Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Biochem Biophys Res Commun ; 712-713: 149939, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38640729

ABSTRACT

Human heavy-chain ferritin is a naturally occurring protein with high stability and multifunctionality in biological systems. This study aims to utilize a prokaryotic expression system to produce recombinant human heavy-chain ferritin nanoparticles and investigate their targeting ability in brain tissue. The human heavy-chain ferritin gene was cloned into the prokaryotic expression vector pET28a and transformed into Escherichia coli BL21 (DE3) competent cells to explore optimal expression conditions. The recombinant protein was then purified to evaluate its immunoreactivity and characteristics. Additionally, the distribution of the administered protein in normal mice and its permeability in an in vitro blood-brain barrier (BBB) model were measured. The results demonstrate that the purified protein can self-assemble extracellularly into nano-cage structures of approximately 10 nm and is recognized by corresponding antibodies. The protein effectively penetrates the blood-brain barrier and exhibits slow clearance in mouse brain tissue, showing excellent permeability in the in vitro BBB model. This study highlights the stable expression of recombinant human heavy-chain ferritin using the Escherichia coli prokaryotic expression system, characterized by favorable nano-cage structures and biological activity. Its exceptional brain tissue targeting and slow metabolism lay an experimental foundation for its application in neuropharmaceutical delivery and vaccine development fields.


Subject(s)
Blood-Brain Barrier , Brain , Escherichia coli , Ferritins , Nanoparticles , Recombinant Proteins , Animals , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Mice , Blood-Brain Barrier/metabolism , Brain/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nanoparticles/chemistry , Ferritins/metabolism , Ferritins/genetics , Ferritins/chemistry , Apoferritins/metabolism , Apoferritins/genetics , Apoferritins/chemistry , Tissue Distribution
2.
Protein Expr Purif ; 221: 106504, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38782082

ABSTRACT

Reteplase (recombinant plasminogen activator, rPA) is a mutant non-glycosylated tissue-type plasminogen activator (tPA) containing 355 amino acids with longer half-life and promising thrombolytic activity than its original counterpart, full length tPA. In this study, we aimed to produce and optimize the purification process of recombinant tissue-type plasminogen activator (tPA) known as Reteplase (rPA). Reteplase cDNA synthesized from total mRNA isolated from human placenta was PCR amplified, cloned into a pET-28a(+) E. coli expression vector and expressed in Rosetta-gami 2 E. coli (NovagenⓇ) host. rPA was expressed as an inclusion body in E. coli and its biological activity was achieved after single step solubilization, purification and refolding. We exploited the strategy of Slow Refolding using Gradual Dialysis (SRGD) in which a refolding buffer containing glutathione oxidized (1 mM GSSG) and glutathione reduced (3 mM GSH) and pH 9.0 was used. Using the SRGD method, we were able to successfully obtain the protein in its active form. We obtained 4.26 mg of active refolded protein from a 50 mL culture that was scaled up in a bioreactor. The purity and homogeneity of rPA was evaluated by SDS-PAGE, Western blotting and mass spectrometry. Circular dichroism spectroscopy was conducted to evaluate the refolding and stability of the refolded rPA in comparison to reference standard rPA. The thrombolytic potential of rPA was assessed by fibrin plate assay and In Vitro clot lysis assay. The presented protocol offers a viable approach for enhancing both the yield and refolding efficiency of reteplase, potentially resulting in an increase in yield.


Subject(s)
Escherichia coli , Protein Refolding , Recombinant Proteins , Tissue Plasminogen Activator , Tissue Plasminogen Activator/genetics , Tissue Plasminogen Activator/chemistry , Tissue Plasminogen Activator/isolation & purification , Tissue Plasminogen Activator/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Humans , Gene Expression , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , Cloning, Molecular
3.
Anal Bioanal Chem ; 416(12): 3019-3032, 2024 May.
Article in English | MEDLINE | ID: mdl-38573344

ABSTRACT

Inclusion bodies (IBs) are protein aggregates formed as a result of overexpression of recombinant protein in E. coli. The formation of IBs is a valuable strategy of recombinant protein production despite the need for additional processing steps, i.e., isolation, solubilization and refolding. Industrial process development of protein refolding is a labor-intensive task based largely on empirical approaches rather than knowledge-driven strategies. A prerequisite for knowledge-driven process development is a reliable monitoring strategy. This work explores the potential of intrinsic tryptophan and tyrosine fluorescence for real-time and in situ monitoring of protein refolding. In contrast to commonly established process analytical technology (PAT), this technique showed high sensitivity with reproducible measurements for protein concentrations down to 0.01 g L - 1 . The change of protein conformation during refolding is reflected as a shift in the position of the maxima of the tryptophan and tyrosine fluorescence spectra as well as change in the signal intensity. The shift in the peak position, expressed as average emission wavelength of a spectrum, was correlated to the amount of folding intermediates whereas the intensity integral correlates to the extent of aggregation. These correlations were implemented as an observation function into a mechanistic model. The versatility and transferability of the technique were demonstrated on the refolding of three different proteins with varying structural complexity. The technique was also successfully applied to detect the effect of additives and process mode on the refolding process efficiency. Thus, the methodology presented poses a generic and reliable PAT tool enabling real-time process monitoring of protein refolding.


Subject(s)
Inclusion Bodies , Protein Refolding , Spectrometry, Fluorescence , Inclusion Bodies/chemistry , Inclusion Bodies/metabolism , Spectrometry, Fluorescence/methods , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Tryptophan/chemistry , Escherichia coli/metabolism , Escherichia coli/chemistry , Tyrosine/chemistry , Fluorescence , Protein Folding
4.
Appl Microbiol Biotechnol ; 108(1): 160, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252281

ABSTRACT

Virus-like particles (VLPs) are nanometric structures composed of structural components of virions, keeping most of the cellular recognition and internalization properties, but are non-infective as they are deprived of their genetic material. VLPs have been a versatile platform for developing vaccines by carrying their own or heterologous antigenic epitopes. Moreover, VLPs can also be used as nanovessels for encapsulating molecules with therapeutic applications, like enzymes, nucleic acids, and drugs. Parvovirus B19 (B19V) VLPs can be self-assembled in vitro from the denatured major viral particle protein VP2 by equilibrium dialysis. Despite its fair productivity, this process is currently a time-consuming task. Affinity chromatography is used as an efficient step for concentration and purification, but it is only sometimes seen as a method that facilitates the oligomerization of proteins. In this research, we report a novel approach for the in vitro assembly of B19V VLPs through the immobilization of the denatured VP2 into an immobilized metal affinity chromatography (IMAC) column, followed by the on-column folding and the final VLP assembly upon protein elution. This method is suitable for the fast production of B19V VLPs. KEY POINTS: • Biotechnological applications for inclusion bodies • Efficient single-step purification and immobilization strategies • Rapid VLP assembly strategy.


Subject(s)
Bacterial Proteins , Parvovirus B19, Human , Parvovirus B19, Human/genetics , Bacteria , Biotechnology , Chromatography, Affinity
5.
Molecules ; 29(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276597

ABSTRACT

Axl receptor tyrosine kinase and its ligand Gas6 regulate several biological processes and are involved in both the onset and progression of tumor malignancies and autoimmune diseases. Based on its key role in these settings, Axl is considered a promising target for the development of molecules with therapeutic and diagnostic purposes. In this paper, we describe the molecular characterization of the recombinant Ig1 domain of Axl (Ig1 Axl) and its biochemical properties. For the first time, an exhaustive spectroscopic characterization of the recombinant protein through circular dichroism and fluorescence studies is also reported, as well as a binding analysis to its natural ligand Gas6, paving the way for the use of recombinant Ig1 Axl as a bait in drug discovery screening procedures aimed at the identification of novel and specific binders targeting the Axl receptor.


Subject(s)
Axl Receptor Tyrosine Kinase , Neoplasms , Humans , Receptor Protein-Tyrosine Kinases/chemistry , Proto-Oncogene Proteins/metabolism , Ligands , Drug Discovery
6.
Protein Expr Purif ; 208-209: 106278, 2023 08.
Article in English | MEDLINE | ID: mdl-37094772

ABSTRACT

MMP-2 has been reported as the most validated target for cancer progression and deserves further investigation. However, due to the lack of methods for obtaining large amounts of highly purified and bioactive MMP-2, identifying specific substrates and developing specific inhibitors of MMP-2 remains extremely difficult. In this study, the DNA fragment coding for pro-MMP-2 was inserted into plasmid pET28a in an oriented manner, and the resulting recombinant protein was effectively expressed and led to accumulation as inclusion bodies in E. coli. This protein was easy to purify to near homogeneity by the combination of common inclusion bodies purification procedure and cold ethanol fractionation. Then, our results of gelatin zymography and fluorometric assay revealed that pro-MMP-2 at least partially restored its natural structure and enzymatic activity after renaturation. We obtained approximately 11 mg refolded pro-MMP-2 protein from 1 L LB broth, which was higher than other strategies previously reported. In conclusion, a simple and cost-effective procedure for obtaining high amounts of functional MMP-2 was developed, which would contribute to the progress of studies on the gamut of biological action of this important proteinase. Furthermore, our protocol should be appropriate for the expression, purification, and refolding of other bacterial toxic proteins.


Subject(s)
Escherichia coli , Matrix Metalloproteinase 2 , Escherichia coli/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/chemistry , Recombinant Proteins/chemistry , Bacterial Proteins/metabolism , Inclusion Bodies/chemistry , Protein Folding , Protein Refolding
7.
J Cell Biochem ; 123(7): 1183-1196, 2022 07.
Article in English | MEDLINE | ID: mdl-35578735

ABSTRACT

Human Cripto-1 is a member of the epidermal growth factor (EGF)-Cripto-FRL-1-Cryptic (CFC) family family and performs critical roles in cancer and various pathological and developmental processes. Recently we demonstrated that a soluble form of Cripto-1 suppresses the self-renewal and enhances the differentiation of cancer stem cells (CSCs). A functional form of soluble Cripto-1 was found to be difficult to obtain because of the 12 cysteine residues in the protein which impairs the folding process. Here, we optimized the protocol for a T7 expression system, purification from inclusion bodies under denatured conditions refolding of a His-tagged Cripto-1 protein. A concentrations of 0.2-0.4 mM isopropyl ß-D-1-thiogalactopyranoside (IPTG) at 37°C was found to be the optimal concentration for Cripto-1 expression while imidazole at 0.5 M was the optimum concentration to elute the Cripto-1 protein from a Ni-column in the smallest volume. Cation exchange column chromatography of the Cripto-1 protein in the presence of 8 M urea exhibited sufficient elution profile at pH 5, which was more efficient at recovery. The recovery of the protein reached to more than 26.6% after refolding with arginine. The purified Cripto-1 exhibited high affinity to the anti-ALK-4 antibody and suppressed sphere forming ability of CSCs at high dose and induced cell differentiation.


Subject(s)
Neoplasms , Neoplastic Stem Cells , Cell Differentiation , Epidermal Growth Factor/chemistry , Epidermal Growth Factor/pharmacology , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism
8.
Protein Expr Purif ; 193: 106058, 2022 05.
Article in English | MEDLINE | ID: mdl-35114376

ABSTRACT

Neurotrophin signaling pathways are one of the major cascades in neuronal development and involved in many key processes including proliferation, differentiation, apoptosis, synaptic plasticity, axonal growth. In addition to the main classes of neurotrophin receptors, Trk and P75NTR, there are many auxiliary proteins, which can also bind neurotrophins and regulate the signaling pathways. The versatility of interactions between them could explain multiple and completely opposite biological outcomes such as cell survival or apoptosis. Membrane protein SorCS2, a vacuolar protein sorting 10 protein-domain receptor, interacts with P75NTR and controls the activity of Trk receptors. The abnormal functioning of SorCS2 is associated with neurodegenerative diseases, such as Alzheimer's and Huntington's disease. But the mechanism of SorCS2 activation and basis of the interaction with P75NTR has remained elusive. Herein, we describe two efficient approaches for the intracellular domain of the SorCS2 production employing bacterial and cell-free expression systems, as well as purification and refolding protocols. Finally, we characterized the purified protein by DLS and NMR and demonstrated that the protein sample is suitable for structural studies.


Subject(s)
Nerve Growth Factors , Signal Transduction , Apoptosis , Cell Survival , Nerve Growth Factors/metabolism , Protein Transport
9.
Microb Cell Fact ; 21(1): 164, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35978337

ABSTRACT

BACKGROUND: Native-like secondary structures and biological activity have been described for proteins in inclusion bodies (IBs). Tertiary structure analysis, however, is hampered due to the necessity of mild solubilization conditions. Denaturing reagents used for IBs solubilization generally lead to the loss of these structures and to consequent reaggregation due to intermolecular interactions among exposed hydrophobic domains after removal of the solubilization reagent. The use of mild, non-denaturing solubilization processes that maintain existing structures could allow tertiary structure analysis and increase the efficiency of refolding. RESULTS: In this study we use a variety of biophysical methods to analyze protein structure in human growth hormone IBs (hGH-IBs). hGH-IBs present native-like secondary and tertiary structures, as shown by far and near-UV CD analysis. hGH-IBs present similar λmax intrinsic Trp fluorescence to the native protein (334 nm), indicative of a native-like tertiary structure. Similar fluorescence behavior was also obtained for hGH solubilized from IBs and native hGH at pH 10.0 and 2.5 kbar and after decompression. hGH-IBs expressed in E. coli were extracted to high yield and purity (95%) and solubilized using non-denaturing conditions [2.4 kbar, 0.25 M arginine (pH 10), 10 mM DTT]. After decompression, the protein was incubated at pH 7.4 in the presence of the glutathione-oxidized glutathione (GSH-GSSG) pair which led to intramolecular disulfide bond formation and refolded hGH (81% yield). CONCLUSIONS: We have shown that hGH-IBs present native-like secondary and tertiary structures and that non-denaturing methods that aim to preserve them can lead to high yields of refolded protein. It is likely that the refolding process described can be extended to different proteins and may be particularly useful to reduce the pH required for alkaline solubilization.


Subject(s)
Human Growth Hormone , Inclusion Bodies , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Human Growth Hormone/metabolism , Inclusion Bodies/metabolism , Protein Refolding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Solubility
10.
J Biol Chem ; 295(21): 7179-7192, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32299914

ABSTRACT

The E2 glycoprotein of hepatitis C virus (HCV) is the major target of broadly neutralizing antibodies (bNAbs) that are critical for the efficacy of a prophylactic HCV vaccine. We previously showed that a cell culture-derived, disulfide-linked high-molecular-weight (HMW) form of the E2 receptor-binding domain lacking three variable regions, Δ123-HMW, elicits broad neutralizing activity against the seven major genotypes of HCV. A limitation to the use of this antigen is that it is produced only at low yields and does not have a homogeneous composition. Here, we employed a sequential reduction and oxidation strategy to efficiently refold two high-yielding monomeric E2 species, D123 and a disulfide-minimized version (D123A7), into disulfide-linked HMW-like species (Δ123r and Δ123A7r). These proteins exhibited normal reactivity to bNAbs with continuous epitopes on the neutralizing face of E2, but reduced reactivity to conformation-dependent bNAbs and nonneutralizing antibodies (non-NAbs) compared with the corresponding monomeric species. Δ123r and Δ123A7r recapitulated the immunogenic properties of cell culture-derived D123-HMW in guinea pigs. The refolded antigens elicited antibodies that neutralized homologous and heterologous HCV genotypes, blocked the interaction between E2 and its cellular receptor CD81, and targeted the AS412, AS434, and AR3 domains. Of note, antibodies directed to epitopes overlapping with those of non-NAbs were absent. The approach to E2 antigen engineering outlined here provides an avenue for the development of preventive HCV vaccine candidates that induce bNAbs at higher yield and lower cost.


Subject(s)
Glycoproteins/immunology , Hepacivirus/immunology , Hepatitis Antigens/immunology , Immunogenicity, Vaccine , Mutation, Missense , Viral Hepatitis Vaccines/immunology , Viral Proteins/immunology , Amino Acid Substitution , Animals , Antibodies, Neutralizing/immunology , Glycoproteins/genetics , Guinea Pigs , Hepacivirus/genetics , Hepatitis Antibodies/immunology , Hepatitis Antigens/genetics , Humans , Viral Hepatitis Vaccines/genetics , Viral Proteins/genetics
11.
EMBO J ; 36(6): 783-796, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28219929

ABSTRACT

Small heat shock proteins (sHsps) are an evolutionary conserved class of ATP-independent chaperones that protect cells against proteotoxic stress. sHsps form assemblies with aggregation-prone misfolded proteins, which facilitates subsequent substrate solubilization and refolding by ATP-dependent Hsp70 and Hsp100 chaperones. Substrate solubilization requires disruption of sHsp association with trapped misfolded proteins. Here, we unravel a specific interplay between Hsp70 and sHsps at the initial step of the solubilization process. We show that Hsp70 displaces surface-bound sHsps from sHsp-substrate assemblies. This Hsp70 activity is unique among chaperones and highly sensitive to alterations in Hsp70 concentrations. The Hsp70 activity is reflected in the organization of sHsp-substrate assemblies, including an outer dynamic sHsp shell that is removed by Hsp70 and a stable core comprised mainly of aggregated substrates. Binding of Hsp70 to the sHsp/substrate core protects the core from aggregation and directs sequestered substrates towards refolding pathway. The sHsp/Hsp70 interplay has major impact on protein homeostasis as it sensitizes substrate release towards cellular Hsp70 availability ensuring efficient refolding of damaged proteins under favourable folding conditions.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins, Small/metabolism , Protein Aggregates , Protein Refolding
12.
Protein Expr Purif ; 182: 105857, 2021 06.
Article in English | MEDLINE | ID: mdl-33639277

ABSTRACT

TNFR2 is aberrantly expressed on various cancer cells and highly immunosuppressive regulatory T cells (Tregs) accumulated in tumor microenvironment. As an oncoprotein and a stimulator of the immune checkpoint Tregs that promote cancer cell survival and tumor growth, TNFR2 is considered to be a prospective target for cancer immunotherapy with the blockers developed to simultaneously inhibit abundant TNFR2+ tumor-associated Tregs and directly kill TNFR2-expressing tumors. The soluble ectodomain of TNFR2 has also been successfully applied in clinical treatment for TNF-related autoimmune diseases. Research practices on these therapeutic strategies need recombinant protein of human soluble TNFR2 (hsTNFR2); however, mass production of such biologics using eukaryotic cells is generally high-cost in culture materials and growth conditions. This study aimed to establish an efficient methodology to prepare bioactive hsTNFR2 through a prokaryotic expression system. Recombinant vector pMCSG7-hsTNFR2 was constructed and the His-tagged fusion protein expressed in E. coli was enriched in inclusion bodies. Recombinant hsTNFR2 was denatured, refolded, and then purified by affinity chromatography, tag removal, ion-exchange chromatography and gel filtration chromatography. A protein yield of 8.4 mg per liter of bacterial culture liquid with a purity of over 97% was obtained. Purified hsTNFR2 exhibited strong affinity to human TNF-α with a KD of 10.5 nM, and inhibited TNF-α-induced cytotoxicity in L929 cells with an EC50 of 0.57 µg/ml. The biological activity assessed in vitro indicated that this soluble protein can be promisingly used in drug discovery for immunotherapy of TNFR2+ cancers and treatment of autoimmune diseases featured by TNF-α overload.


Subject(s)
Escherichia coli , Gene Expression , Receptors, Tumor Necrosis Factor, Type II , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Receptors, Tumor Necrosis Factor, Type II/biosynthesis , Receptors, Tumor Necrosis Factor, Type II/chemistry , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility
13.
Protein Expr Purif ; 184: 105878, 2021 08.
Article in English | MEDLINE | ID: mdl-33812004

ABSTRACT

Smad8 is a transcriptional regulator that participates in the intracellular signaling pathway of the transforming growth factor-ß (TGF-ß) family. Full-length Smad8 is an inactive protein in the absence of ligand stimulation. The expression of a truncated version of the protein lacking the MH1 domain (cSmad8) revealed constitutive activity in genetically engineered mesenchymal stem cells and, in combination with BMP-2, exhibited a tendon cell-inducing potential. To further explore function and applicability of Smad8 in regenerative medicine recombinant production is required. Herein, we further engineered cSmad8 to include the transactivation signal (TAT) of the human immunodeficiency virus (HIV) to allow internalization into cells. TAT-hcSmad8 was produced in endotoxin-free ClearColi® BL21 (DE3), refolded from inclusion bodies (IBs) and purified by Heparin chromatography. Analysis of TAT-hcSmad8 by thermal shift assay revealed the formation of a hydrophobic core. The presence of mixed α-helixes and ß-sheets, in line with theoretical models, was proven by circular dichroism. TAT-hcSmad8 was successfully internalized by C3H10T1/2 cells, where it was mainly found in the cytoplasm and partially in the nucleus. Finally, it was shown that TAT-hcSmad8 exhibited biological activity in C3H10T1/2 cells after co-stimulation with BMP-2.


Subject(s)
Escherichia coli , Inclusion Bodies , Protein Refolding , Smad8 Protein , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Smad8 Protein/biosynthesis , Smad8 Protein/chemistry , Smad8 Protein/genetics , Smad8 Protein/isolation & purification
14.
Appl Microbiol Biotechnol ; 105(6): 2243-2260, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33598720

ABSTRACT

Overexpression of recombinant proteins in Escherichia coli results in misfolded and non-active protein aggregates in the cytoplasm, so-called inclusion bodies (IB). In recent years, a change in the mindset regarding IBs could be observed: IBs are no longer considered an unwanted waste product, but a valid alternative to produce a product with high yield, purity, and stability in short process times. However, solubilization of IBs and subsequent refolding is necessary to obtain a correctly folded and active product. This protein refolding process is a crucial downstream unit operation-commonly done as a dilution in batch or fed-batch mode. Drawbacks of the state-of-the-art include the following: the large volume of buffers and capacities of refolding tanks, issues with uniform mixing, challenging analytics at low protein concentrations, reaction kinetics in non-usable aggregates, and generally low re-folding yields. There is no generic platform procedure available and a lack of robust control strategies. The introduction of Quality by Design (QbD) is the method-of-choice to provide a controlled and reproducible refolding environment. However, reliable online monitoring techniques to describe the refolding kinetics in real-time are scarce. In our view, only monitoring and control of re-folding kinetics can ensure a productive, scalable, and versatile platform technology for re-folding processes. For this review, we screened the current literature for a combination of online process analytical technology (PAT) and modeling techniques to ensure a controlled refolding process. Based on our research, we propose an integrated approach based on the idea that all aspects that cannot be monitored directly are estimated via digital twins and used in real-time for process control. KEY POINTS: • Monitoring and a thorough understanding of refolding kinetics are essential for model-based control of refolding processes. • The introduction of Quality by Design combining Process Analytical Technology and modeling ensures a robust platform for inclusion body refolding.


Subject(s)
Inclusion Bodies , Protein Folding , Kinetics , Protein Refolding , Recombinant Proteins/genetics , Technology
15.
Angew Chem Int Ed Engl ; 60(19): 10865-10870, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33595165

ABSTRACT

Nanochaperones have been designed and used for regulating the (re)folding of proteins, treating protein misfolding-related diseases, and, more recently, in drug delivery. Despite various successes, a complete understanding of the working mechanisms remains elusive, which represents a challenge for the realization of their full potential. Here, we thoroughly investigated the functioning of differently charged nanochaperones that regulate the refolding of thermally denatured lysozyme. We found that the balance between the capture and release of lysozyme clients that are controlled by nanochaperones plays a key role in regulating refolding. More importantly, the findings could be applied to other enzymes with various physicochemical properties. On the basis of these results, we could recover the activity of enzymes with high efficiency either after 20 days of storage at 40 °C or heating at high temperatures for 30-60 min. Our results provide important new design strategies for nanochaperone systems to improve their properties and expand their applications.


Subject(s)
Molecular Chaperones/chemistry , Muramidase/chemistry , Temperature , Muramidase/metabolism , Particle Size , Protein Denaturation , Protein Folding
16.
FASEB J ; 33(10): 10780-10793, 2019 10.
Article in English | MEDLINE | ID: mdl-31287959

ABSTRACT

The involvement of transactivation response (TAR) DNA-binding protein 43 (TDP-43) in neurodegenerative diseases was revealed in 2006, when it was first reported to be the main component of the intracellular inclusions in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. After 12 yr it is not yet possible to purify to a reasonable yield and in a reproducible manner a stable full-length protein, which has limited so far the characterization of its structure, function, molecular interactors, and pathobiology. Using a novel protocol we have achieved the purification of the full-length TDP-43, with both a short pectate lyase B tag and a glutathione S-transferase tag, which consisted in its expression in bacteria, solubilization from inclusion bodies, purification under denaturing conditions, refolding, and a final size exclusion chromatography (SEC) step. Differential scanning fluorimetry was used to find the best buffers and combination of additives to increase both its solubility and its stability. The protein is pure, as determined with electrophoresis, Western blotting, and mass spectrometry; properly refolded, as revealed by circular dichroism and fluorescence spectroscopies; functional, because it binds to DNA and protein partners; and stable to degradation and aggregation in a physiologic solution. Analyses with dynamic light scattering and SEC revealed that the protein is a dimer.-Vivoli Vega, M., Nigro, A., Luti, S., Capitini, C., Fani, G., Gonnelli, L., Boscaro, F., Chiti, F. Isolation and characterization of soluble human full-length TDP-43 associated with neurodegeneration.


Subject(s)
DNA-Binding Proteins/isolation & purification , Neurodegenerative Diseases/metabolism , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Chromatography, Gel , Circular Dichroism , Cloning, Molecular , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dynamic Light Scattering , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Humans , Mass Spectrometry , Neurodegenerative Diseases/genetics , Protein Folding , Protein Stability , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility
17.
Protein Expr Purif ; 166: 105508, 2020 02.
Article in English | MEDLINE | ID: mdl-31589919

ABSTRACT

The incorporation of fluorine has been shown to improve the biophysical and bioactive properties of several organic compounds. However, sustainable strategies of fluorination are needed. Fluorinases have the unique ability to catalyse a C-F bond, hence, have vast potential to be applied as biocatalysts in the preparation of fine chemicals. But fluorinases are extremely rare in nature with only five representatives isolated thus far. Moreover, the heterologous expression of fluorinases is challenged by low yields of soluble protein. This study describes the identification of a fluorinase from Actinopolyspora mzabensis. Overexpression of the Am-fluorinase in E. coli BL21 (DE3) resulted in the formation of inclusion bodies (IBs). The enzyme was recovered from IBs, solubilised in 8 M urea, and successfully refolded into a biologically active form. Following hydrophobic interaction chromatography, >80 mg of the active fluorinase was obtained at a purity suitable for biocatalytic applications. An additional gel filtration step gave ≥95% pure Am-fluorinase. Using LC-MS/MS, the optimal pH for activity was found at 7.2 while the optimal temperature was 65 °C. At these conditions, the enzyme exhibited an activity of 0.44 ±â€¯0.03 µM min-1 mg-1. Furthermore, the Am-fluorinase showed exceptional stability at 25 °C. Preliminary results suggest that the newly identified Am-fluorinase is relatively thermostable.


Subject(s)
Actinobacteria/enzymology , Bacterial Proteins/chemistry , Oxidoreductases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Chromatography, High Pressure Liquid , Escherichia coli , Hydrophobic and Hydrophilic Interactions , Inclusion Bodies , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Protein Conformation , Protein Folding , Protein Stability , Solubility , Tandem Mass Spectrometry
18.
Protein Expr Purif ; 176: 105732, 2020 12.
Article in English | MEDLINE | ID: mdl-32866612

ABSTRACT

Hydrophobins are low molecular weight proteins secreted by fungi that are extremely surface-active and able to self-assemble into larger structures. Due to their unusual biochemical properties, hydrophobins are an attractive target for commercial applications such as drug emulsification and surface modification. When produced in E. coli, hydrophobins are often not soluble and need to be refolded. In this work we use SHuffle T7 Express E. coli coupled with glutathione redox buffers to produce and refold four distinct class IB hydrophobins that originate from Phanerochaete carnosa (PC1), Wallemia ichthyophaga (WI1), Serpula lacrymans (SL1), and Schizophyllum commune (SC16). Proper refolding and function of these purified hydrophobins was confirmed using nuclear magnetic resonance spectroscopy and thioflavin T assays. These results indicate that class IB hydrophobins can be consistently produced and purified from E. coli, aiding future structural and biochemical studies that require highly pure hydrophobins.


Subject(s)
Basidiomycota/genetics , Fungal Proteins , Gene Expression , Protein Refolding , Basidiomycota/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
19.
Protein Expr Purif ; 175: 105696, 2020 11.
Article in English | MEDLINE | ID: mdl-32681955

ABSTRACT

Vacuolating cytotoxin A (VacA) is a highly polymorphic virulence protein produced by the human gastric pathogen Helicobacter pylori which can cause gastritis, peptic ulcer and gastric cancer. Here, we present an optimized protein preparation of the mature full-length VacA variants (m1-and m2-types) and their 33-kDa N-terminal and 55/59-kDa C-terminal domains as biologically active recombinant proteins fused with an N-terminal His(6) tag. All recombinant VacA constructs were over-expressed in Escherichia coli as insoluble inclusions which were soluble when phosphate buffer (pH 7.4) was supplemented with 5-6 M urea. Upon immobilized-Ni2+ affinity purification under 5-M urea denaturing conditions, homogenous products (>95% purity) of 55/59-kDa domains were consistently obtained while only ~80% purity of both mature VacA variants and the 33-kDa truncate was achieved, thus requiring additional purification by size-exclusion chromatography. After successive refolding via optimized stepwise dialysis, all refolded VacA proteins were proven to possess both cytotoxic and vacuolating activity against cultured human gastric epithelial cells albeit the activity observed for VacA-m2 was lower than the m1-type variant. Such an optimized protocol described herein was effective for production of high-purity recombinant VacA proteins in large amounts (~30-40 mg per liter culture) that would pave the way for further studies on sequence-structure and function relationships of different VacA variants.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Helicobacter pylori/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Toxins/biosynthesis , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Helicobacter pylori/metabolism , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
20.
Int J Mol Sci ; 21(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825419

ABSTRACT

HspA1A, a molecular chaperone, translocates to the plasma membrane (PM) of stressed and cancer cells. This translocation results in HspA1A's cell-surface presentation, which renders tumors radiation insensitive. To specifically inhibit the lipid-driven HspA1A's PM translocation and devise new therapeutics it is imperative to characterize the unknown HspA1A's lipid-binding regions and determine the relationship between the chaperone and lipid-binding functions. To elucidate this relationship, we determined the effect of phosphatidylserine (PS)-binding on the secondary structure and chaperone functions of HspA1A. Circular dichroism revealed that binding to PS resulted in minimal modification on HspA1A's secondary structure. Measuring the release of inorganic phosphate revealed that PS-binding had no effect on HspA1A's ATPase activity. In contrast, PS-binding showed subtle but consistent increases in HspA1A's refolding activities. Furthermore, using a Lysine-71-Alanine mutation (K71A; a null-ATPase mutant) of HspA1A we show that although K71A binds to PS with affinities similar to the wild-type (WT), the mutated protein associates with lipids three times faster and dissociates 300 times faster than the WT HspA1A. These observations suggest a two-step binding model including an initial interaction of HspA1A with lipids followed by a conformational change of the HspA1A-lipid complex, which accelerates the binding reaction. Together these findings strongly support the notion that the chaperone and lipid-binding activities of HspA1A are dependent but the regions mediating these functions do not overlap and provide the basis for future interventions to inhibit HspA1A's PM-translocation in tumor cells, making them sensitive to radiation therapy.


Subject(s)
HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Liposomes/metabolism , Phosphatidylserines/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Substitution , Animals , Circular Dichroism , HSP70 Heat-Shock Proteins/genetics , Liposomes/chemistry , Lysine/genetics , Mice , Molecular Chaperones/metabolism , Mutation , Phosphatidylcholines/metabolism , Phosphatidylserines/chemistry , Protein Binding , Protein Refolding , Protein Structure, Secondary , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL