Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 263
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Bioorg Med Chem Lett ; 111: 129904, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39069105

ABSTRACT

During the search for protein tyrosine phosphatase 1B (PTP1B) inhibitory compounds from the natural resources, two new serratane triterpenes, 3-O-dihydro-p-coumaroyltohogenol (1) and 21-O-acetyltohogenol (2), along with four known serratane triterpenes (3-6), were isolated from the whole plant of Huperzia serrata. The chemical structures of compounds 1 and 2 were determined by NMR study, HRMS analysis, and chemical modification. All isolates were evaluated for their PTP1B inhibitory activities. Among the isolates, compounds 1, 3, 5 and 6 exhibit moderate inhibitory activities against PTP1B. Kinetic studies demonstrated that they are competitive inhibitors. Molecular docking studies support these experimental results by showing that compounds 1, 3, 5 and 6 interact with the active site of PTP1B, clarifying the structure-activity relationship. This study suggests that serratane triterpenes from H. serrata have potential as starting skeletons for anti-diabetes or anti-obesity agents.


Subject(s)
Enzyme Inhibitors , Molecular Docking Simulation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Triterpenes , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Humans , Molecular Structure , Dose-Response Relationship, Drug
2.
Bioorg Chem ; 143: 106985, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38007892

ABSTRACT

A series of chromone derivatives bearing thiazolidine-2,4-dione moiety (5 âˆ¼ 37) were synthesized and evaluated for their PTP1B inhibitory activity, interaction analysis and effects on insulin pathway in palmitic acid (PA)-induced HepG2 cells. The results showed that all derivatives presented potential PTP1B inhibitory activity with IC50 values of 1.40 ± 0.04 âˆ¼ 16.83 ± 0.54 µM comparing to that of positive control lithocholic acid (IC50: 9.62 ± 0.14 µM). Among them, compound 9 had the strongest PTP1B inhibitory activity with the IC50 value of 1.40 ± 0.04 µM. Inhibition kinetic study revealed that compound 9 was a reversible mixed-type inhibitor against PTP1B. CD spectra results confirmed that compound 9 changed the secondary structure of PTP1B by their interaction. Molecular docking explained the detailed binding between compound 9 and PTP1B. Compound 9 also showed 19-fold of selectivity for PTP1B over TCPTP. Moreover compound 9 could recovery PA-induced insulin resistance by increasing the phosphorylation of IRSI and AKT. CETSA results showed that compound 9 significantly increased the thermal stability of PTP1B.


Subject(s)
Enzyme Inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Thiazolidinediones , Molecular Docking Simulation , Structure-Activity Relationship , Thiazolidines , Enzyme Inhibitors/chemistry , Drug Design , Palmitic Acid/pharmacology
3.
J Enzyme Inhib Med Chem ; 39(1): 2360063, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38873930

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease mainly caused by insulin resistance, which can lead to a series of complications such as cardiovascular disease, retinopathy, and its typical clinical symptom is hyperglycaemia. Glucosidase inhibitors, including Acarbose, Miglitol, are commonly used in the clinical treatment of hypoglycaemia. In addition, Protein tyrosine phosphatase 1B (PTP1B) is also an important promising target for the treatment of T2DM. Gynostemma pentaphyllum is a well-known oriental traditional medicinal herbal plant, and has many beneficial effects on glucose and lipid metabolism. In the present study, three new and nine known dammarane triterpenoids isolated from G. pentaphyllum, and their structures were elucidated by spectroscopic methods including HR-ESI-MS,1H and 13C NMR and X-ray crystallography. All these compounds were evaluated for inhibitory activity against α-glucosidase, α-amylase and PTP1B. The results suggested that compounds 7∼10 were potential antidiabetic agents with significantly inhibition activity against PTP1B in a dose-dependent manner.


Subject(s)
Dose-Response Relationship, Drug , Enzyme Inhibitors , Gynostemma , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Gynostemma/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Molecular Structure , Structure-Activity Relationship , alpha-Glucosidases/metabolism , Humans , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Models, Molecular , Crystallography, X-Ray , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification
4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000313

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase-a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Signal Transduction , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Animals , Inflammation/metabolism , Inflammation/immunology , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism
5.
IUBMB Life ; 75(2): 161-180, 2023 02.
Article in English | MEDLINE | ID: mdl-36565478

ABSTRACT

This study was designed to screen novel thiourea derivatives against different enzymes, such as α-amylase, α-glucosidase, protein tyrosine phosphatase 1 B, and advanced glycated end product (AGEs). A cytotoxicity analysis was performed using rat L6 myotubes and molecular docking analysis was performed to map the binding interactions between the active compounds and α-amylase and α-glucosidase. The data revealed the potency of five compounds, including E (1-(2,4-difluorophenyl)-3-(3,4-dimethyl phenyl) thiourea), AG (1-(2-methoxy-5-(trifluoromethyl) phenyl)-3-(3-methoxy phenyl) thiourea), AF (1-(2,4-dichlorophenyl)-3-(4-ethylphenyl) thiourea), AD (1-(2,4-dichlorophenyl)-3-(4-ethylphenyl) thiourea), and AH (1-(2,4-difluorophenyl)-3-(2-iodophenyl) thiourea), showed activity against α-amylase. The corresponding percentage inhibitions were found to be 85 ± 1.9, 82 ± 0.7, 75 ± 1.2, 72 ± 0.4, and 65 ± 1.1%, respectively. These compounds were then screened using in vitro assays. Among them, AH showed the highest activity against α-glucosidase, AGEs, and PTP1B, with percentage inhibitions of 86 ± 0.4% (IC50  = 47.9 µM), 85 ± 0.7% (IC50  = 49.51 µM), and 85 ± 0.5% (IC50  = 79.74 µM), respectively. Compound AH showed an increased glucose uptake at a concentration of 100 µM. Finally, an in vivo study was conducted using a streptozotocin-induced diabetic mouse model and PTP1B expression was assessed using real-time PCR. Additionally, we examined the hypoglycemic effect of compound AH in diabetic rats compared to the standard drug glibenclamide.


Subject(s)
Diabetes Mellitus, Experimental , alpha-Glucosidases , Mice , Rats , Animals , alpha-Glucosidases/genetics , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Molecular Docking Simulation , Maillard Reaction , Hypoglycemic Agents/pharmacology , Glycation End Products, Advanced/genetics , alpha-Amylases , Thiourea/pharmacology
6.
Bioorg Chem ; 132: 106348, 2023 03.
Article in English | MEDLINE | ID: mdl-36657274

ABSTRACT

The phytochemical study of Limonium gmelinii roots resulted in the isolation of five lignanamides (1-5). Among them, limoniumins J, K, and M (1, 2, and 4) are undescribed compounds, limoniumin L (3) is a new naturally occurring lignanamide, and limoniumin B (5) is a known compound which showed PTP1B inhibition activity with an IC50 value of 5.05 ± 2.44 µM in our previous work. Spectroscopic data analysis, including 1D and 2D NMR and HRESIMS experiments, established the chemical structures of limoniumins J - M (1-4). Compounds 1-4 showed PTP1B inhibition activity, among which compound 3 showed the most potent PTP1B inhibition with an IC50 value of 2.07 ± 0.05 µM. Compounds 3 and 5 could significantly increase cellular glucose consumption and glucose uptake in L6 muscle cells and could synergize with insulin to promote glucose consumption and glucose uptake in a concentration-dependent manner. The treatment of compound 3 also promoted glycogen synthesis in skeletal muscle cells. Western blot analysis demonstrated that the good hypoglycemic effect of compounds 3 and 5 was achieved by activating PI3K/AKT signaling pathway to promote glucose consumption, glucose uptake, and glycogen synthesis. Furthermore, studies on molecular docking revealed the potent interactions between these bioactive substances and the PTP1B protein.


Subject(s)
Plumbaginaceae , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plumbaginaceae/metabolism , Molecular Docking Simulation , Signal Transduction , Glucose/metabolism , Glycogen/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1
7.
J Enzyme Inhib Med Chem ; 38(1): 2281263, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37965892

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a key factor and regulator of glucose, lipid metabolism throughout the body, and a promising target for treatment of type 2 diabetes mellitus (T2DM). Gynostemma pentaphyllum is a famous oriental traditional medicinal herbal plant and functional food, which has shown many beneficial effects on glucose and lipid metabolism. The aim of the present study is to assess the inhibitory activity of five new and four known dammarane triterpenoids isolated from the hydrolysate product of total G. pentaphyllum saponins. The bioassay data showed that all the compounds exhibited significant inhibitory activity against PTP1B. The structure-activity relationship showed that the strength of PTP1B inhibitory activity was mainly related to the electron-donating group on its side chain. Molecular docking analysis suggested that its mechanism may be due to the formation of competitive hydrogen bonding between the electron-donating moiety and the Asp48 amino acid residues on the PTP1B protein.


Subject(s)
Diabetes Mellitus, Type 2 , Saponins , Triterpenes , Saponins/chemistry , Gynostemma/chemistry , Gynostemma/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Molecular Docking Simulation , Triterpenes/chemistry , Glucose , Dammaranes
8.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047505

ABSTRACT

Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus. This study examined the therapeutic effects of sitagliptin, a dipeptidyl peptidase inhibitor, on DN and explored the underlying mechanism. Male Wistar albino rats (n = 12) were intraperitoneally administered a single dose of streptozotocin (30 mg/kg) to induce diabetes. Streptozotocin-treated and untreated rats (n = 12) were further divided into normal control, normal sitagliptin-treated control, diabetic control, and sitagliptin-treated diabetic groups (n = 6 in each). The normal and diabetic control groups received normal saline, whereas the sitagliptin-treated control and diabetic groups received sitagliptin (100 mg/kg, p.o.). We assessed the serum levels of DN and inflammatory biomarkers. Protein tyrosine phosphatase 1 B (PTP1B), phosphorylated Janus kinase 2 (P-JAK2), and phosphorylated signal transducer activator of transcription (P-STAT3) levels in kidney tissues were assessed using Western blotting, and kidney sections were examined histologically. Sitagliptin reduced DN and inflammatory biomarkers and the expression of PTP1B, p-JAK2, and p-STAT3 (p < 0.001) and improved streptozotocin-induced histological changes in the kidney. These results demonstrate that sitagliptin ameliorates inflammation by inhibiting DPP-4 and consequently modulating the PTP1B-related JAK/STAT axis, leading to the alleviation of DN.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Animals , Rats , Male , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Janus Kinases/metabolism , Streptozocin/pharmacology , Phosphoric Monoester Hydrolases/metabolism , Signal Transduction , Rats, Wistar , STAT Transcription Factors/metabolism , Biomarkers
9.
Int J Mol Sci ; 24(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37628991

ABSTRACT

Type 2 diabetes (T2D) is one of the most common diseases and the 8th leading cause of death worldwide. Individuals with T2D are at risk for several health complications that reduce their life expectancy and quality of life. Although several drugs for treating T2D are currently available, many of them have reported side effects ranging from mild to severe. In this work, we present the synthesis in a gram-scale as well as the in silico and in vitro activity of two semisynthetic glycyrrhetinic acid (GA) derivatives (namely FC-114 and FC-122) against Protein Tyrosine Phosphatase 1B (PTP1B) and α-glucosidase enzymes. Furthermore, the in vitro cytotoxicity assay on Human Foreskin fibroblast and the in vivo acute oral toxicity was also conducted. The anti-diabetic activity was determined in streptozotocin-induced diabetic rats after oral administration with FC-114 or FC-122. Results showed that both GA derivatives have potent PTP1B inhibitory activity being FC-122, a dual PTP1B/α-glucosidase inhibitor that could increase insulin sensitivity and reduce intestinal glucose absorption. Molecular docking, molecular dynamics, and enzymatic kinetics studies revealed the inhibition mechanism of FC-122 against α-glucosidase. Both GA derivatives were safe and showed better anti-diabetic activity in vivo than the reference drug acarbose. Moreover, FC-114 improves insulin levels while decreasing LDL and total cholesterol levels without decreasing HDL cholesterol.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Glycyrrhetinic Acid , Humans , Animals , Rats , Diabetes Mellitus, Experimental/drug therapy , Molecular Docking Simulation , Quality of Life , alpha-Glucosidases , Glycyrrhetinic Acid/pharmacology
10.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37298571

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.


Subject(s)
Neoplasms , Phosphoric Monoester Hydrolases , Humans , Hypoglycemic Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Drug Discovery , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Enzyme Inhibitors/pharmacology
11.
Molecules ; 28(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36838572

ABSTRACT

Bioconversion of biosynthetic heterocyclic compounds has been utilized to produce new semisynthetic pharmaceuticals and study the metabolites of bioactive drugs used systemically. In this investigation, the biotransformation of natural heterocyclic alkaloid papaverine via filamentous fungi was explored. Molecular docking simulations, using protein tyrosine phosphatase 1B (PTP1B), α-glucosidase and pancreatic lipase (PL) as target enzymes, were performed to investigate the antidiabetic potential of papaverine and its metabolites in silico. The metabolites were isolated from biotransformation of papaverine with Cunninghamella elegans NRRL 2310, Rhodotorula rubra NRRL y1592, Penicillium chrysogeneum ATCC 10002 and Cunninghamella blackesleeana NRRL 1369 via reduction, demethylation, N-oxidation, oxidation and hydroxylation reactions. Seven metabolites were isolated: namely, 3,4-dihydropapaverine (metabolite 1), papaveroline (metabolite 2), 7-demethyl papaverine (metabolite 3), 6,4'-didemethyl papaverine (metabolite 4), papaverine-3-ol (metabolite 5), papaverinol (metabolite 6) and papaverinol N-oxide (metabolite 7). The structural elucidation of the metabolites was investigated with 1D and 2D NMR and mass spectroscopy (EI and ESI). The molecular docking studies showed that metabolite 7 exhibited better binding interactions with the target enzymes PTP1B, α-glucosidase and PL than did papaverine. Furthermore, papaverinol-N-oxide (7) also displayed inhibition of α-glucosidase and lipase enzymes comparable to that of their ligands (acarbose and orlistat, respectively), as unveiled with an in silico ADMET profile, molecular docking and molecular dynamics studies. In conclusion, this study provides evidence for enhanced inhibition of PTP1B, α-glucosidase and PL via some papaverine fungal transformation products and, therefore, potentially better antidiabetic and antiobesity effects than those of papaverine and other known therapeutic agents.


Subject(s)
Hypoglycemic Agents , Papaverine , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , alpha-Glucosidases/metabolism , Biotransformation , Lipase/metabolism , Oxides
12.
Exp Dermatol ; 31(2): 202-213, 2022 02.
Article in English | MEDLINE | ID: mdl-34370343

ABSTRACT

Keloid is a fibroproliferative disorder resulting from trauma, characterized by abnormal activation of keloid fibroblasts and excessive deposition of extracellular matrix (ECM). It affects life quality of patients and lacks of effective therapeutic targets. Protein tyrosine phosphatase 1B (PTP1B) belongs to the protein tyrosine phosphatases and participates in many cellular processes such as metabolism, proliferation and motility. It has been reported that PTP1B negatively regulated diabetic wound healing and tumor progression. However, its effects in keloid remain unclear. Here, we aimed to evaluate the effects of PTP1B on keloid fibroblasts which play essential roles in keloids pathogenesis. Our results revealed that PTP1B expression was decreased both in keloid tissues and in keloid fibroblasts compared to healthy controls. Keloid fibroblasts (KFs) showed higher cell proliferation, motility, ECM production and ERK activity than normal fibroblasts (NFs). Overexpression of PTP1B in KFs and NFs inhibited cell proliferation, motility, ECM synthesis and the MAPK/ERK signalling pathway while knockdown of PTP1B showed converse effects. The rescue experiments with ERK inhibitor further verified that MAPK/ERK signalling pathway involved in PTP1B regulatory network. Taken together, our findings indicated that overexpression of PTP1B suppressed keloid fibroblasts bio-behaviours and promoted their phenotype switch to normal cells via inhibiting the MAPK/ERK signalling pathway, suggesting it may be a potential anti-keloid therapy.


Subject(s)
Keloid , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Cell Proliferation , Cells, Cultured , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , Keloid/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/pharmacology
13.
Anal Biochem ; 648: 114671, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35367218

ABSTRACT

In this work, a lateral flow immunoassay (LFIA) with peptide functionalized gold nanoparticles (termed as biotin-ppeptide-AuNPs) has been developed for rapid, semi-quantitative detection of PTP1B activity without using any sophisticated equipment. In this method, the anti-phosphotyrosine (anti-pY) monoclonal antibody and streptavidin were used as test line and control line, respectively. The biotin-ppeptide-AuNPs contain 10% biotinylated peptide ligand carry a motif SDGHEpYIYVDP with pY (phosphotyrosine) and 90% pentapeptide (CALNN) ligand, which are used as PTP1B substrates and LFIA labelling probes. The experimental results demonstrate that the as-proposed LFIA with biotin-ppeptide-AuNPs exhibits a wide linear range (from 50 ng/mL to 10 µg/mL), a relatively low limit of detection (LOD, 44 ng/mL), and good specificity. In addition, the LFIA with biotin-ppeptide-AuNPs has been successfully used to evaluate activity levels of PTP1B in four cell lysates and the detection results exhibit a consistent trend with that of commercial kit.


Subject(s)
Gold , Metal Nanoparticles , Biotin , Immunoassay/methods , Ligands , Limit of Detection , Peptides , Protein Tyrosine Phosphatase, Non-Receptor Type 1
14.
Crit Rev Food Sci Nutr ; 62(15): 4095-4151, 2022.
Article in English | MEDLINE | ID: mdl-33554619

ABSTRACT

Type 2 diabetes (T2D) is an expanding global health problem, resulting from defects in insulin secretion and/or insulin resistance. In the past few years, both protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl peptidase-4 (DPP-4), as well as their role in T2D, have attracted the attention of the scientific community. PTP1B plays an important role in insulin resistance and is currently one of the most promising targets for the treatment of T2D, since no available PTP1B inhibitors were still approved. DPP-4 inhibitors are among the most recent agents used in the treatment of T2D (although its use has been associated with possible cardiovascular adverse events). The antidiabetic properties of flavonoids are well-recognized, and include inhibitory effects on the above enzymes, although hitherto not therapeutically explored. In the present study, a comprehensive review of the literature of both synthetic and natural isolated flavonoids as inhibitors of PTP1B and DPP-4 activities is made, including their type of inhibition and experimental conditions, and structure-activity relationship, covering a total of 351 compounds. We intend to provide the most favorable chemical features of flavonoids for the inhibition of PTP1B and DPP-4, gathering information for the future development of compounds with improved potential as T2D therapeutic agents.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors , Insulin Resistance , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Enzyme Inhibitors/chemistry , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Hypoglycemic Agents/chemistry , Phosphoric Monoester Hydrolases/therapeutic use , Structure-Activity Relationship
15.
Bioorg Chem ; 121: 105626, 2022 04.
Article in English | MEDLINE | ID: mdl-35255350

ABSTRACT

The aim of this review was to discuss an overview of type 2 diabetes; biology of PTP1B; role of PTP1B in metabolic disorders; and recent updates in the development of PTP1B inhibitors reported in literature since 1994. In this study, extensive literature search was carried out on PTP1B inhibitors of natural as well as synthetic origin in various scientific databases and research articles related to discovery of PTP1B inhibitors were selected for this study. Protein tyrosine phosphatase 1B (PTP1B) is an important therapeutic target for several human diseases including type 2 diabetes, obesity and cancer because of its seminal part as a negative modulator in both insulin and leptin signaling pathways. A large number of molecules of broad chemical diversity were reported as potent and selective PTP1B inhibitors over other protein tyrosine phosphatases. Several of these molecules have shown their potential in the treatment of various human diseases including type 2 diabetes, obesity, inflammation and cancer in various animal models. But only a very limited number of PTP1B inhibitors (including ertiprotafib, trodusquemine and JTT-551) has entered clinical trials and are finally withdrawn owing to their unsatisfactory effectiveness and undesirable adverse effects. Consequently, it is still highly imperative and of great importance to develop potent, highly selective and safe PTP1B inhibitors.


Subject(s)
Diabetes Mellitus, Type 2 , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Insulin , Obesity/drug therapy , Obesity/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
16.
Bioorg Med Chem Lett ; 53: 128422, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34710624

ABSTRACT

Three new germacrane-type sesquiterpene lactones (1-3) were isolated alongside seven known related congeners (4-10) from the leaves of Eupatorium chinense L. (Compositae). The planar structures of 1-3 were elucidated by their spectroscopic data, including 1D and 2D NMR spectra. The relative and absolute configurations of 1-3 were determined using NOESY experiments and electronic circular dichroism analyses. Compounds 1, 4, 5, and 7 inhibited protein tyrosine phosphatase (PTP) 1B activity with IC50 values of 25, 11, 28, and 24 µM, respectively. Among these, compound 4 exhibited an inhibitory effect on T-cell PTP (TCPTP) with an IC50 value of 25 µM. To our knowledge, this is the first study demonstrating the PTP inhibitory activity of the germacrane sesquiterpenes. The results show that compound 4 acts as an inhibitor of both PTP1B and TCPTP.


Subject(s)
Enzyme Inhibitors/pharmacology , Eupatorium/chemistry , Plant Leaves/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Sesquiterpenes, Germacrane/pharmacology , Density Functional Theory , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Molecular Structure , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/isolation & purification , Structure-Activity Relationship
17.
BMC Endocr Disord ; 21(1): 173, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34445970

ABSTRACT

BACKGROUND: Sleeve gastrectomy (SG) is a profoundly effective operation for severe obese patients, but is closely associated with bone mass loss. Previous studies have reported changes of various serum factors which may be associated with bone mass loss after SG. However, those results are contradictory. In this study, we assessed the effects of SG on bone mass, microstructure of femurs, and changes in bone turnover markers (BTMs), serum adipokines, inflammatory factors and gastrointestinal hormones after SG in high-fat diet (HFD) induced obese rats. METHODS: Eight-week-old male Sprague-Dawley (SD) rats were fed with HFD to induce obesity. Then, SG and sham surgery were performed in anesthetized obese rats. SD rats in control group were fed with standard chow. Microstructure of femurs was scanned and analyzed by micro-computed tomography in control group, HFD sham group and HFD SG group. Serum inflammatory factors, adipokines markers, gastrointestinal hormones and BTMs were also measured. RESULTS: Bone mineral density (BMD) of trabecular bone in both HFD sham group and HFD SG group were remarkably decreased compared with control group. All serum BTMs were significantly higher in HFD SG group than HFD sham group. In the meantime, serum levels of several important inflammatory factors, gastrointestinal hormones and adipokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, monocyte chemoattractant protein-1(MCP-1), ghrelin, insulin and leptin in HFD SG group were remarkably reduced compared with HFD sham group, whereas glucagon-like peptide-1 (GLP-1), adiponectin, fibroblast growth factor (FGF)-19 and FGF-21 were dramatically increased after SG. Protein tyrosine phosphatase 1B (PTP1B) was significantly increased in the HFD sham group than control group. Spearman's correlation analysis indicated that serum osteocalcin (OC) and 25-hydroxy vitamin D3 (25(OH)D3) were positively correlated with BMD of trabecular bone, whereas serum PTP1B and TNF-α were negatively related to BMD of trabecular bone. CONCLUSIONS: SG aggravates bone mass loss and activates bone remodeling in obese rats. Levels of BTMs, adipokines, inflammatory factors, and gastrointestinal hormones could be affected by SG in obese rats. Serum PTP1B level might be associated with abnormal bone mass in obese rats.


Subject(s)
Bone Density , Bone Diseases/pathology , Bone Remodeling , Diet, High-Fat , Femur/pathology , Gastrectomy/adverse effects , Obesity/surgery , Animals , Bone Diseases/etiology , Bone Diseases/metabolism , Male , Obesity/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Rats , Rats, Sprague-Dawley
18.
Bioorg Chem ; 108: 104648, 2021 03.
Article in English | MEDLINE | ID: mdl-33493928

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a well-validated target in therapeutic interventions for type 2 diabetes mellitus (T2DM), however, PTP1B inhibitors containing negatively charged nonhydrolyzable pTyr mimetics are difficult to convert to the corresponding in vivo efficacy owing to poor cell permeability and oral bioavailability. In this work, molecules bearing less acidic heterocycle 2,4-thiazolidinedione and hydantoin were designed, synthesized and evaluated for PTP1B inhibitory potency, selectivity and in vivo antidiabetic efficacy. Among them, compound 5a was identified as a potent PTP1B inhibitor (IC50 = 0.86 µM) with 5-fold selectivity over the highly homologous TCPTP. Long-term oral administration of 5a at a dose of 50 mg/kg not only significantly reduced blood glucose levels, triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) levels but also ameliorated insulin sensitivity in diabetic BKS db mice. Moreover, 5a enhanced the insulin-stimulated phosphorylation of IRß, IRS-1 and Akt in C2C12 myotubes. A histopathological evaluation of liver and pancreas demonstrated that 5a increased liver glycogen storage and improved islet architecture with more ß-cells and fewer α-cells in diabetic mice. Thus, our work demonstrated that compound 5a could serve as a lead compound for the discovery of new antidiabetic drugs.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Drug Discovery , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Male , Mice , Mice, Congenic , Molecular Structure , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Structure-Activity Relationship
19.
Mar Drugs ; 19(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34677434

ABSTRACT

An in-depth study on the inhibitory mechanism on protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR) enzymes, including analysis of the insulin signalling pathway, of phosphoeleganin, a marine-derived phosphorylated polyketide, was achieved. Phosphoeleganin was demonstrated to inhibit both enzymes, acting respectively as a pure non-competitive inhibitor of PTP1B and a mixed-type inhibitor of AR. In addition, in silico docking analyses to evaluate the interaction mode of phosphoeleganin with both enzymes were performed. Interestingly, this study showed that phosphoeleganin is the first example of a dual inhibitor polyketide extracted from a marine invertebrate, and it could be used as a versatile scaffold structure for the synthesis of new designed multiple ligands.


Subject(s)
Hypoglycemic Agents/pharmacology , Polyketides/pharmacology , Urochordata , Aldehyde Reductase/metabolism , Animals , Aquatic Organisms , Diabetes Mellitus, Type 2/drug therapy , Hep G2 Cells/drug effects , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Mediterranean Sea , Molecular Docking Simulation , Polyketides/chemistry , Polyketides/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Signal Transduction
20.
Mar Drugs ; 19(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540563

ABSTRACT

Six undescribed polyhydroxy p-terphenyls, namely asperterphenyllins A-F, were isolated from an endophytic fungus Aspergillus candidus LDJ-5. Their structures were determined by NMR and MS data. Differing from the previously reported p-terphenyls, asperterphenyllin A represents the first p-terphenyl dimer connected by a C-C bond. Asperterphenyllin A displayed anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with IC50 values of 53 µM and 21 µM, respectively. The anti-influenza virus A (H1N1) activity and protein tyrosine phosphatase 1B (PTP1B) inhibitory activity of p-terphenyls are reported for the first time. Asperterphenyllin G exhibited cytotoxicity against nine cell lines with IC50 values ranging from 0.4 to 1.7 µM. Asperterphenyllin C showed antimicrobial activity against Proteus species with a MIC value of 19 µg/mL.


Subject(s)
Aspergillus/drug effects , Endophytes/drug effects , Rhizophoraceae , Terphenyl Compounds/isolation & purification , Terphenyl Compounds/pharmacology , Aspergillus/physiology , Endophytes/physiology , HCT116 Cells , HL-60 Cells , HeLa Cells , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/physiology , K562 Cells , MCF-7 Cells , Terphenyl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL