Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Angew Chem Int Ed Engl ; 62(16): e202214333, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36437229

ABSTRACT

Renewable H2 production by water electrolysis has attracted much attention due to its numerous advantages. However, the energy consumption of conventional water electrolysis is high and mainly driven by the kinetically inert anodic oxygen evolution reaction. An alternative approach is the coupling of different half-cell reactions and the use of redox mediators. In this review, we, therefore, summarize the latest findings on innovative electrochemical strategies for H2 production. First, we address redox mediators utilized in water splitting, including soluble and insoluble species, and the corresponding cell concepts. Second, we discuss alternative anodic reactions involving organic and inorganic chemical transformations. Then, electrochemical H2 production at both the cathode and anode, or even H2 production together with electricity generation, is presented. Finally, the remaining challenges and prospects for the future development of this research field are highlighted.

2.
Angew Chem Int Ed Engl ; 62(26): e202303845, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37114563

ABSTRACT

The storage time of Zn-air batteries (ZABs) for practical implementation have been neglected long-lastingly. ZABs based on organic solvents promise long shelf lives but suffer from sluggish kinetics. Here, we report a longly storable ZAB with accelerated kinetics mediated by I3 - /I- redox. In the charge process, the electrooxidation of Zn5 (OH)8 Cl2 ⋅H2 O is accelerated by I3 - chemical oxidation. In the discharge process, I- adsorbed on the electrocatalyst changes the energy level of oxygen reduction reaction (ORR). Benefitting from these advantages, the prepared ZAB shows remarkably improved round-trip efficiency (56.03 % vs. 30.97 % without the mediator), and long-term cycling time (>2600 h) in ambient air without replacing any components or applying any protective treatment to Zn anode and electrocatalyst. After resting for 30 days without any protection, it can still directly discharge continuously for 32.5 h and charge/discharge very stably for 2200 h (440 cycles), which is evidently superior to aqueous ZABs (only 0/0.25 h, and 50/25 h (10/5 cycles) by mild/alkaline electrolyte replenishment). This study provides a strategy to solve both storage and sluggish kinetics issues that have been plaguing ZABs for centuries, opening up a new avenue to the industrial application of ZABs.


Subject(s)
Body Fluids , Zinc , Kinetics , Air , Oxidation-Reduction
3.
Small ; 18(27): e2200334, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35678600

ABSTRACT

The enormous overpotential caused by sluggish kinetics of the oxygen reduction reaction and the oxygen evolution reaction prevents the practical application of Li-O2 batteries. The recently proposed light-assisted strategy is an effective way to improve round-trip efficiency; however, the high-potential photogenerated holes during the charge would degrade the electrolyte with side reactions and poor cycling performance. Herein, a synergistic interaction between a polyterthiophene photocatalyst and a redox mediator is employed in Li-O2 batteries. During the discharge, the voltage can be compensated by the photovoltage generated on the photoelectrode. Upon the charge with illumination, the photogenerated holes can be consumed by the oxidization of iodide ions, and thus the external circuit voltage is compensated by photogenerated electrons. Accordingly, a smaller bias voltage is needed for the semiconductor to decompose Li2 O2 , and the potential of photogenerated holes decreases. Finally, the round-trip efficiency of the battery reaches 97% with a discharge voltage of 3.10 V and a charge voltage of 3.19 V. The batteries show stable operation up to 150 cycles without increased polarization. This work provides new routes for light-assisted Li-O2 batteries with reduced overpotential and boosted efficiency.

4.
Environ Sci Technol ; 56(1): 313-324, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34932304

ABSTRACT

Activated sludge treatment leverages the ability of microbes to uptake and (co)-metabolize chemicals and has shown promise in eliminating trace organic contaminants (TrOCs) during wastewater treatment. However, targeted interventions to optimize the process are limited as the fundamental drivers of the observed reactions remain elusive. In this work, we present a comprehensive workflow for the identification and characterization of key enzymes involved in TrOCs biotransformation pathways in complex microbial communities. To demonstrate the applicability of the workflow, we investigated the role of the enzymatic group of multicopper oxidases (MCOs) as one putatively relevant driver of TrOCs biotransformation. To this end, we analyzed activated sludge metatranscriptomic data and selected, synthesized, and heterologously expressed three phylogenetically distinct MCO-encoding genes expressed in communities with different TrOCs oxidation potentials. Following the purification of the encoded enzymes, we screened their activities against different substrates. We saw that MCOs exhibit significant activities against selected TrOCs in the presence of the mediator compound 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid and, in some cases, also in the presence of the wastewater contaminant 4'-hydroxy-benzotriazole. In the first case, we identified oxidation products previously reported from activated sludge communities and concluded that in the presence of appropriate mediators, bacterial MCOs could contribute to the biological removal of TrOCs. Similar investigations of other key enzyme systems may significantly advance our understanding of TrOCs biodegradation and assist the rational design of biology-based water treatment strategies in the future.


Subject(s)
Sewage , Water Pollutants, Chemical , Biotransformation , Organic Chemicals , Oxidoreductases/genetics , Sewage/chemistry , Wastewater
5.
J Environ Manage ; 301: 113924, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34731947

ABSTRACT

The present paper aimed to investigate the roles of quinones contained in wastewater and the enhanced effects on microbial fuel cells (MFCs) under different redox conditions. The feasibility of using wastewater rich in quinones to act as co-substrate and redox mediators (RMs) library to strengthen the synergistic removal of azo dye in MFCs was evaluated. The results demonstrated that quinones achieved enhanced effects on electricity generation and COD removal of MFC better at higher current intensity. The addition of pure quinone decreased electron transfer resistance (Rct) of MFCs from 4.76 Ω to 2.13 Ω under 1000 Ω resistance and 1.16 Ω-0.75 Ω under 50 Ω resistance. Meanwhile, higher coulombic efficiency was achieved. Compared with sodium acetate, using quinone-rich traditional Chinese medicine (TCM) wastewater as the co-substrate enhanced the synergistic removal of reactive red 2 (RR2) in MFCs from 79.58% to 92.45% during 24 h. RR2 was also degraded more thoroughly due to the accelerated electron transfer process mediated by RMs. Microbial community analysis demonstrated that the presence of quinone in TCM wastewater can enrich different exoelectrogens under varied redox conditions and thus influenced the enhanced effects on MFC. Metagenomic functional prediction results further indicated that the abundance of functional genes involved in carbohydrate metabolism, membrane transport metabolism, biofilm formation, and stress tolerance increased significantly in presence of RMs. Redundancy analyses revealed that RMs addition was the more important factor driving the variation of the microorganism community. This study revealed the potential effect of quinones as redox mediators on the bioelectrochemical system for pollutants removal.


Subject(s)
Bioelectric Energy Sources , Azo Compounds , Electricity , Electrodes , Oxidation-Reduction , Quinones , Wastewater
6.
Small ; 17(38): e2101620, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34378313

ABSTRACT

Lithium-oxygen (Li-O2 ) batteries with ultrahigh theoretical energy density have attracted widespread attention while there are still problems with high overpotential and poor cycle stability. Rational design and application of efficient catalysts to improve the performance of Li-O2 batteries is of significant importance. In this work, Co single atoms catalysts are successfully combined with redox mediator (lithium bromide [LiBr]) to synergistically catalyze electrochemical reactions in Li-O2 batteries. Single-atom cobalt anchored in porous N-doped hollow carbon spheres (CoSAs-NHCS) with high specific surface area and high catalytic activity are utilized as cathode material. However, the potential performances of batteries are difficult to adequately achieve with only CoSAs-NHCS, owing to the blocked electrochemical active sites covered by insulating solid-state discharge product Li2 O2 . Combined with LiBr as redox mediator, the enhanced OER catalytic effect extends throughout all formed Li2 O2 during discharge. Meantime, the certain adsorption effect of CoSAs-NHCS on Br2 and Br3 - can reduce the shuttle of RMox . The synergistic effect of Co single atoms and LiBr can not only promote more Li2 O2 decomposition but also reduce the shuttle effect by absorbing the oxidized redox mediator. Li-O2 batteries with Co single atoms and LiBr achieve ultralow overpotential of 0.69 V and longtime stable cyclability.

7.
Photochem Photobiol Sci ; 20(10): 1333-1356, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34550560

ABSTRACT

Photobioelectrocatalysis has recently attracted particular research interest owing to the possibility to achieve sunlight-driven biosynthesis, biosensing, power generation, and other niche applications. However, physiological incompatibilities between biohybrid components lead to poor electrical contact at the biotic-biotic and biotic-abiotic interfaces. Establishing an electrochemical communication between these different interfaces, particularly the biocatalyst-electrode interface, is critical for the performance of the photobioelectrocatalytic system. While different artificial redox mediating approaches spanning across interdisciplinary research fields have been developed in order to electrically wire biohybrid components during bioelectrocatalysis, a systematic understanding on physicochemical modulation of artificial redox mediators is further required. Herein, we review and discuss the use of diffusible redox mediators and redox polymer-based approaches in artificial redox-mediating systems, with a focus on photobioelectrocatalysis. The future possibilities of artificial redox mediator system designs are also discussed within the purview of present needs and existing research breadth.

8.
Ecotoxicol Environ Saf ; 208: 111742, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396068

ABSTRACT

The indiscriminate disposal of olsalazine in the environment poses a threat to human health and natural ecosystems because of its cytotoxic and genotoxic nature. In the present study, degradation efficiency of olsalazine by the marine-derived fungus, Aspergillus aculeatus (MT492456) was investigated. Optimization of physicochemical parameters (pH. Temperature, Dry weight) and redox mediators {(2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), p-Coumaric acid and 1-hydroxybenzotriazole (HOBT)} was achieved with Response Surface Methodology (RSM)-Box-Behnken Design (BBD) resulting in 89.43% removal of olsalazine on 7th day. The second-order polynomial regression model was found to be statistically significant, adequate and fit with p < 0.0001, F value=41.87 and correlation coefficient (R2=0.9826). Biotransformation was enhanced in the redox mediator-laccase systems resulting in 99.5% degradation of olsalazine. The efficiency of ABTS in the removal of olsalazine was more pronounced than HOBT and p-Coumaric acid in the laccase-mediator system. This is attributed to the potent nature of the electron transfer mechanism deployed during oxidation of olsalazine. The pseudo-second-order kinetics revealed that the average half-life (t1/2) and removal rates (k1) increases with increasing concentrations of olsalazine. Michaelis-Menten kinetics affirmed the interaction between laccase and olsalazine under optimized conditions with maximum removal rate, Vmax=111.11 hr-1 and half-saturation constant, Km=1537 mg L-1. At the highest drug concentration (2 mM); 98%, 95% and 93% laccase was remarkably stabilized in the enzyme-drug degradation system by HOBT, ABTS and p-Coumaric acid respectively. This study further revealed that the deactivation of laccase by the redox mediators is adequately compensated with enhanced removal of olsalazine.


Subject(s)
Aminosalicylic Acids/metabolism , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Aspergillus/physiology , Biodegradation, Environmental , Ecosystem , Fungi/metabolism , Humans , Kinetics , Laccase/metabolism , Oxidation-Reduction , Sulfonic Acids/metabolism , Triazoles
9.
Nano Lett ; 20(3): 2183-2190, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32078329

ABSTRACT

The sluggish cathodic kinetics and lower energy efficiency, associated with solid and insulating discharge products of Li2O2, are the key factors that prevent the practical implementation of Li-O2 batteries (LOBs). Here we demonstrate that the combination of the solid catalyst (RuO2) and soluble redox mediator tetrathiafulvalene (TTF) exhibits a synergetic effect in improving the cathodic kinetics and energy efficiency of LOBs by reducing both charge and discharge overpotentials. Operando electron microscopy observations and electrochemical measurements reveal that RuO2 not only exhibits bifunctional catalysis for Li-O2 reactions but also benefits the catalytic efficiency of TTF. Meanwhile, TTF plays an important role in activating the Li2O2 passivated RuO2 catalysts and in helping RuO2 effectively oxidize the discharge products during charging. The synergetic effect of solid and liquid catalysts, beyond traditional bifunctional catalysis, obviously increases the cathodic kinetics and round-trip energy efficiency of LOBs.

10.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805783

ABSTRACT

In anaerobic bioreactors, the electrons produced during the oxidation of organic matter can potentially be used for the biological reduction of pharmaceuticals in wastewaters. Common electron transfer limitations benefit from the acceleration of reactions through utilization of redox mediators (RM). This work explores the potential of carbon nanomaterials (CNM) as RM on the anaerobic removal of ciprofloxacin (CIP). Pristine and tailored carbon nanotubes (CNT) were first tested for chemical reduction of CIP, and pristine CNT was found as the best material, so it was further utilized in biological anaerobic assays with anaerobic granular sludge (GS). In addition, magnetic CNT were prepared and also tested in biological assays, as they are easier to be recovered and reused. In biological tests with CNM, approximately 99% CIP removal was achieved, and the reaction rates increased ≈1.5-fold relatively to the control without CNM. In these experiments, CIP adsorption onto GS and CNM was above 90%. Despite, after applying three successive cycles of CIP addition, the catalytic properties of magnetic CNT were maintained while adsorption decreased to 29 ± 3.2%, as the result of CNM overload by CIP. The results suggest the combined occurrence of different mechanisms for CIP removal: adsorption on GS and/or CNM, and biological reduction or oxidation, which can be accelerated by the presence of CNM. After biological treatment with CNM, toxicity towards Vibrio fischeri was evaluated, resulting in ≈ 46% detoxification of CIP solution, showing the advantages of combining biological treatment with CNM for CIP removal.


Subject(s)
Ciprofloxacin/metabolism , Electrons , Magnetite Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Sewage/microbiology , Water Pollutants, Chemical/metabolism , Adsorption , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/growth & development , Anaerobiosis/physiology , Biodegradation, Environmental , Bioreactors , Ciprofloxacin/isolation & purification , Humans , Magnetite Nanoparticles/ultrastructure , Methanobacterium/metabolism , Methanobrevibacter/metabolism , Methanosarcinales/metabolism , Methanospirillum/metabolism , Microbial Sensitivity Tests , Nanotubes, Carbon/ultrastructure , Oxidation-Reduction , Water Pollutants, Chemical/isolation & purification
11.
Molecules ; 26(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401723

ABSTRACT

Thirty years ago, dye-sensitized solar cells (DSSCs) emerged as a method for harnessing the sun's energy and converting it into electricity. Since then, a lot of work has been dedicated to improving their global photovoltaic efficiency and their eco-sustainability. Recently, various articles showed the great potential of copper complexes as a convenient and cheap alternative to the traditional ruthenium dyes. In addition, copper complexes demonstrate that they can act as redox mediators for DSSCs, thus being an answer to the problems related to the I3-/I- redox couple. The aim of this review is to report on the most recent impact made by copper complexes as alternative redox mediators. The coverage, mainly from 2016 up to now, is not exhaustive, but allows us to understand the great role played by copper complexes in the design of eco-sustainable DSSCs.


Subject(s)
Coloring Agents/chemistry , Copper/chemistry , Organometallic Compounds/chemistry , Solar Energy , Electric Power Supplies , Ligands , Oxidation-Reduction , Phenanthrolines/chemistry , Pyridines/chemistry
12.
Angew Chem Int Ed Engl ; 60(30): 16360-16365, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34019317

ABSTRACT

Redox molecules (RMs) as electron carriers have been widely used in electrochemical energy-storage devices (ESDs), such as lithium redox flow batteries and lithium-O2 batteries. Unfortunately, migration of RMs to the lithium (Li) anode leads to side reactions, resulting in reduced coulombic efficiency and early cell death. Our proof-of-concept study utilizes a biphasic organic electrolyte to resolve this issue, in which nonafluoro-1,1,2,2-tetrahydrohexyl-trimethoxysilane (NFTOS) and ether (or sulfone) with lithium bis(trifluoromethane)sulfonimide (LiTFSI) can be separated to form the immiscible anolyte and catholyte. RMs are extracted to the catholyte due to the enormous solubility coefficients in the biphasic electrolytes with high and low polarity, resulting in inhibition of the shuttle effect. When coupled with a lithium anode, the Li-Li symmetric, Li redox flow and Li-O2 batteries can achieve considerably prolonged cycle life with biphasic electrolytes. This concept provides a promising strategy to suppress the shuttle effect of RMs in ESDs.

13.
Environ Res ; 191: 110197, 2020 12.
Article in English | MEDLINE | ID: mdl-32919968

ABSTRACT

Artificial redox mediators can be employed to improve the electron transfer efficiency during sludge methanogenesis, whereas these artificial redox mediators have possible deficiencies, such as high cost and non-biodegradability. For large-scale commercial applications, more cost-effective and environmentally friendly alternatives should be developed. Herein, the potential of extracellular polymeric substances (EPS) as natural redox mediators to improve methanogenesis was investigated. Compared to the control test without EPS addition, the methane (CH4) production yield was increased by 83.5 ± 2.4% with an EPS dosage of 0.50 g/L and the lag phase duration was shortened by 45.6 ± 7.0%, along with the enhanced sludge dewaterability. Spectroelectrochemical measurements implied that EPS addition notably changed the intensities of different redox-active groups, which decreased the charge transfer resistance and enhanced the extracellular electron transfer efficiency. These redox-active groups were mainly from the solubilization and hydrolysis of sludge protein due to increased protease activities, thereby leading to a higher acetate concentration during the acidification step. Further investigation showed that EPS addition also improved the activities of both acetotrophic and hydrogenotrophic methanogens, as indicated by a higher abundance of alpha subunit of methyl coenzyme M reductase (mcrA) genes, enhancing CH4 production. This work provides an innovative strategy for improving sludge anaerobic digestion with efficient additives.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Hydrolysis , Methane , Oxidation-Reduction , Waste Disposal, Fluid
14.
Angew Chem Int Ed Engl ; 59(40): 17670-17675, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32602637

ABSTRACT

Use of redox mediators (RMs) is an effective strategy to enhance reaction kinetics of multi-electron sulfur electrochemistry. However, the soluble small-molecule RMs usually aggravate the internal shuttle and thus further reduce the battery efficiency and cyclability. A semi-immobilization strategy is now proposed for RM design to effectively regulate the sulfur electrochemistry while circumvent the inherent shuttle issue in a working battery. Small imide molecules as the model RMs were co-polymerized with moderate-chained polyether, rendering a semi-immobilized RM (PIPE) that is spatially restrained yet kinetically active. A small amount of PIPE (5 % in cathode) extended the cyclability of sulfur cathode from 37 to 190 cycles with 80 % capacity retention at 0.5 C. The semi-immobilization strategy helps to understand RM-assisted sulfur electrochemistry in alkali metal batteries and enlightens the chemical design of active additives for advanced electrochemical energy storage devices.

15.
Angew Chem Int Ed Engl ; 59(43): 19311-19319, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32692471

ABSTRACT

Li-O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by-products. Here, a trifunctional ether-based redox mediator, 2,5-di-tert-butyl-1,4-dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2 - and alleviate the rigorous oxidative environment of Li-O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2 - , it not only reduces the formation of by-products (a high Li2 O2 yield of 96.6 %), but also promotes the solution growth of large-sized Li2 O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2 O2 and the decomposition of main by-products (Li2 CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li-O2 batteries (243 cycles at 1000 mAh g-1 and 1000 mA g-1 ).

16.
J Biol Chem ; 293(25): 9629-9635, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29720402

ABSTRACT

Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N2) to ammonia (NH3) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum-iron protein (MoFe protein) that contains the iron-molybdenum cofactor (FeMo-co) sites where N2 is reduced to NH3 The P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox-dependent structural changes and that the transition from the all-ferrous resting (PN) state to the two-electron oxidized P2+ state is accompanied by protein serine hydroxyl and backbone amide ligation to iron. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P2+, P1+, and PN) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination, implicating that the P1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P2+ states. These results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states.


Subject(s)
Azotobacter vinelandii/enzymology , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Protein Conformation , Protons , Catalysis , Crystallography, X-Ray , Electron Transport , Molybdoferredoxin/metabolism , Nitrogenase/metabolism , Oxidation-Reduction
17.
Biochem J ; 475(7): 1235-1251, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29438066

ABSTRACT

Chagas disease (CD), caused by the protozoa Trypanosoma cruzi, is a chronic illness in which parasites persist in the host-infected tissues for years. T. cruzi invasion in cardiomyocytes elicits the production of pro-inflammatory mediators [TNF-α, IL-1ß, IFN-γ; nitric oxide (·NO)], leading to mitochondrial dysfunction with increased superoxide radical (O2·-), hydrogen peroxide (H2O2) and peroxynitrite generation. We hypothesize that these redox mediators may control parasite proliferation through the induction of intracellular amastigote programmed cell death (PCD). In this work, we show that T. cruzi (CL-Brener strain) infection in primary cardiomyocytes produced an early (24 h post infection) mitochondrial dysfunction with H2O2 generation and the establishment of an oxidative stress evidenced by FoxO3 activation and target host mitochondrial protein expression (MnSOD and peroxiredoxin 3). TNF-α/IL-1ß-stimulated cardiomyocytes were able to control intracellular amastigote proliferation compared with unstimulated cardiomyocytes. In this condition leading to oxidant formation, an enhanced number of intracellular apoptotic amastigotes were detected. The ability of H2O2 to induce T. cruzi PCD was further confirmed in the epimastigote stage of the parasite. H2O2 treatment induced parasite mitochondrial dysfunction together with intra-mitochondrial O2·- generation. Importantly, parasites genetically engineered to overexpress mitochondrial Fe-superoxide dismutase (Fe-SODA) were more infective to TNF-α/IL-1ß-stimulated cardiomyocytes with less apoptotic amastigotes; this result underscores the role of this enzyme in parasite survival. Our results indicate that cardiomyocyte-derived diffusible mediators are able to control intracellular amastigote proliferation by triggering T. cruzi PCD and that parasite Fe-SODA tilts the process toward survival as part of an antioxidant-based immune evasion mechanism.


Subject(s)
Chagas Disease/parasitology , Host-Parasite Interactions , Iron/metabolism , Mitochondria/pathology , Myocytes, Cardiac/pathology , Oxidative Stress , Superoxide Dismutase/metabolism , Animals , Apoptosis , Cells, Cultured , Chagas Disease/metabolism , Chagas Disease/pathology , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Mitochondria/parasitology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/parasitology , Oxidation-Reduction , Rats , Superoxide Dismutase/genetics , Superoxides , Trypanosoma cruzi/pathogenicity
18.
Crit Rev Biotechnol ; 38(4): 634-646, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29027469

ABSTRACT

Turning wastewater directly into electricity is alluring, widespread use of microbial fuel cells (MFCs) to achieve this at industrial scale appears increasingly unlikely despite intense research efforts lasting over a decade. Such endeavors have not been futile, however, and game-changing discoveries have resulted from these well-intentioned, scientifically rigorous but ultimately frustrated attempts to resolve the Waste-Energy dichotomy. The appeal of MFCs is largely of conceptual elegance rather than financial competitiveness, based on the green ideal that bacteria can be turned into cost effective bio-batteries. This notion is founded on the solid principles of extracellular electron transfer (EET), where microbes use electrodes interchangeably with other electron acceptors to generate current as a direct proxy for microbial metabolism. We contend that a nuanced understanding of EET has been restricted by focusing on device performance when in fact this information could be more beneficially channeled into addressing analytical questions pertaining to the presence and activity of microorganisms across systems of environmental and medical import, i.e. bioelectroanalytics. We discuss here relevant literature detailing bioelectrochemical systems and contrast energy-centric conclusions with observations geared towards bioelectroanalytics. We explore the expanding possibilities of bioelectroanalytics enabled by advances in genetic techniques and rooted in the concept that microbial interactions with an electrode extend to more than just cells seeking alternative electron acceptors. Our intention is to highlight alternative directions in the field and encourage researchers to harness bioelectroanalytics to address wider societal problems, in addition to addressing climate change.


Subject(s)
Bioelectric Energy Sources/microbiology , Electron Transport/physiology , Wastewater/microbiology , Bacteria/metabolism , Electrodes
19.
Chemistry ; 24(51): 13399-13407, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-29655209

ABSTRACT

The anodic oxidation of aryl iodides is a powerful method for the synthesis of hypervalent iodine reagents, which eliminates the necessity to use expensive or hazardous chemical oxidizing reagents. The hypervalent iodine reagents generated at the anode are successfully used as either in-cell or ex-cell mediators for different valuable chemical transformations such as fluorinations and oxidative cyclizations. More recently, recyclable mediators and catalytic protocols have been developed.

20.
Angew Chem Int Ed Engl ; 57(2): 422-426, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29160932

ABSTRACT

Although organic electrosynthesis is generally considered to be a green method, the necessity for excess amounts of supporting electrolyte constitutes a severe drawback. Furthermore, the employment of redox mediators results in an additional separation problem. In this context, we have explored the applicability of soluble polyelectrolytes and polymediators with the TEMPO-mediated transformation of alcohols into carbonyl compounds as a test reaction. Catalyst benchmarking based on cyclic voltammetry studies indicated that the redox-active polymer can compete with molecularly defined TEMPO species. Alcohol oxidation was also highly efficient on a preparative scale, and our polymer-based approach allowed for the separation of both mediator and supporting electrolyte in a single membrane filtration step. Moreover, we have shown that both components can be reused multiple times.

SELECTION OF CITATIONS
SEARCH DETAIL