Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.698
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 39: 511-536, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33577348

ABSTRACT

The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.


Subject(s)
Host-Pathogen Interactions , Polysaccharides , Animals , Cell Differentiation , Humans
2.
Annu Rev Immunol ; 38: 511-539, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340578

ABSTRACT

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.


Subject(s)
Host-Pathogen Interactions/immunology , Immune Evasion , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Viruses/immunology , Animals , Biomarkers , Cytokines/metabolism , Humans , Receptors, Natural Killer Cell/metabolism , Signal Transduction , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/virology
3.
Cell ; 187(15): 4113-4127.e13, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38876107

ABSTRACT

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.


Subject(s)
Host-Pathogen Interactions , Humans , Animals , Lyme Disease/microbiology , Vector Borne Diseases , Host Microbial Interactions , Borrelia burgdorferi/pathogenicity , Borrelia burgdorferi/metabolism
4.
Cell ; 186(5): 957-974.e28, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36812912

ABSTRACT

Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.


Subject(s)
Chiroptera , Pluripotent Stem Cells , Virus Diseases , Viruses , Animals , Viruses/genetics , Transcriptome , Phylogeny
5.
Cell ; 185(13): 2354-2369.e17, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35568036

ABSTRACT

Interferons (IFNs) induce an antimicrobial state, protecting tissues from infection. Many viruses inhibit IFN signaling, but whether bacterial pathogens evade IFN responses remains unclear. Here, we demonstrate that the Shigella OspC family of type-III-secreted effectors blocks IFN signaling independently of its cell death inhibitory activity. Rather, IFN inhibition was mediated by the binding of OspC1 and OspC3 to the Ca2+ sensor calmodulin (CaM), blocking CaM kinase II and downstream JAK/STAT signaling. The growth of Shigella lacking OspC1 and OspC3 was attenuated in epithelial cells and in a murine model of infection. This phenotype was rescued in both models by the depletion of IFN receptors. OspC homologs conserved in additional pathogens not only bound CaM but also inhibited IFN, suggesting a widespread virulence strategy. These findings reveal a conserved but previously undescribed molecular mechanism of IFN inhibition and demonstrate the critical role of Ca2+ and IFN targeting in bacterial pathogenesis.


Subject(s)
Interferons , Virulence Factors , Animals , Antiviral Agents , Calcium Signaling , Epithelial Cells/metabolism , Interferons/metabolism , Mice , Virulence Factors/metabolism
6.
Cell ; 184(9): 2394-2411.e16, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33743211

ABSTRACT

SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.


Subject(s)
Host-Pathogen Interactions , RNA, Viral/genetics , SARS-CoV-2/genetics , Animals , COVID-19/virology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Chlorocebus aethiops , Female , Genome, Viral , Humans , Lung/virology , Male , Mass Spectrometry , Mitochondria/metabolism , Mitochondria/ultrastructure , Proteome/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/ultrastructure , Vero Cells
7.
Cell ; 175(1): 146-158.e15, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30100182

ABSTRACT

Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.


Subject(s)
Host-Pathogen Interactions/physiology , Iron/metabolism , Virulence/physiology , Animals , Asymptomatic Infections , Citrobacter rodentium/metabolism , Citrobacter rodentium/pathogenicity , Colitis/drug therapy , Colitis/metabolism , Colon/microbiology , Dietary Supplements , Enterobacteriaceae Infections/drug therapy , Female , Insulin Resistance/physiology , Intestine, Small/microbiology , Iron/pharmacology , Lethal Dose 50 , Male , Mice , Mice, Inbred C3H , Mice, Inbred DBA
8.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30550789

ABSTRACT

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Subject(s)
Carrier Proteins , DNA-Binding Proteins , Ebolavirus/physiology , Hemorrhagic Fever, Ebola/metabolism , Transcription Factors , Viral Proteins , Virus Replication/physiology , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/pathology , Humans , Protein Interaction Mapping , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Immunity ; 56(4): 768-782.e9, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36804958

ABSTRACT

Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation , Receptors, Cytoplasmic and Nuclear/metabolism , Immunity, Innate , Bacteria , Pseudomonas aeruginosa/metabolism
10.
Cell ; 169(1): 58-71.e14, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340350

ABSTRACT

Natural killer (NK) cells play a key role in innate immunity by detecting alterations in self and non-self ligands via paired NK cell receptors (NKRs). Despite identification of numerous NKR-ligand interactions, physiological ligands for the prototypical NK1.1 orphan receptor remain elusive. Here, we identify a viral ligand for the inhibitory and activating NKR-P1 (NK1.1) receptors. This murine cytomegalovirus (MCMV)-encoded protein, m12, restrains NK cell effector function by directly engaging the inhibitory NKR-P1B receptor. However, m12 also interacts with the activating NKR-P1A/C receptors to counterbalance m12 decoy function. Structural analyses reveal that m12 sequesters a large NKR-P1 surface area via a "polar claw" mechanism. Polymorphisms in, and ablation of, the viral m12 protein and host NKR-P1B/C alleles impact NK cell responses in vivo. Thus, we identify the long-sought foreign ligand for this key immunoregulatory NKR family and reveal how it controls the evolutionary balance of immune recognition during host-pathogen interplay.


Subject(s)
Killer Cells, Natural/immunology , Muromegalovirus/immunology , Receptors, Natural Killer Cell/immunology , Viral Proteins/metabolism , Animals , Antigens, Ly/metabolism , Cell Line , HEK293 Cells , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Mice , NIH 3T3 Cells , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Rats
11.
Cell ; 169(4): 679-692.e14, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28475896

ABSTRACT

The nuclear RNA exosome is an essential multi-subunit complex that controls RNA homeostasis. Congenital mutations in RNA exosome genes are associated with neurodegenerative diseases. Little is known about the role of the RNA exosome in the cellular response to pathogens. Here, using NGS and human and mouse genetics, we show that influenza A virus (IAV) ribogenesis and growth are suppressed by impaired RNA exosome activity. Mechanistically, the nuclear RNA exosome coordinates the initial steps of viral transcription with RNAPII at host promoters. The viral polymerase complex co-opts the nuclear RNA exosome complex and cellular RNAs en route to 3' end degradation. Exosome deficiency uncouples chromatin targeting of the viral polymerase complex and the formation of cellular:viral RNA hybrids, which are essential RNA intermediates that license transcription of antisense genomic viral RNAs. Our results suggest that evolutionary arms races have shaped the cellular RNA quality control machinery.


Subject(s)
Host-Pathogen Interactions , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Influenza, Human/virology , RNA Polymerase II/metabolism , A549 Cells , Animals , Chromatin Immunoprecipitation , Exoribonucleases/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Exosomes/metabolism , Humans , Mass Spectrometry , Mice , Mutation , Neurodegenerative Diseases/virology , RNA-Binding Proteins/genetics , Ribosomes/genetics , Transcription, Genetic
12.
Cell ; 166(6): 1423-1435.e12, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27594426

ABSTRACT

Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.


Subject(s)
Apicomplexa/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Genome-Wide Association Study , Host-Parasite Interactions , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/genetics , Cells, Cultured , Claudins/genetics , Claudins/metabolism , Fibroblasts/parasitology , Genome, Protozoan/genetics , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/physiopathology , Plasmodium falciparum/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/physiopathology
13.
Cell ; 167(3): 670-683.e10, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768890

ABSTRACT

Spotted fever group (SFG) rickettsiae are human pathogens that infect cells in the vasculature. They disseminate through host tissues by a process of cell-to-cell spread that involves protrusion formation, engulfment, and vacuolar escape. Other bacterial pathogens rely on actin-based motility to provide a physical force for spread. Here, we show that SFG species Rickettsia parkeri typically lack actin tails during spread and instead manipulate host intercellular tension and mechanotransduction to promote spread. Using transposon mutagenesis, we identified surface cell antigen 4 (Sca4) as a secreted effector of spread that specifically promotes protrusion engulfment. Sca4 interacts with the cell-adhesion protein vinculin and blocks association with vinculin's binding partner, α-catenin. Using traction and monolayer stress microscopy, we show that Sca4 reduces vinculin-dependent mechanotransduction at cell-cell junctions. Our results suggest that Sca4 relieves intercellular tension to promote protrusion engulfment, which represents a distinctive strategy for manipulating cytoskeletal force generation to enable spread.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Mechanotransduction, Cellular , Rickettsia Infections/metabolism , Rickettsia Infections/microbiology , Rickettsia/pathogenicity , Vinculin/metabolism , Actins/metabolism , Amino Acid Sequence , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cadherins/metabolism , Cell Adhesion , Cell Line, Tumor , DNA Transposable Elements/genetics , Fever/metabolism , Fever/microbiology , Humans , Mutagenesis, Insertional , Mutation , Rickettsia/metabolism , alpha Catenin/metabolism
14.
Immunity ; 54(12): 2712-2723.e6, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34788598

ABSTRACT

Interactions between intracellular bacteria and mononuclear phagocytes give rise to diverse cellular phenotypes that may determine the outcome of infection. Recent advances in single-cell RNA sequencing (scRNA-seq) have identified multiple subsets within the mononuclear population, but implications to their function during infection are limited. Here, we surveyed the mononuclear niche of intracellular Salmonella Typhimurium (S.Tm) during early systemic infection in mice. We described eclipse-like growth kinetics in the spleen, with a first phase of bacterial control mediated by tissue-resident red-pulp macrophages. A second phase involved extensive bacterial replication within a macrophage population characterized by CD9 expression. We demonstrated that CD9+ macrophages induced pathways for detoxificating oxidized lipids, that may be utilized by intracellular S.Tm. We established that CD9+ macrophages originated from non-classical monocytes (NCM), and NCM-depleted mice were more resistant to S.Tm infection. Our study defines macrophage subset-specific host-pathogen interactions that determine early infection dynamics and infection outcome of the entire organism.


Subject(s)
Macrophages/immunology , Salmonella Infections/immunology , Salmonella typhimurium/physiology , Spleen/immunology , Animals , Host-Pathogen Interactions , Humans , Intracellular Space , Lipid Metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidation-Reduction , Single-Cell Analysis , Spleen/microbiology , Tetraspanin 29/metabolism
15.
Mol Cell ; 78(4): 624-640.e7, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32380061

ABSTRACT

The primary interactions between incoming viral RNA genomes and host proteins are crucial to infection and immunity. Until now, the ability to study these events was lacking. We developed viral cross-linking and solid-phase purification (VIR-CLASP) to characterize the earliest interactions between viral RNA and cellular proteins. We investigated the infection of human cells using Chikungunya virus (CHIKV) and influenza A virus and identified hundreds of direct RNA-protein interactions. Here, we explore the biological impact of three protein classes that bind CHIKV RNA within minutes of infection. We find CHIKV RNA binds and hijacks the lipid-modifying enzyme fatty acid synthase (FASN) for pro-viral activity. We show that CHIKV genomes are N6-methyladenosine modified, and YTHDF1 binds and suppresses CHIKV replication. Finally, we find that the innate immune DNA sensor IFI16 associates with CHIKV RNA, reducing viral replication and maturation. Our findings have direct applicability to the investigation of potentially all RNA viruses.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/physiology , Fatty Acid Synthase, Type I/metabolism , Genome, Viral , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Virus Replication , Animals , Chikungunya Fever/genetics , Chikungunya Fever/metabolism , Chlorocebus aethiops , Fatty Acid Synthase, Type I/genetics , HEK293 Cells , Humans , Nuclear Proteins/genetics , Phosphoproteins/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Vero Cells
16.
Genes Dev ; 34(5-6): 341-359, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32029454

ABSTRACT

Poly-adenosine diphosphate-ribose polymerases (PARPs) promote ADP-ribosylation, a highly conserved, fundamental posttranslational modification (PTM). PARP catalytic domains transfer the ADP-ribose moiety from NAD+ to amino acid residues of target proteins, leading to mono- or poly-ADP-ribosylation (MARylation or PARylation). This PTM regulates various key biological and pathological processes. In this review, we focus on the roles of the PARP family members in inflammation and host-pathogen interactions. Here we give an overview the current understanding of the mechanisms by which PARPs promote or suppress proinflammatory activation of macrophages, and various roles PARPs play in virus infections. We also demonstrate how innovative technologies, such as proteomics and systems biology, help to advance this research field and describe unanswered questions.


Subject(s)
ADP-Ribosylation/physiology , Host-Pathogen Interactions/physiology , Inflammation , Poly(ADP-ribose) Polymerases/metabolism , Humans , Macrophages/pathology , Proteomics , Research/trends , Systems Biology , Virus Diseases/physiopathology
17.
Annu Rev Microbiol ; 76: 211-233, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36075095

ABSTRACT

Ubiquitination is a posttranslational modification that regulates a multitude of cellular functions. Pathogens, such as bacteria and viruses, have evolved sophisticated mechanisms that evade or counteract ubiquitin-dependent host responses, or even exploit the ubiquitin system to their own advantage. This is largely done by numerous pathogen virulence factors that encode E3 ligases and deubiquitinases, which are often used as weapons in pathogen-host cell interactions. Moreover, upon pathogen attack, host cellular signaling networks undergo major ubiquitin-dependent changes to protect the host cell, including coordination of innate immunity, remodeling of cellular organelles, reorganization of the cytoskeleton, and reprogramming of metabolic pathways to restrict growth of the pathogen. Here we provide mechanistic insights into ubiquitin regulation of host-pathogen interactions and how it affects bacterial and viral pathogenesis and the organization and response of the host cell.


Subject(s)
Host-Pathogen Interactions , Ubiquitin , Bacteria/metabolism , Immunity, Innate , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virulence Factors/metabolism
18.
Semin Immunol ; 69: 101804, 2023 09.
Article in English | MEDLINE | ID: mdl-37406548

ABSTRACT

Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.


Subject(s)
Inflammasomes , Pyroptosis , Animals , Humans , Bacterial Proteins , Apoptosis , Inflammation Mediators , Bacteria/metabolism , Mammals/metabolism
19.
Semin Immunol ; 66: 101738, 2023 03.
Article in English | MEDLINE | ID: mdl-36878023

ABSTRACT

The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.


Subject(s)
Host-Pathogen Interactions , Immune Evasion , Humans , Macrophages , Fungi
20.
Proc Natl Acad Sci U S A ; 121(25): e2401159121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865261

ABSTRACT

Trichomonas vaginalis, a common sexually transmitted parasite that colonizes the human urogenital tract, secretes extracellular vesicles (TvEVs) that are taken up by human cells and are speculated to be taken up by parasites as well. While the crosstalk between TvEVs and human cells has led to insight into host:parasite interactions, roles for TvEVs in infection have largely been one-sided, with little known about the effect of TvEV uptake by T. vaginalis. Approximately 11% of infections are found to be coinfections of multiple T. vaginalis strains. Clinical isolates often differ in their adherence to and cytolysis of host cells, underscoring the importance of understanding the effects of TvEV uptake within the parasite population. To address this question, our lab tested the ability of a less adherent strain of T. vaginalis, G3, to take up fluorescently labeled TvEVs derived from both itself (G3-EVs) and TvEVs from a more adherent strain of the parasite (B7RC2-EVs). Here, we showed that TvEVs generated from the more adherent strain are internalized more efficiently compared to the less adherent strain. Additionally, preincubation of G3 parasites with B7RC2-EVs increases parasite aggregation and adherence to host cells. Transcriptomics revealed that TvEVs up-regulate expression of predicted parasite membrane proteins and identified an adherence factor, heteropolysaccharide binding protein (HPB2). Finally, using comparative proteomics and superresolution microscopy, we demonstrated direct transfer of an adherence factor, cadherin-like protein, from TvEVs to the recipient parasite's surface. This work identifies TvEVs as a mediator of parasite:parasite communication that may impact pathogenesis during mixed infections.


Subject(s)
Extracellular Vesicles , Trichomonas vaginalis , Extracellular Vesicles/metabolism , Trichomonas vaginalis/metabolism , Trichomonas vaginalis/genetics , Humans , Host-Parasite Interactions , Up-Regulation , Cell Adhesion , Female , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL