, Knockout , Glucose/pharmacology
16.
Histochem Cell Biol ; 157(4): 427-442, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35037128

ABSTRACT

Diabetes and its complications are major causes of mortality worldwide. Type 2 diabetes coexists with insulin resistance and ß-cell dysfunction, which are aggravated by overconsumption and estrogen-deprived conditions. However, the morphology of pancreatic islets in a combined condition of excessive caloric intake and estrogen deficiency has never been described. Herein, we examined morphological changes in the pancreatic islets of ovariectomized (OVX) rats fed a high-fat high-fructose diet (HFFD) for 12 weeks. The histological changes in the size and number of pancreatic islets were assessed by hematoxylin-eosin and immunohistochemical staining. Enlarged pancreatic islets with fat deposition in OVX rats were accompanied by whole-body insulin resistance and hyperglycemia. The addition of a HFFD to OVX rats (OVX + HFFD) further aggravated insulin resistance, with a substantial increase in the density of enlarged pancreatic islets and fat accumulation. The augmented number of enlarged islets was correlated with elevated plasma glucose and insulin levels. Intriguingly, unlike the HFFD and OVX alone, the OVX + HFFD markedly expanded the area of insulin-producing ß-cells and glucagon-producing α-cells. Importantly, enlarged islets, pancreatic fat deposits, and diabetic states developing in OVX + HFFD conditions were resolved by estrogen replacement. Collectively, the morphological characteristics of pancreatic islets were influenced in an insulin-resistant state caused by estrogen deficiency and HFFD consumption and were distinct from each factor alone. A combination of estrogen deficiency with HFFD consumption worsened the integrity of pancreatic islets, ultimately resulting in disease progression. These findings expand our understanding of the causal relationship between pancreatic morphology and diabetes development and suggest therapeutic strategies.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Islets of Langerhans , Animals , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Estrogens , Female , Fructose , Insulin , Islets of Langerhans/pathology , Rats
17.
Br J Nutr ; 127(3): 377-383, 2022 02 14.
Article in English | MEDLINE | ID: mdl-33762029

ABSTRACT

Bitter melon (Momordica charantia L.) has been shown to have various health-promoting activities, including antidiabetic and hypoglycaemic effects. Improvement in insulin sensitivity and increase in glucose utilisation in peripheral tissues have been reported, but the effect on insulin secretion from pancreatic ß-cells remains unclear. In this study, we investigated the effect of bitter melon fruit on insulin secretion from ß-cells and the underlying mechanism. The green fruit of bitter melon was freeze-dried and extracted with methanol. The bitter melon fruit extract (BMFE) was fractionated using ethyl acetate (fraction A), n-butanol (fraction B) and water (fraction C). Insulin secretory capacity from INS-1 rat insulinoma cell line and rat pancreatic islets, as well as glucose tolerance in rats by oral glucose tolerance test (OGTT), was measured using BMFE and fractions. ATP production in ß-cells was also examined. BMFE augmented insulin secretion from INS-1 cells in a dose-dependent manner. The significant augmentation of insulin secretion was independent of the glucose dose. Fraction A (i.e. hydrophobic fraction), but not fractions B and C, augmented insulin secretion significantly at the same level as that by BMFE. This finding was also observed in pancreatic islets. In OGTT, BMFE and fraction A decreased blood glucose levels and increased serum insulin levels after glucose loading. The decrease in blood glucose levels was also observed in streptozotocin-induced diabetic rats. In addition, BMFE and fraction A increased the ATP content in ß-cells. We concluded that hydrophobic components of BMFE increase ATP production and augment insulin secretion from ß-cells, consequently decreasing blood glucose levels.


Subject(s)
Diabetes Mellitus, Experimental , Momordica charantia , Adenosine Triphosphate/metabolism , Animals , Blood Glucose/analysis , Fruit/chemistry , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin , Insulin Secretion , Medicine, Chinese Traditional , Momordica charantia/chemistry , Momordica charantia/metabolism , Plant Extracts/pharmacology , Rats
18.
Cell Biol Toxicol ; 38(3): 531-551, 2022 06.
Article in English | MEDLINE | ID: mdl-34455488

ABSTRACT

Diabetes mellitus (DM) is a metabolic syndrome, caused by insufficient insulin secretion or insulin resistance (IR). DM enhances oxidative stress and induces mitochondrial function in different kinds of cell types, including pancreatic ß-cells. Our previous study has showed phosphocreatine (PCr) can advance the mitochondrial function through enhancing the oxidative phosphorylation and electron transport ability in mitochondria damaged by methylglyoxal (MG). Our aim was to explore the potential role of PCr as a molecule to protect mitochondria from diabetes-induced pancreatic ß-cell injury with insulin secretion deficiency or IR through dual AKT/IRS-1/GSK-3ß and STAT3/Cyclophilin D (Cyp-D) signaling pathways. MG-induced INS-1 cell viability, apoptosis, mitochondrial division and fusion, the morphology, and function of mitochondria were suppressed. Flow cytometry was used to detect the production of intracellular reactive oxygen species (ROS) and the changes of intracellular calcium, and the respiratory function was measured by oxygraph-2k. The expressions of AKT, IRS-1, GSK-3ß, STAT3, and Cyp-D were detected using Western blot. The result showed that the oxidative stress-related kinases were significantly restored to the normal level after the pretreatment with PCr. Moreover, PCr pretreatment significantly inhibited cell apoptosis, decreased intracellular calcium, and ROS production, and inhibited mitochondrial division and fusion, and increased ATP synthesis damaged by MG in INS-1 cells. In addition, pretreatment with PCr suppressed Cytochrome C, p-STAT3, and Cyp-D expressions, while increased p-AKT, p-IRS-1, p-GSK-3ß, caspase-3, and caspase-9 expressions. In conclusion, PCr has protective effect on INS-1 cells in vitro and in vivo, relying on AKT mediated STAT3/ Cyp-D pathway to inhibit oxidative stress and restore mitochondrial function, signifying that PCr might become an emerging candidate for the cure of diabetic pancreatic cancer ß-cell damage.


Subject(s)
Calcium , Proto-Oncogene Proteins c-akt , Apoptosis , Calcium/metabolism , Peptidyl-Prolyl Isomerase F , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Mitochondria/metabolism , Oxidative Stress , Phosphocreatine/metabolism , Phosphocreatine/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
19.
Lipids Health Dis ; 21(1): 138, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36527064

ABSTRACT

Low-density lipoprotein cholesterol (LDL-C) plays a central role in the pathology of atherosclerotic cardiovascular disease. For decades, the gold standard for LDL-C lowering have been statins, although these drugs carry a moderate risk for the development of new-onset diabetes. The inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) have emerged in the last years as potential alternatives to statins due to their high efficiency and safety without indications for a diabetes risk so far. Both approaches finally eliminate LDL-C from bloodstream by upregulation of LDL receptor surface expression. Due to their low antioxidant capacity, insulin producing pancreatic ß-cells are sensitive to increased lipid oxidation and related generation of reactive oxygen species. Thus, PCSK9 inhibition has been argued to promote diabetes like statins. Potentially, the remaining patients at risk will be identified in the future. Otherwise, there is increasing evidence that loss of circulating PCSK9 does not worsen glycaemia since it is compensated by local PCSK9 expression in ß-cells and other islet cells. This review explores the situation in ß-cells. We evaluated the relevant biology of PCSK9 and the effects of its functional loss in rodent knockout models, carriers of LDL-lowering gene variants and PCSK9 inhibitor-treated patients.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Insulins , Proprotein Convertase 9/genetics , Cholesterol, LDL , Homeostasis/genetics
20.
Nephrology (Carlton) ; 27(12): 994-1002, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36164928

ABSTRACT

AIM: Gestational diabetes mellitus (GDM) is the most common complication in pregnancy. This study aimed to investigate the potential mechanism and effects of long-noncoding RNA maternally expressed 8 (lncRNA-MEG8) in GDM. METHODS: Targeted interactions involving lncRNA-MEG8 and miR-296-3p were initially predicted using starBase software and then confirmed using dual-luciferase reporter gene analysis. The expression levels of lncRNA-MEG8 and miR-296-3p in peripheral blood samples from patients with GDM were measured using reverse transcription-quantitative polymerase chain reaction. Enzyme-linked immunosorbent assay was used to evaluate the overall levels of insulin and insulin secretion. Additionally, MTT and flow cytometric methods were used to detect cell viability and apoptosis. Cell apoptosis-associated proteins were determined by western blotting. RESULTS: Our results indicated that lncRNA-MEG8 is a potential target of miR-296-3p. lncRNA-MEG8 level was higher, whereas that of miR-296-3p was lower in patients with GDM than in healthy individuals. LncRNA-MEG8-siRNA promoted insulin content and secretion. Furthermore, MEG8-siRNA increased cell viability and decreased apoptosis. However, these changes were reversed by an miR-296-3p inhibitor. Moreover, a miR-296-3p mimic had the same effect on INS-1 cells as MEG8-siRNA, as evidenced by enhanced insulin secretion, cell viability, and reduced apoptosis. CONCLUSION: LncRNA-MEG8-siRNA promotes pancreatic ß-cell function by upregulating miR-296-3p.


Subject(s)
Diabetes, Gestational , Insulins , MicroRNAs , RNA, Long Noncoding , Female , Pregnancy , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Diabetes, Gestational/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/pharmacology , Cell Proliferation , Apoptosis , Insulins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL