Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
New Phytol ; 241(6): 2523-2539, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38214469

ABSTRACT

The transcriptional regulation of Rho-related GTPase from plants (ROPs), which determine cell polarity formation and maintenance during plant development, still remains enigmatic. In this study, we elucidated the epigenetic mechanism of histone deacetylase HDA6 in transcriptional repression of ROP6 and its impact on cell polarity and morphogenesis in Arabidopsis leaf epidermal pavement cells (PCs). We found that the hda6 mutant axe1-4 exhibited impaired jigsaw-shaped PCs and convoluted leaves. This correlated with disruptions in the spatial organizations of cortical microtubules and filamentous actin, which is integral to PC indentation and lobe formation. Further transcriptional analyses and chromatin immunoprecipitation assay revealed that HDA6 specifically represses ROP6 expression through histone H3K9K14 deacetylation. Importantly, overexpression of dominant negative-rop6 in axe1-4 restored interdigitated cell morphology. Our study unveils HDA6 as a key regulator in Arabidopsis PC morphogenesis through epigenetic suppression of ROP6. It reveals the pivotal role of HDA6 in the transcriptional regulation of ROP6 and provides compelling evidence for the functional interplay between histone deacetylation and ROP6-mediated cytoskeletal arrangement in the development of interdigitated PCs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , GTP Phosphohydrolases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Morphogenesis
2.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473801

ABSTRACT

Epidermal cells are the main avenue for signal and material exchange between plants and the environment. Leaf epidermal cells primarily include pavement cells, guard cells, and trichome cells. The development and distribution of different epidermal cells are tightly regulated by a complex transcriptional regulatory network mediated by phytohormones, including jasmonic acid, and transcription factors. How the fate of leaf epidermal cells is determined, however, is still largely unknown due to the diversity of cell types and the complexity of their regulation. Here, we characterized the transcriptional profiles of epidermal cells in 3-day-old true leaves of Arabidopsis thaliana using single-cell RNA sequencing. We identified two genes encoding BASIC LEUCINE-ZIPPER (bZIP) transcription factors, namely bZIP25 and bZIP53, which are highly expressed in pavement cells and early-stage meristemoid cells. Densities of pavement cells and trichome cells were found to increase and decrease, respectively, in bzip25 and bzip53 mutants, compared with wild-type plants. This trend was more pronounced in the presence of jasmonic acid, suggesting that these transcription factors regulate the development of trichome cells and pavement cells in response to jasmonic acid.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cyclopentanes , Oxylipins , Basic-Leucine Zipper Transcription Factors , Epidermal Cells , Transcription Factors , Plant Leaves , Trichomes , Sequence Analysis, RNA , Gene Expression Regulation, Plant
3.
Proc Natl Acad Sci U S A ; 117(27): 16027-16034, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571946

ABSTRACT

Puzzle-shaped pavement cells provide a powerful model system to investigate the cellular and subcellular processes underlying complex cell-shape determination in plants. To better understand pavement cell-shape acquisition and the role of auxin in this process, we focused on the spirals of young stomatal lineage ground cells of Arabidopsis leaf epidermis. The predictability of lobe formation in these cells allowed us to demonstrate that the auxin response gradient forms within the cells of the spiral and fluctuates based on the particular stage of lobe development. We revealed that specific localization of auxin transporters at the different membranes of these young cells changes during the course of lobe formation, suggesting that these fluctuating auxin response gradients are orchestrated via auxin transport to control lobe formation and determine pavement cell shape.


Subject(s)
Arabidopsis/metabolism , Cell Shape/drug effects , Cell Shape/physiology , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Arabidopsis Proteins , Biological Transport , Plant Epidermis/metabolism , Plant Leaves/metabolism , Plant Stomata/metabolism
4.
New Phytol ; 236(4): 1310-1325, 2022 11.
Article in English | MEDLINE | ID: mdl-35975703

ABSTRACT

Plant cells continuously experience mechanical stress resulting from the cell wall that bears internal turgor pressure. Cortical microtubules align with the predicted maximal tensile stress direction to guide cellulose biosynthesis and therefore results in cell wall reinforcement. We have previously identified Increased Petal Growth Anisotropy (IPGA1) as a putative microtubule-associated protein in Arabidopsis, but the function of IPGA1 remains unclear. Here, using the Arabidopsis cotyledon pavement cell as a model, we demonstrated that IPGA1 forms protein granules and interacts with ANGUSTIFOLIA (AN) to cooperatively regulate microtubule organisation in response to stress. Application of mechanical perturbations, such as cell ablation, led to microtubule reorganisation into aligned arrays in wild-type cells. This microtubule response to stress was enhanced in the IPGA1 loss-of-function mutant. Mechanical perturbations promoted the formation of IPGA1 granules on microtubules. We further showed that IPGA1 physically interacted with AN both in vitro and on microtubules. The ipga1 mutant alleles exhibited reduced interdigitated growth of pavement cells, with smooth shape. IPGA1 and AN had a genetic interaction in regulating pavement cell shape. Furthermore, IPGA1 genetically and physically interacted with the microtubule-severing enzyme KATANIN. We propose that the IPGA1-AN module regulates microtubule organisation and pavement cell shape.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Katanin/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Shape , Anisotropy , Microtubules/metabolism , Microtubule-Associated Proteins/genetics , Cellulose/metabolism , Repressor Proteins/metabolism
5.
Development ; 145(6)2018 03 20.
Article in English | MEDLINE | ID: mdl-29444894

ABSTRACT

Quantifying cell morphology is fundamental to the statistical study of cell populations, and can help unravel mechanisms underlying cell and tissue morphogenesis. Current methods, however, require extensive human intervention, are highly parameter sensitive, or produce metrics that are difficult to interpret biologically. We therefore developed a method, lobe contribution elliptical Fourier analysis (LOCO-EFA), which generates from digitalised two-dimensional cell outlines meaningful descriptors that can be directly matched to morphological features. This is shown by studying well-defined geometric shapes as well as actual biological cells from plant and animal tissues. LOCO-EFA provides a tool to phenotype efficiently and objectively populations of cells, here demonstrated by applying it to the complex shaped pavement cells of Arabidopsis thaliana wild-type and speechless leaves, and Drosophila amnioserosa cells. To validate our method's applicability to large populations, we analysed computer-generated tissues. By controlling in silico cell shape, we explored the potential impact of cell packing on individual cell shape, quantifying through LOCO-EFA deviations between the specified shape of single cells in isolation and the resultant shape when they interact within a confluent tissue.


Subject(s)
Cell Shape , Fourier Analysis , Morphogenesis , Animals , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Computer Simulation , Drosophila/cytology , Image Processing, Computer-Assisted/methods , Phenotype , Plant Cells , Plant Leaves/cytology
6.
Fish Shellfish Immunol ; 111: 189-200, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33588082

ABSTRACT

Acetylcholine (Ach) is the main neurotransmitter in the neuronal cholinergic system and also works as a signaling molecule in non-neuronal cells and tissues. The diversity of signaling pathways mediated by Ach provides a basis for understanding the biology of the cholinergic epithelial cells and immune cells in the gill of the species studied. NECs in the gill were not found surprisingly, but specialized cells showing the morphological, histochemical and ultrastructural characteristics of eosinophils were located in the gill filaments and respiratory lamellae. Much remains unknown about the interaction between the nerves and eosinophils that modulate both the release of acetylcholine and its nicotinic and muscarinic receptors including the role of acetylcholine in the mechanisms of O2 chemosensing. In this study we report for the first time the expression of Ach in the pavement cells of the gill lamellae in fish, the mast cells associated with eosinophils and nerve interaction for both immune cell types, in the gill of the extant butterfly fish Pantodon buchholzi. Multiple roles have been hypothesized for Ach and alpha nAChR in the gills. Among these there are the possible involvement of the pavement cells of the gill lamellae as O2 chemosensitive cells, the interaction of Ach positive mast cells with eosinophils and interaction of eosinophils with nerve terminals. This could be related to the use of the vesicular acetylcholine transporter (VAChT) and the alpha 2 subunit of the acetylcholine nicotinic receptor (alpha 2 nAChR). These data demonstrate the presence of Ach multiple sites of neuronal and non-neuronal release and reception within the gill and its ancestral signaling that arose during the evolutionary history of this conservative fish species.


Subject(s)
Acetylcholine/metabolism , Fishes/immunology , Immune System/metabolism , Oxygen/metabolism , Animals , Female , Fishes/classification , Gills , Male , Oxygen/immunology , Phylogeny
7.
Article in English | MEDLINE | ID: mdl-33429056

ABSTRACT

August Krogh made fundamental discoveries about both respiratory gas exchange and osmo/iono-regulation in fish gills. Dave Randall and co-workers identified a tradeoff between these two functions such that high functional surface area and low diffusion distance would favour O2 uptake (e.g. exercise, hypoxia), whereas low functional surface area and high diffusion distance would favour osmo/iono-regulation (rest, normoxia). Today we call this concept the "osmorespiratory compromise" and realize that it is much more complex than originally envisaged. There are at least 6 mechanisms by which fish can change functional branchial area and diffusion distance. Three involve reorganizing blood flow pathways: (i) flow redistribution within the secondary (respiratory) lamellae; (ii) flow shunting between "respiratory" and "ionoregulatory" pathways in the filament; (iii) opening up more distal lamellae on the filament and closing non-respiratory pathways. Three more involve "reversible gill remodeling": (iv) proliferation of the interlamellar gill cell mass (ILCM); (v) proliferation of ionocytes up the sides of the lamellae; (vi) covering over the apical exposure of ionocytes by extension of pavement cells. In ways that remain incompletely understood, these mechanisms allow dynamic regulation of the osmorespiratory compromise, such that ion and water fluxes can be decoupled from O2 uptake during continuous exercise. Furthermore, hypoxia-tolerant species can reduce branchial ion and water fluxes below normoxic levels despite hyperventilating during hypoxia. In marine fish, the osmorespiratory conflict is intensified by the greater ionic and osmotic gradients from seawater to blood, but underlying mechanisms remain poorly understood.


Subject(s)
Fishes/physiology , Gills/physiology , Osmosis , Respiration , Seawater , Animals , Biological Transport , Diffusion , Hypoxia , Ions , Models, Biological , Permeability , Water
8.
J Cell Sci ; 131(2)2018 01 29.
Article in English | MEDLINE | ID: mdl-28320821

ABSTRACT

Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 (gl2) and immutans (im), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Chloroplasts/metabolism , Organelles/metabolism , Arabidopsis/ultrastructure , Chlorophyll/metabolism , Chloroplasts/ultrastructure , Mutation/genetics , Plant Epidermis/cytology , Plant Epidermis/metabolism , Plants, Genetically Modified , Time-Lapse Imaging , Trichomes/metabolism , Trichomes/ultrastructure
9.
Development ; 144(23): 4386-4397, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29084800

ABSTRACT

D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics.


Subject(s)
Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/physiology , Biomechanical Phenomena , Cell Division , Genes, Plant , Mitosis , Models, Biological , Mutation , Plant Development/genetics , Plant Development/physiology , Plant Epidermis/cytology , Plant Epidermis/genetics , Plant Epidermis/growth & development , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/growth & development , Plants, Genetically Modified
10.
Am J Bot ; 105(2): 257-265, 2018 02.
Article in English | MEDLINE | ID: mdl-29578288

ABSTRACT

PREMISE OF THE STUDY: In numerous vascular plants, pavement cells of the leaf epidermis are shaped like a jigsaw-puzzle piece. Knowledge about the subcellular pattern of growth that accompanies morphogenesis of such a complex shape is crucial for studies of the role of the cytoskeleton, cell wall and phytohormones in plant cell development. Because the detailed growth pattern of the anticlinal and periclinal cell walls remains unknown, our aim was to measure pavement cell growth at a subcellular resolution. METHODS: Using fluorescent microbeads applied to the surface of the adaxial leaf epidermis of Arabidopsis thaliana as landmarks for growth computation, we directly assessed the growth rates for the outer periclinal and anticlinal cell walls at a subcellular scale. KEY RESULTS: We observed complementary tendencies in the growth pattern of the outer periclinal and anticlinal cell walls. Central portions of periclinal walls were characterized by relatively slow growth, while growth of the other wall portions was heterogeneous. Local growth of the periclinal walls accompanying lobe development after initiation was relatively fast and anisotropic, with maximal extension usually in the direction along the lobe axis. This growth pattern of the periclinal walls was complemented by the extension of the anticlinal walls, which was faster on the lobe sides than at the tips. CONCLUSIONS: Growth of the anticlinal and outer periclinal walls of leaf pavement cells is heterogeneous. The growth of the lobes resembles cell elongation via diffuse growth rather than tip growth.


Subject(s)
Arabidopsis/cytology , Plant Epidermis/cytology , Plant Leaves/cytology , Arabidopsis/growth & development , Arabidopsis/ultrastructure , Cell Wall/ultrastructure , Microscopy, Fluorescence , Microspheres , Plant Epidermis/growth & development , Plant Epidermis/ultrastructure , Plant Leaves/growth & development , Plant Leaves/ultrastructure
11.
Plant J ; 88(5): 762-774, 2016 12.
Article in English | MEDLINE | ID: mdl-27496682

ABSTRACT

To protect plants against biotic and abiotic stress, the waxy cuticle must coat all epidermis cells. Here, two independent approaches addressed whether cell-type-specific differences exist between wax compositions on trichomes and other epidermal cells of Arabidopsis thaliana, possibly with different protection roles. First, the total waxes from a mutant lacking trichomes (gl1) were compared to waxes from wild type and a trichome-rich mutant (cpc tcl1 etc1 etc3). In the stem wax, compounds with aliphatic chains longer than 31 carbons (derived from C32 precursors) increased in relative abundance in cpc tcl1 etc1 etc3 over gl1. Similarly, the leaf wax from the trichome-rich mutant contained higher amounts of C32+ compounds as compared to gl1. Second, leaf trichomes were isolated, and their waxes were analyzed. The wax mixtures of the trichome-rich mutant and the wild type were similar, comprising alkanes and alkenes as well as branched and unbranched primary alcohols. The direct analyses of trichome waxes confirmed that they contained relatively high concentrations of C32+ compounds, compared with the pavement cell wax inferred from analysis of gl1 leaves. Finally, the cell-type-specific wax compositions were put into perspective with expression patterns of wax biosynthesis genes in trichomes and pavement cells. Analyses of published transcriptome data (Marks et al., ) revealed that core enzymes involved in elongation of wax precursors to various carbon chain lengths are expressed differentially between epidermis cell types. By combining the chemical and gene expression data, we identified promising gene candidates involved in the formation of C32+ aliphatic chains.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Trichomes/metabolism , Waxes/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Epidermis/genetics , Plant Epidermis/metabolism
12.
Plant Cell Physiol ; 57(3): 488-504, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26738547

ABSTRACT

Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Cell Shape , Cotyledon/metabolism , Cytoskeleton/metabolism , Membrane Proteins/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/metabolism , Arabidopsis/drug effects , Biomarkers/metabolism , Cell Shape/drug effects , Clathrin/metabolism , Cotyledon/drug effects , Cytoskeleton/drug effects , Fluorescence , Formins , Green Fluorescent Proteins/metabolism , Microtubules/drug effects , Microtubules/metabolism , Models, Biological , Mutation/genetics , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Thiones/pharmacology , Uracil/analogs & derivatives , Uracil/pharmacology
13.
Ann Bot ; 114(2): 191-202, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24825295

ABSTRACT

BACKGROUND AND AIMS: Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. METHODS: Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. KEY RESULTS: SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. CONCLUSIONS: It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport.


Subject(s)
Carbon Dioxide/pharmacology , Plant Stomata/cytology , Arabidopsis/cytology , Arabidopsis/drug effects , Cell Count , Cotyledon/drug effects , Cotyledon/physiology , Dehydration , Environment , Fagus/cytology , Fagus/drug effects , Helianthus/cytology , Helianthus/drug effects , Lepidium/cytology , Lepidium/drug effects , Plant Stomata/drug effects
14.
J Exp Bot ; 64(11): 3327-38, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23846874

ABSTRACT

The regulation of Rho of plants (ROP) in morphogenesis of leaf epidermal cells has been well studied, but the roles concerning regulators of ROPs such as RhoGDIs are poorly understood. This study reports that AtRhoGDI1 (GDI1) acts as a versatile regulator to modulate development of seedlings and leaf pavement cells. In mutant gdi1, leaf pavement cells showed shorter lobes in comparison with those in wild type. In GDI1-14 seedlings (GDI1-overexpression line) the growth of lobes in pavement cells was severely suppressed and the development of seedlings was altered. These results indicate that GDI1 plays an essential role in morphogenesis of epidermal pavement cells through modulating the ROP signalling pathways. The interaction between GDI1 and ROP2 or ROP6 was detected in the leaf pavement cells using FRET analysis. Dominant negative, not constitutively active, DN-rop6 could weaken the effect caused by overexpression of GDI1; because the pleiotropic phenotype of GDI1-14 plants was eliminated in the hybrid line GDI1-14 DN-rop6. GDI1 could be phosphorylated by CPK3. Three conserved Ser/Thr residues in GDI1 were determined as targeted amino acids for CPK3. Overexpression of GDI1(3D), not GDI1(3A), could rescue the abnormal growth phenotypes of gdi1-1 seedlings, demonstrating the impact of GDI1 phosphorylation in the development of Arabidopsis. In summary, these results suggest that GDI1 regulation in morphogenesis of seedlings and leaf pavement cells could be undergone through modulating the ROP signalling pathways and the phosphorylation of GDI1 by CPK3 was required for the developmental modulation in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Plant Epidermis/metabolism , Plant Leaves/metabolism , Seedlings/metabolism , rho Guanine Nucleotide Dissociation Inhibitor alpha/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium/metabolism , Phosphorylation , Plant Epidermis/cytology , Plant Epidermis/genetics , Plant Leaves/cytology , Plant Leaves/genetics , Seedlings/cytology , Seedlings/genetics , Signal Transduction/genetics , Signal Transduction/physiology , rho Guanine Nucleotide Dissociation Inhibitor alpha/genetics
15.
Quant Plant Biol ; 4: e5, 2023.
Article in English | MEDLINE | ID: mdl-37251797

ABSTRACT

All plant cells are encased by walls, which provide structural support and control their morphology. How plant cells regulate the deposition of the wall to generate complex shapes is a topic of ongoing research. Scientists have identified several model systems, the epidermal pavement cells of cotyledons and leaves being an ideal platform to study the formation of complex cell shapes. These cells indeed grow alternating protrusions and indentations resulting in jigsaw puzzle cell shapes. How and why these cells adopt such shapes has shown to be a challenging problem to solve, notably because it involves the integration of molecular and mechanical regulation together with cytoskeletal dynamics and cell wall modifications. In this review, we highlight some recent progress focusing on how these processes may be integrated at the cellular level along with recent quantitative morphometric approaches.

16.
Methods Mol Biol ; 2604: 43-61, 2023.
Article in English | MEDLINE | ID: mdl-36773224

ABSTRACT

Leaf epidermis pavement cells form highly complex shapes with interlocking lobes and necks at their anticlinal walls. The microtubule cytoskeleton plays essential roles in pavement cell morphogenesis, in particular at necks. Vice versa, shape generates stress patterns that regulate microtubule organization. Genetic or pharmacological perturbations that affect pavement cell shape often affect microtubule organization. Pavement cell shape and microtubule organization are therefore closely interconnected. Here, we present commonly used approaches for the quantitative analysis of pavement cell shape characteristics and of microtubule organization. In combination with ablation experiments, these methods can be applied to investigate how different genotypes (or treatments) affect the organization and stress responsiveness of the microtubule cytoskeleton.


Subject(s)
Arabidopsis , Cytoskeleton , Plant Leaves , Cell Shape , Microtubules , Epidermis , Plant Epidermis
17.
Methods Mol Biol ; 2604: 25-42, 2023.
Article in English | MEDLINE | ID: mdl-36773223

ABSTRACT

The plant cytoskeleton is instrumental in cellular processes such as cell growth, differentiation, and immune response. Microtubules, in particular, play a crucial role in morphogenesis by governing the deposition of plant cell wall polysaccharides and, in consequence, the cell wall mechanics and cell shape. Scrutinizing the microtubule dynamics is therefore integral to understanding the spatiotemporal regulation of cellular activities. In this chapter, we outline steps to acquire 3D images of microtubules in epidermal pavement cells of Arabidopsis thaliana cotyledons using a confocal microscope. We introduce the steps to assess the microtubule distribution and organization using image processing software Bitplane Imaris and ImageJ. We also demonstrate how the interpretation of image material can be facilitated by post-processing with general-purpose image enhancement software using methods trained by artificial intelligence-based algorithms.


Subject(s)
Arabidopsis , Artificial Intelligence , Imaging, Three-Dimensional , Microtubules , Cytoskeleton
18.
Plants (Basel) ; 11(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36432791

ABSTRACT

During domestication, lineages diverge phenotypically and genetically from wild relatives, particularly in preferred traits. In addition to evolutionary divergence in selected traits, other fitness-related traits that are unselected may change in concert. For instance, the selection of chili pepper fruits was not intended to change the structure and function of the leaf epidermis. Leaf stomata and trichome densities play a prominent role in regulating stomatal conductance and resistance to herbivores. Here, we assessed whether domestication affected leaf epidermis structure and function in Capsicum annuum. To do this, we compared leaf stomata and trichome densities in six cultivated varieties of Mexican Capsicum annuum and their wild relative. We measured stomatal conductance and resistance to herbivores. Resistance to (defense against) herbivores was measured as variation in the herbivory rate and larvae mortality of Spodoptera frugiperda fed with leaves of wild and cultivated plants. As expected, the different varieties displayed low divergence in stomatal density and conductance. Leaf trichome density was higher in the wild relative, but variation was not correlated with the herbivory rate. In contrast, a higher mortality rate of S. frugiperda larvae was recorded when fed with the wild relative and two varieties than larvae fed with four other varieties. Overall, although domestication did not aim at resistance to herbivores, this evolutionary process produced concerted changes in defensive traits.

19.
Methods Mol Biol ; 2382: 115-127, 2022.
Article in English | MEDLINE | ID: mdl-34705236

ABSTRACT

The availability of a fast and controlled mitotic model system that could simplify the generation of genetic material and reduce the experimental time from months to days would largely benefit research in plant cell division. In this protocol, we propose the use of pavement cells of Nicotiana benthamiana leaves to study cell division, which is artificially induced by Agrobacterium-mediated transient overexpression of the transcription factor E2Fb. The cell division-inducing overexpression of E2Fb can be combined with the expression of fluorescent protein-tagged proteins of interest or with dyes, which could be visualized throughout the cell cycle under the microscope. This simple and affordable method enables the study of cell cycle regulation and cell division in plants, from genome replication to cell wall formation, in a fast and controlled manner, and can be used for functional studies when coupled with chemical inhibitors or reverse genetic approaches.


Subject(s)
Nicotiana , Agrobacterium/genetics , Agrobacterium tumefaciens/genetics , Cell Division , E2F Transcription Factors , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Nicotiana/genetics
20.
Methods Mol Biol ; 2200: 349-369, 2021.
Article in English | MEDLINE | ID: mdl-33175387

ABSTRACT

Atomic force microscopy (AFM) is an indentation technique used to reconstruct the topography of various materials and organisms. AFM can also measure the mechanical properties of the sample. In plants, AFM is applied to image cell wall structural details and measure the elastic properties in the outer cell walls. Here, I describe the use of high-resolution AFM to measure the elasticity of resin-embedded ultrathin sections of leaf epidermal cell walls. This approach allows to access the fine details within the wall matrix and eliminate the influence of the topography or the turgor on mechanical measurements. In this chapter, the sample preparation, AFM image acquisition, and processing of force curves are described. Altogether, these methods allow to measure the wall stiffness and compare different cell wall regions.


Subject(s)
Arabidopsis/ultrastructure , Cell Wall/ultrastructure , Microscopy, Atomic Force , Plant Epidermis/ultrastructure , Plant Leaves/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL