Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28.267
Filter
Add more filters

Publication year range
1.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38565142

ABSTRACT

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Taurine , Taurine/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/metabolism , Signal Transduction , Female , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , STAT3 Transcription Factor/metabolism
2.
Cell ; 186(18): 3968-3982.e15, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37586362

ABSTRACT

Ductal carcinoma in situ (DCIS) is a common precursor of invasive breast cancer. Our understanding of its genomic progression to recurrent disease remains poor, partly due to challenges associated with the genomic profiling of formalin-fixed paraffin-embedded (FFPE) materials. Here, we developed Arc-well, a high-throughput single-cell DNA-sequencing method that is compatible with FFPE materials. We validated our method by profiling 40,330 single cells from cell lines, a frozen tissue, and 27 FFPE samples from breast, lung, and prostate tumors stored for 3-31 years. Analysis of 10 patients with matched DCIS and cancers that recurred 2-16 years later show that many primary DCIS had already undergone whole-genome doubling and clonal diversification and that they shared genomic lineages with persistent subclones in the recurrences. Evolutionary analysis suggests that most DCIS cases in our cohort underwent an evolutionary bottleneck, and further identified chromosome aberrations in the persistent subclones that were associated with recurrence.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Female , Humans , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Disease Progression , Genomics/methods , Single-Cell Gene Expression Analysis , Cell Line, Tumor
3.
Cell ; 184(11): 2988-3005.e16, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34019793

ABSTRACT

Clear cell renal carcinoma (ccRCC) is a heterogeneous disease with a variable post-surgical course. To assemble a comprehensive ccRCC tumor microenvironment (TME) atlas, we performed single-cell RNA sequencing (scRNA-seq) of hematopoietic and non-hematopoietic subpopulations from tumor and tumor-adjacent tissue of treatment-naive ccRCC resections. We leveraged the VIPER algorithm to quantitate single-cell protein activity and validated this approach by comparison to flow cytometry. The analysis identified key TME subpopulations, as well as their master regulators and candidate cell-cell interactions, revealing clinically relevant populations, undetectable by gene-expression analysis. Specifically, we uncovered a tumor-specific macrophage subpopulation characterized by upregulation of TREM2/APOE/C1Q, validated by spatially resolved, quantitative multispectral immunofluorescence. In a large clinical validation cohort, these markers were significantly enriched in tumors from patients who recurred following surgery. The study thus identifies TREM2/APOE/C1Q-positive macrophage infiltration as a potential prognostic biomarker for ccRCC recurrence, as well as a candidate therapeutic target.


Subject(s)
Carcinoma, Renal Cell/metabolism , Neoplasm Recurrence, Local/genetics , Tumor-Associated Macrophages/metabolism , Adult , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cohort Studies , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Kidney/metabolism , Kidney Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Macrophages/metabolism , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Middle Aged , Neoplasm Recurrence, Local/metabolism , Prognosis , Receptors, Complement/genetics , Receptors, Complement/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Tumor Microenvironment , Tumor-Associated Macrophages/physiology
4.
Cell ; 175(3): 751-765.e16, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30318143

ABSTRACT

We examined how the immune microenvironment molds tumor evolution at different metastatic organs in a longitudinal dataset of colorectal cancer. Through multiplexed analyses, we showed that clonal evolution patterns during metastatic progression depend on the immune contexture at the metastatic site. Genetic evidence of neoantigen depletion was observed in the sites with high Immunoscore and spatial proximity between Ki67+ tumor cells and CD3+ cells. The immunoedited tumor clones were eliminated and did not recur, while progressing clones were immune privileged, despite the presence of tumor-infiltrating lymphocytes. Characterization of immune-privileged metastases revealed tumor-intrinsic and tumor-extrinsic mechanisms of escape. The lowest recurrence risk was associated with high Immunoscore, occurrence of immunoediting, and low tumor burden. We propose a parallel selection model of metastatic progression, where branched evolution could be traced back to immune-escaping clones. The findings could inform the understanding of cancer dissemination and the development of immunotherapeutics.


Subject(s)
Leukemic Infiltration/immunology , Models, Statistical , Neoplasms/immunology , Tumor Burden/immunology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/pathology , Tumor Microenvironment/immunology
5.
Cell ; 170(3): 548-563.e16, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753429

ABSTRACT

Gut microbiota are linked to chronic inflammation and carcinogenesis. Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer patients. Here, we investigated the contribution of gut microbiota to chemoresistance in patients with colorectal cancer. We found that Fusobacterium (F.) nucleatum was abundant in colorectal cancer tissues in patients with recurrence post chemotherapy, and was associated with patient clinicopathological characterisitcs. Furthermore, our bioinformatic and functional studies demonstrated that F. nucleatum promoted colorectal cancer resistance to chemotherapy. Mechanistically, F. nucleatum targeted TLR4 and MYD88 innate immune signaling and specific microRNAs to activate the autophagy pathway and alter colorectal cancer chemotherapeutic response. Thus, F. nucleatum orchestrates a molecular network of the Toll-like receptor, microRNAs, and autophagy to clinically, biologically, and mechanistically control colorectal cancer chemoresistance. Measuring and targeting F. nucleatum and its associated pathway will yield valuable insight into clinical management and may ameliorate colorectal cancer patient outcomes.


Subject(s)
Autophagy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Fusobacterium nucleatum/physiology , Gastrointestinal Microbiome , Animals , Antineoplastic Agents/therapeutic use , Capecitabine/therapeutic use , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm , Heterografts , Mice , MicroRNAs/metabolism , Neoplasm Transplantation , Platinum Compounds/therapeutic use , Recurrence , Toll-Like Receptors/metabolism , Tumor Microenvironment
6.
Cell ; 167(5): 1281-1295.e18, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863244

ABSTRACT

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.


Subject(s)
Glioblastoma/genetics , Glioblastoma/pathology , Neoplasm Invasiveness/genetics , Wnt-5a Protein/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Epigenomics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Humans , Neural Stem Cells/metabolism , PAX6 Transcription Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcription Factors/metabolism
7.
J Cell Sci ; 137(14)2024 07 15.
Article in English | MEDLINE | ID: mdl-39034922

ABSTRACT

Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases , Neoplasms , Signal Transduction , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Female , Tumor Microenvironment , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
8.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38678587

ABSTRACT

Deep learning-based multi-omics data integration methods have the capability to reveal the mechanisms of cancer development, discover cancer biomarkers and identify pathogenic targets. However, current methods ignore the potential correlations between samples in integrating multi-omics data. In addition, providing accurate biological explanations still poses significant challenges due to the complexity of deep learning models. Therefore, there is an urgent need for a deep learning-based multi-omics integration method to explore the potential correlations between samples and provide model interpretability. Herein, we propose a novel interpretable multi-omics data integration method (DeepKEGG) for cancer recurrence prediction and biomarker discovery. In DeepKEGG, a biological hierarchical module is designed for local connections of neuron nodes and model interpretability based on the biological relationship between genes/miRNAs and pathways. In addition, a pathway self-attention module is constructed to explore the correlation between different samples and generate the potential pathway feature representation for enhancing the prediction performance of the model. Lastly, an attribution-based feature importance calculation method is utilized to discover biomarkers related to cancer recurrence and provide a biological interpretation of the model. Experimental results demonstrate that DeepKEGG outperforms other state-of-the-art methods in 5-fold cross validation. Furthermore, case studies also indicate that DeepKEGG serves as an effective tool for biomarker discovery. The code is available at https://github.com/lanbiolab/DeepKEGG.


Subject(s)
Biomarkers, Tumor , Deep Learning , Neoplasm Recurrence, Local , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/genetics , Computational Biology/methods , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Genomics/methods , Multiomics
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38557672

ABSTRACT

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Early-stage patients have a 30-50% probability of metastatic recurrence after surgical treatment. Here, we propose a new computational framework, Interpretable Biological Pathway Graph Neural Networks (IBPGNET), based on pathway hierarchy relationships to predict LUAD recurrence and explore the internal regulatory mechanisms of LUAD. IBPGNET can integrate different omics data efficiently and provide global interpretability. In addition, our experimental results show that IBPGNET outperforms other classification methods in 5-fold cross-validation. IBPGNET identified PSMC1 and PSMD11 as genes associated with LUAD recurrence, and their expression levels were significantly higher in LUAD cells than in normal cells. The knockdown of PSMC1 and PSMD11 in LUAD cells increased their sensitivity to afatinib and decreased cell migration, invasion and proliferation. In addition, the cells showed significantly lower EGFR expression, indicating that PSMC1 and PSMD11 may mediate therapeutic sensitivity through EGFR expression.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/metabolism , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , ErbB Receptors/genetics , Cell Proliferation
10.
Am J Hum Genet ; 109(3): 498-507, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120629

ABSTRACT

Recurrence risk calculations in autosomal recessive diseases are complicated when the effect of genetic variants and their population frequencies and penetrances are unknown. An example of this is Stargardt disease (STGD1), a frequent recessive retinal disease caused by bi-allelic pathogenic variants in ABCA4. In this cross-sectional study, 1,619 ABCA4 variants from 5,579 individuals with STGD1 were collected and categorized by (1) severity based on statistical comparisons of their frequencies in STGD1-affected individuals versus the general population, (2) their observed versus expected homozygous occurrence in STGD1-affected individuals, (3) their occurrence in combination with established mild alleles in STGD1-affected individuals, and (4) previous functional and clinical studies. We used the sum allele frequencies of these severity categories to estimate recurrence risks for offspring of STGD1-affected individuals and carriers of pathogenic ABCA4 variants. The risk for offspring of an STGD1-affected individual with the "severe|severe" genotype or a "severe|mild with complete penetrance" genotype to develop STGD1 at some moment in life was estimated at 2.8%-3.1% (1 in 36-32 individuals) and 1.6%-1.8% (1 in 62-57 individuals), respectively. The risk to develop STGD1 in childhood was estimated to be 2- to 4-fold lower: 0.68%-0.79% (1 in 148-126) and 0.34%-0.39% (1 in 296-252), respectively. In conclusion, we established personalized recurrence risk calculations for STGD1-affected individuals with different combinations of variants. We thus propose an expanded genotype-based personalized counseling to appreciate the variable recurrence risks for STGD1-affected individuals. This represents a conceptual breakthrough because risk calculations for STGD1 may be exemplary for many other inherited diseases.


Subject(s)
ATP-Binding Cassette Transporters , Genetic Counseling , ATP-Binding Cassette Transporters/genetics , Cross-Sectional Studies , Humans , Mutation , Stargardt Disease/genetics
11.
Gastroenterology ; 167(5): 977-992, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38825047

ABSTRACT

BACKGROUND & AIMS: More than half of pancreatic ductal adenocarcinomas (PDACs) recur within 12 months after curative-intent resection. This systematic review and meta-analysis was conducted to identify all reported prognostic factors for early recurrence in resected PDACs. METHODS: After a systematic literature search, a meta-analysis was conducted using a random effects model. Separate analyses were performed for adjusted vs unadjusted effect estimates as well as reported odds ratios (ORs) and hazard ratios (HRs). Risk of bias was assessed using the Quality in Prognostic Studies tool, and evidence was rated according to Grading of Recommendations Assessment, Development and Evaluation recommendations. RESULTS: After 2903 abstracts were screened, 65 studies were included. Of these, 28 studies (43.1%) defined early recurrence as evidence of recurrence within 6 months, whereas 34 (52.3%) defined it as evidence of recurrence within 12 months after surgery. Other definitions were uncommon. Analysis of unadjusted ORs and HRs revealed 41 and 5 prognostic factors for early recurrence within 6 months, respectively. When exclusively considering adjusted data, we identified 25 and 10 prognostic factors based on OR and HR, respectively. Using a 12-month definition, we identified 38 (OR) and 15 (HR) prognostic factors from unadjusted data and 38 (OR) and 30 (HR) prognostic factors from adjusted data, respectively. On the basis of frequency counts of adjusted data, preoperative carbohydrate antigen 19-9, N status, nondelivery of adjuvant therapy, grading, and tumor size based on imaging were identified as key prognostic factors for early recurrence. CONCLUSIONS: Reported prognostic factors of early recurrence vary considerably. Identified key prognostic factors could aid in the development of a risk stratification framework for early recurrence. However, prospective validation is necessary.


Subject(s)
Carcinoma, Pancreatic Ductal , Neoplasm Recurrence, Local , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/surgery , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Neoplasm Recurrence, Local/epidemiology , Carcinoma, Pancreatic Ductal/surgery , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Risk Factors , Time Factors , Prognosis , Pancreatectomy/adverse effects , Risk Assessment , Treatment Outcome
12.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-36946415

ABSTRACT

Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. There are few recurrence risk signatures for CRC patients. Single-cell RNA-sequencing (scRNA-seq) provides a high-resolution platform for prognostic signature detection. However, scRNA-seq is not practical in large cohorts due to its high cost and most single-cell experiments lack clinical phenotype information. Few studies have been reported to use external bulk transcriptome with survival time to guide the detection of key cell subtypes in scRNA-seq data. We proposed scRankXMBD, a computational framework to prioritize prognostic-associated cell subpopulations based on within-cell relative expression orderings of gene pairs from single-cell transcriptomes. scRankXMBD achieves higher precision and concordance compared with five existing methods. Moreover, we developed single-cell gene pair signatures to predict recurrence risk for patients individually. Our work facilitates the application of the rank-based method in scRNA-seq data for prognostic biomarker discovery and precision oncology. scRankXMBD is available at https://github.com/xmuyulab/scRank-XMBD. (XMBD:Xiamen Big Data, a biomedical open software initiative in the National Institute for Data Science in Health and Medicine, Xiamen University, China.).


Subject(s)
Colorectal Neoplasms , Transcriptome , Humans , Gene Expression Profiling/methods , Prognosis , Precision Medicine , Software , Colorectal Neoplasms/genetics , Sequence Analysis, RNA
13.
CA Cancer J Clin ; 68(6): 488-505, 2018 11.
Article in English | MEDLINE | ID: mdl-30328620

ABSTRACT

Locoregional recurrence negatively impacts both long-term survival and quality of life for several malignancies. For appropriate-risk patients with an isolated, resectable, local recurrence, surgery represents the only potentially curative therapy. However, oncologic outcomes remain inferior for patients with locally recurrent disease even after macroscopically complete resection. Unfortunately, these operations are often extensive, with significant perioperative morbidity and mortality. This review highlights selected malignancies (mesothelioma, sarcoma, lung cancer, breast cancer, rectal cancer, and peritoneal surface malignancies) in which surgical resection is a key treatment modality and local recurrence plays a significant role in overall oncologic outcome with regard to survival and quality of life. For each type of cancer, the current, state-of-the-art treatment strategies and their outcomes are assessed. The need for additional therapeutic options is presented given the limitations of the current standard therapies. New and emerging treatment modalities, including polymer films and nanoparticles, are highlighted as potential future solutions for both prevention and treatment of locally recurrent cancers. Finally, the authors identify additional clinical and research opportunities and propose future research strategies based on the various patterns of local recurrence among the different cancers.


Subject(s)
Medical Oncology/methods , Neoplasm Recurrence, Local/therapy , Neoplasms/therapy , Quality of Life , Combined Modality Therapy/methods , Combined Modality Therapy/trends , Humans , Medical Oncology/trends , Neoplasm Recurrence, Local/complications , Neoplasm Recurrence, Local/mortality , Neoplasms/complications , Neoplasms/mortality , Randomized Controlled Trials as Topic , Risk Factors , Treatment Outcome
14.
J Pathol ; 262(3): 289-295, 2024 03.
Article in English | MEDLINE | ID: mdl-38156368

ABSTRACT

Follicular lymphoma (FL) develops through a stepwise acquisition of cooperative genetic changes with t(14;18)(q32;q21)/IGH::BCL2 occurring early at the pre-B stage of B-cell development. Patients with FL typically show an indolent clinical course, remitting and relapsing with the eventual development of resistance to treatments. Interestingly, the majority of transformed FL do not progress directly from FL but originate from their clonally related lymphoma precursor (CLP) cells. To examine whether such divergent tumour evolution also underpins the relapses in patients with early-stage FL, we investigated by targeted next-generation sequencing 13 cases (stage I = 9, stage II = 4), who showed complete remission (mean: 5 years; range: 1-11.5 years) following local radiotherapy but subsequently relapsed (≥2 in 5). A clonal relationship between the diagnostic FL and relapses was confirmed in 11 cases. In six cases, common and distinct variants were seen between the paired diagnostic and relapsed lymphomas, indicating their divergent evolution from a CLP. In two cases, different B-cell clones were involved in the diagnostic and relapsed lymphomas, including one case involving two different BCL2 translocations. In the remaining five cases, the relapsed lymphoma developed via a linear progression (n = 4) or a mixed evolutionary path (n = 1). These findings may bear important implications in the routine diagnosis and management of relapsed FL. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Lymphoma, Follicular , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/therapy , Lymphoma, Follicular/pathology , Neoplasm Recurrence, Local/genetics , Translocation, Genetic , Proto-Oncogene Proteins c-bcl-2/genetics , United Kingdom
15.
J Pathol ; 263(1): 113-127, 2024 05.
Article in English | MEDLINE | ID: mdl-38482714

ABSTRACT

The molecular mechanisms underpinning the development of metachronous tumors in the remnant bile duct following surgical resection of primary biliary tract carcinomas (BTCs) are unknown. This study aimed to elucidate these mechanisms by evaluating the clinicopathologic features of BTCs, the alterations to 31 BTC-related genes on targeted sequencing, and the aberrant expression of p53, p16, SMAD4, ARID1A and ß-catenin on immunohistochemistry. Twelve consecutive patients who underwent resection of metachronous BTCs following primary BTC resection with negative bile duct margins were enrolled. Among the 12 metachronous tumors, six exhibited anterograde growth in the lower portion and six exhibited retrograde growth in the upper portion of the biliary tree. Surgical resection of metachronous BTCs resulted in recurrence-free survival in seven, local recurrence in five, and death in two patients. Nine achieved 5-year overall survival after primary surgery. Molecular analyses revealed that recurrently altered genes were: TP53, SMAD4, CDKN2A, ELF3, ARID1A, GNAS, NF1, STK11, RNF43, KMT2D and ERBB3. Each of these was altered in at least three cases. A comparison of the molecular features between 12 paired primary and metachronous BTCs indicated that 10 (83%) metachronous tumors developed in clonal association with corresponding primary tumors either successionally or phylogenically. The remaining two (17%) developed distinctly. The successional tumors consisted of direct or evolved primary tumor clones that spread along the bile duct. The phylogenic tumors consisted of genetically unstable clones and conferred a poor prognosis. Metachronous tumors distinct from their primaries harbored fewer mutations than successional and phylogenic tumors. In conclusion, over 80% of metachronous BTCs that develop following primary BTC resection are probably molecularly associated with their primaries in either a successional or a phylogenetic manner. Comparison between the molecular features of a metachronous tumor and those of a preceding tumor may provide effective therapeutic clues for the treatment of metachronous BTC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Neoplasms, Second Primary , Humans , Neoplasms, Second Primary/genetics , Phylogeny , Mutation , Bile Ducts/pathology , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/pathology , Biliary Tract Neoplasms/surgery , Bile Duct Neoplasms/pathology
16.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38436464

ABSTRACT

This study aimed to investigate network-level brain functional changes in breast cancer patients and their relationship with fear of cancer recurrence (FCR). Resting-state functional MRI was collected from 43 patients with breast cancer and 40 healthy controls (HCs). Graph theory analyses, whole-brain voxel-wise functional connectivity strength (FCS) analyses and seed-based functional connectivity (FC) analyses were performed to identify connection alterations in breast cancer patients. Correlations between brain functional connections (i.e. FCS and FC) and FCR level were assessed to further reveal the neural mechanisms of FCR in breast cancer patients. Graph theory analyses indicated a decreased clustering coefficient in breast cancer patients compared to HCs (P = 0.04). Patients with breast cancer exhibited significantly higher FCS in both higher-order function networks (frontoparietal, default mode, and dorsal attention systems) and primary somatomotor networks. Among the hyperconnected regions in breast cancer, the left inferior frontal operculum demonstrated a significant positive correlation with FCR. Our findings suggest that breast cancer patients exhibit less segregation of brain function, and the left inferior frontal operculum is a key region associated with FCR. This study offers insights into the neural mechanisms of FCR in breast cancer patients at the level of brain connectome.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Connectome , Humans , Female , Breast Neoplasms/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Fear
17.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498222

ABSTRACT

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Subject(s)
Cisplatin , Neoplasms , Animals , Humans , Mice , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Microtubule-Associated Proteins , Microtubules , Neoplasms/drug therapy , Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Ubiquitin Thiolesterase
18.
Cell Mol Life Sci ; 81(1): 233, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780775

ABSTRACT

Patients with head and neck squamous cell carcinoma (HNSCC) are at a high risk of developing recurrence and secondary cancers. This study evaluates the prognostic and surveillance utilities of circulating tumour cells (CTCs) in HNSCC. A total of 154 HNSCC patients were recruited and followed up for 4.5 years. Blood samples were collected at baseline and follow-up. CTCs were isolated using a spiral microfluid device. Recurrence and death due to cancer were assessed during the follow-up period. In patients with HNSCC, the presence of CTCs at baseline was a predictor of recurrence (OR = 8.40, p < 0.0001) and death (OR= ∞, p < 0.0001). Patients with CTCs at baseline had poor survival outcomes (p < 0.0001). Additionally, our study found that patients with CTCs in a follow-up appointment were 2.5 times more likely to experience recurrence or death from HNSCC (p < 0.05) prior to their next clinical visit. Our study highlights the prognostic and monitoring utilities of CTCs' in HNSCC patients. Early identification of CTCs facilitates precise risk assessment, guiding treatment choices and ultimately enhancing patient outcomes.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Neoplasm Recurrence, Local , Neoplastic Cells, Circulating , Squamous Cell Carcinoma of Head and Neck , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Male , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/diagnosis , Female , Middle Aged , Neoplasm Recurrence, Local/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/blood , Squamous Cell Carcinoma of Head and Neck/diagnosis , Aged , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/diagnosis , Prognosis , Adult , Follow-Up Studies
19.
Drug Resist Updat ; 76: 101116, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968684

ABSTRACT

Drug resistance and tumor recurrence remain clinical challenges in the treatment of urothelial carcinoma (UC). However, the underlying mechanism is not fully understood. Here, we performed single-cell RNA sequencing and identified a subset of urothelial cells with epithelial-mesenchymal transition (EMT) features (EMT-UC), which is significantly correlated with chemotherapy resistance and cancer recurrence. To validate the clinical significance of EMT-UC, we constructed EMT-UC like cells by introducing overexpression of two markers, Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Desmin (DES), and examined their histological distribution characteristics and malignant phenotypes. EMT-UC like cells were mainly enriched in UC tissues from patients with adverse prognosis and exhibited significantly elevated EMT, migration and gemcitabine tolerance in vitro. However, EMT-UC was not specifically identified from tumorous tissues, certain proportion of them were also identified in adjacent normal tissues. Tumorous EMT-UC highly expressed genes involved in malignant behaviors and exhibited adverse prognosis. Additionally, tumorous EMT-UC was associated with remodeled tumor microenvironment (TME), which exhibited high angiogenic and immunosuppressive potentials compared with the normal counterparts. Furthermore, a specific interaction of COL4A1 and ITGB1 was identified to be highly enriched in tumorous EMT-UC, and in the endothelial component. Targeting the interaction of COL4A1 and ITGB1 with specific antibodies significantly suppressed tumorous angiogenesis and alleviated gemcitabine resistance of UC. Overall, our findings demonstrated that the driven force of chemotherapy resistance and recurrence of UC was EMT-UC mediated COL4A1-ITGB1 interaction, providing a potential target for future UC treatment.


Subject(s)
Collagen Type IV , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Integrin beta1 , Neoplasm Recurrence, Local , Neovascularization, Pathologic , Urinary Bladder Neoplasms , Humans , Cell Line, Tumor , Cell Movement/drug effects , Collagen Type IV/genetics , Collagen Type IV/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Gemcitabine/pharmacology , Gemcitabine/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Integrin beta1/metabolism , Integrin beta1/genetics , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/genetics , Prognosis , Tumor Microenvironment/drug effects , Urinary Bladder Neoplasms/blood supply , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urothelium/blood supply , Urothelium/drug effects , Urothelium/pathology , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
20.
Eur Heart J ; 45(1): 45-53, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37769352

ABSTRACT

BACKGROUND AND AIMS: Patients with unprovoked venous thromboembolism (VTE) have a high recurrence risk, and guidelines suggest extended-phase anticoagulation. Many patients never experience recurrence but are exposed to bleeding. The aim of this study was to assess the performance of the Vienna Prediction Model (VPM) and to evaluate if the VPM accurately identifies these patients. METHODS: In patients with unprovoked VTE, the VPM was performed 3 weeks after anticoagulation withdrawal. Those with a predicted 1-year recurrence risk of ≤5.5% were prospectively followed. Study endpoint was recurrent VTE over 2 years. RESULTS: A total of 818 patients received anticoagulation for a median of 3.9 months. 520 patients (65%) had a predicted annual recurrence risk of ≤5.5%. During a median time of 23.9 months, 52 patients had non-fatal recurrence. The recurrence risk was 5.2% [95% confidence interval (CI) 3.2-7.2] at 1 year and 11.2% (95% CI 8.3-14) at 2 years. Model calibration was adequate after 1 year. The VPM underestimated the recurrence risk of patients with a 2-year recurrence rate of >5%. In a post-hoc analysis, the VPM's baseline hazard was recalibrated. Bootstrap validation confirmed an ideal ratio of observed and expected recurrence events. The recurrence risk was highest in men with proximal deep-vein thrombosis or pulmonary embolism and lower in women regardless of the site of incident VTE. CONCLUSIONS: In this prospective evaluation of the performance of the VPM, the 1-year rate of recurrence in patients with unprovoked VTE was 5.2%. Recalibration improved identification of patients at low recurrence risk and stratification into distinct low-risk categories.


Subject(s)
Pulmonary Embolism , Venous Thromboembolism , Male , Humans , Female , Venous Thromboembolism/epidemiology , Prospective Studies , Anticoagulants/therapeutic use , Recurrence , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL