Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Plant J ; 118(2): 584-600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38141174

ABSTRACT

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Subject(s)
Germination , Seedlings , Phenotype , Germination/physiology , Seeds , Image Processing, Computer-Assisted
2.
Plant Cell Physiol ; 64(5): 519-535, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36943363

ABSTRACT

Autophagy in plants is regulated by diverse signaling cascades in response to environmental changes. Fine-tuning of its activity is critical for the maintenance of cellular homeostasis under basal and stressed conditions. In this study, we compared the Arabidopsis autophagy-related (ATG) system transcriptionally under inorganic phosphate (Pi) deficiency versus nitrogen deficiency and showed that most ATG genes are only moderately upregulated by Pi starvation, with relatively stronger induction of AtATG8f and AtATG8h among the AtATG8 family. We found that Pi shortage increased the formation of GFP-ATG8f-labeled autophagic structures and the autophagic flux in the differential zone of the Arabidopsis root. However, the proteolytic cleavage of GFP-ATG8f and the vacuolar degradation of endogenous ATG8 proteins indicated that Pi limitation does not drastically alter the autophagic flux in the whole roots, implying a cell type-dependent regulation of autophagic activities. At the organismal level, the Arabidopsis atg mutants exhibited decreased shoot Pi concentrations and smaller meristem sizes under Pi sufficiency. Under Pi limitation, these mutants showed enhanced Pi uptake and impaired root cell division and expansion. Despite a reduced steady-state level of several PHOSPHATE TRANSPORTER 1s (PHT1s) in the atg root, cycloheximide treatment analysis suggested that the protein stability of PHT1;1/2/3 is comparable in the Pi-replete wild type and atg5-1. By contrast, the degradation of PHT1;1/2/3 is enhanced in the Pi-deplete atg5-1. Our findings reveal that both basal autophagy and Pi starvation-induced autophagy are required for the maintenance of Pi homeostasis and may modulate the expression of PHT1s through different mechanisms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Phosphates/metabolism , Homeostasis , Autophagy/physiology , Gene Expression Regulation, Plant
3.
Sci Rep ; 14(1): 12664, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830985

ABSTRACT

Arabidopsis root is a classic model system in plant cell and molecular biology. The sensitivity of plant roots to local environmental perturbation challenges data reproducibility and incentivizes further optimization of imaging and phenotyping tools. Here we present RoPod, an easy-to-use toolkit for low-stress live time-lapse imaging of Arabidopsis roots. RoPod comprises a dedicated protocol for plant cultivation and a customizable 3D-printed vessel with integrated microscopy-grade glass that serves simultaneously as a growth and imaging chamber. RoPod reduces impact of sample handling, preserves live samples for prolonged imaging sessions, and facilitates application of treatments during image acquisition. We describe a protocol for RoPods fabrication and provide illustrative application pipelines for monitoring root hair growth and autophagic activity. Furthermore, we showcase how the use of RoPods advanced our understanding of plant autophagy, a major catabolic pathway and a key player in plant fitness. Specifically, we obtained fine time resolution for autophagy response to commonly used chemical modulators of the pathway and revealed previously overlooked cell type-specific changes in the autophagy response. These results will aid a deeper understanding of the physiological role of autophagy and provide valuable guidelines for choosing sampling time during end-point assays currently employed in plant autophagy research.


Subject(s)
Arabidopsis , Autophagy , Plant Roots , Time-Lapse Imaging/methods
4.
Front Plant Sci ; 11: 579875, 2020.
Article in English | MEDLINE | ID: mdl-33224169

ABSTRACT

Autophagy is a catabolic process that takes place under both normal and adverse conditions and is important for the degradation of various organelles and proteins that are no longer needed. Thus, it can be viewed as both a constitutive recycling machinery and an adaptation mechanism. Increase in the activity of autophagy can be caused by multiple biotic and abiotic stress factors. Though intensive research in the past decade has elucidated many molecular details of plant autophagy, the mechanisms of induction and regulation of the process remain understudied. Here, we discuss the role of ATG8 proteins in autophagic signaling and regulation with an emphasis on the significance of ATG8 diversification for adapting autophagy to the changing needs of plants.

5.
Bio Protoc ; 10(5): e3535, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-33659509

ABSTRACT

Autophagy is the main catabolic process in eukaryotes and plays a key role in cell homeostasis. In vivo measurement of autophagic activity (flux) is a powerful tool for investigating the role of the pathway in organism development and stress responses. Here we describe a significant optimization of the tandem tag assay for detection of autophagic flux in planta in epidermal root cells of Arabidopsis thaliana seedlings. The tandem tag consists of TagRFP and mWasabi fluorescent proteins fused to ATG8a, and is expressed in wildtype or autophagy-deficient backgrounds to obtain reporter and control lines, respectively. Upon autophagy activation, the TagRFP-mWasabi-ATG8a fusion protein is incorporated into autophagosomes and delivered to the lytic vacuole. Ratiometric quantification of the low pH-tolerant TagRFP and low pH-sensitive mWasabi fluorescence in the vacuoles of control and reporter lines allows for a reliable estimation of autophagic activity. We provide a step by step protocol for plant growth, imaging and semi-automated data analysis. The protocol presents a rapid and robust method that can be applied for any studies requiring in planta quantification of autophagic flux.

6.
Cells ; 8(12)2019 12 12.
Article in English | MEDLINE | ID: mdl-31842460

ABSTRACT

Autophagy is a highly regulated bulk degradation process that plays a key role in the maintenance of cellular homeostasis. During autophagy, a double membrane-bound compartment termed the autophagosome is formed through de novo nucleation and assembly of membrane sources to engulf unwanted cytoplasmic components and targets them to the lysosome or vacuole for degradation. Central to this process are the autophagy-related (ATG) proteins, which play a critical role in plant fitness, immunity, and environmental stress response. Over the past few years, cryo-electron microscopy (cryo-EM) and single-particle analysis has matured into a powerful and versatile technique for the structural determination of protein complexes at high resolution and has contributed greatly to our current understanding of the molecular mechanisms underlying autophagosome biogenesis. Here we describe the plant-specific ATG proteins and summarize recent structural and mechanistic studies on the protein machinery involved in autophagy initiation with an emphasis on those by single-particle analysis.


Subject(s)
Autophagosomes/ultrastructure , Autophagy-Related Proteins/chemistry , Plants/metabolism , Autophagosomes/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , Microscopy, Electron , Models, Molecular , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants/ultrastructure
7.
Front Plant Sci ; 5: 134, 2014.
Article in English | MEDLINE | ID: mdl-24782875

ABSTRACT

Trafficking of proteins from the endoplasmic reticulum (ER) to the vacuole is a fundamental process in plants, being involved both in vacuole biogenesis as well as with plant growth and response to environmental stresses. Although the canonical transport of cellular components from the ER to the vacuole includes the Golgi apparatus as an intermediate compartment, there are multiple lines of evidence that support the existence of a direct ER-to-vacuole, Golgi-independent, trafficking route in plants that uses the autophagy machinery. Plant autophagy was initially described by electron microscopy, visualizing cellular structures that are morphologically reminiscent of autophagosomes. In some of these reports these structures were shown to transport vacuole residing proteins, particularly seed storage proteins, directly from the ER to the vacuole. More recently, following the discovery of the proteins of the core autophagy machinery, molecular tools were implemented in deciphering the involvement of autophagy in this special trafficking route. Here we review the relatively older and more recent scientific observations, supporting the involvement of autophagy in the special cellular trafficking pathways of plants.

SELECTION OF CITATIONS
SEARCH DETAIL