Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Genes Dev ; 37(3-4): 74-79, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36702483

ABSTRACT

Pol2 is the leading-strand DNA polymerase in budding yeast. Here we describe an antagonism between its conserved POPS (Pol2 family-specific catalytic core peripheral subdomain) and exonuclease domain and the importance of this antagonism in genome replication. We show that multiple defects caused by POPS mutations, including impaired growth and DNA synthesis, genome instability, and reliance on other genome maintenance factors, were rescued by exonuclease inactivation. Single-molecule data revealed that the rescue stemmed from allowing sister replication forks to progress at equal rates. Our data suggest that balanced activity of Pol2's POPS and exonuclease domains is vital for genome replication and stability.


Subject(s)
DNA Replication , Exonucleases , Humans , Exonucleases/genetics , Exonucleases/metabolism , DNA Replication/genetics , Mutation , Genomic Instability/genetics , DNA Polymerase II/genetics , DNA Polymerase II/metabolism
2.
Genes Dev ; 37(3-4): 72-73, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36813532

ABSTRACT

DNA replication is complex and highly regulated, and DNA replication errors can lead to human diseases such as cancer. DNA polymerase ε (polε) is a key player in DNA replication and contains a large subunit called POLE, which possesses both a DNA polymerase domain and a 3'-5' exonuclease domain (EXO). Mutations at the EXO domain and other missense mutations on POLE with unknown significance have been detected in a variety of human cancers. Based on cancer genome databases, Meng and colleagues (pp. 74-79) previously identified several missense mutations in POPS (pol2 family-specific catalytic core peripheral subdomain), and mutations at the conserved residues of yeast Pol2 (pol2-REL) showed reduced DNA synthesis and growth. In this issue of Genes & Development, Meng and colleagues (pp. 74-79) found unexpectedly that mutations at the EXO domain rescue the growth defects of pol2-REL. They further discovered that EXO-mediated polymerase backtracking impedes forward movement of the enzyme when POPS is defective, revealing a novel interplay between the EXO domain and POPS of Pol2 for efficient DNA synthesis. Additional molecular insight into this interplay will likely inform the impact of cancer-associated mutations found in both the EXO domain and POPS on tumorigenesis and uncover future novel therapeutic strategies.


Subject(s)
DNA Polymerase II , DNA Replication , Neoplasms , Saccharomyces cerevisiae , Humans , DNA/genetics , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , DNA Replication/genetics , Exonucleases/metabolism , Mutation , Neoplasms/genetics , Saccharomyces cerevisiae/metabolism
3.
Mol Microbiol ; 118(4): 426-442, 2022 10.
Article in English | MEDLINE | ID: mdl-36053906

ABSTRACT

DNA replication is highly regulated and primarily controlled at the step of initiation. In bacteria, the replication initiator DnaA and the origin of replication oriC are the primary targets of regulation. Perturbations that increase or decrease replication initiation can cause a decrease in cell fitness. We found that multiple mechanisms, including an increase in replication elongation and a decrease in replication initiation, can compensate for lethal over-initiation. We found that in Bacillus subtilis, under conditions of rapid growth, loss of yabA, a negative regulator of replication initiation, caused a synthetic lethal phenotype when combined with the dnaA1 mutation that also causes replication over-initiation. We isolated several classes of suppressors that restored viability to dnaA1 ∆yabA double mutants. Some suppressors (relA, nrdR) stimulated replication elongation. Others (dnaC, cshA) caused a decrease in replication initiation. One class of suppressors decreased replication initiation in the dnaA1 ∆yabA mutant by causing a decrease in the amount of the replicative helicase, DnaC. We found that decreased levels of helicase in otherwise wild-type cells were sufficient to decrease replication initiation during rapid growth, indicating that the replicative helicase is limiting for replication initiation. Our results highlight the multiple mechanisms cells use to regulate DNA replication.


Subject(s)
Bacterial Proteins , DNA-Binding Proteins , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Bacterial Proteins/genetics , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , DNA Replication , DNA Helicases/genetics , DNA Helicases/metabolism , Replication Origin
4.
Genes Dev ; 27(15): 1662-79, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23884606

ABSTRACT

Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation.


Subject(s)
DNA Replication/genetics , Histones/metabolism , Tetrahymena thermophila/genetics , Tetrahymena thermophila/metabolism , DNA, Single-Stranded/metabolism , Histones/genetics , Methylation , Mutation , Proliferating Cell Nuclear Antigen/metabolism , Repressor Proteins/metabolism
5.
G3 (Bethesda) ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36165702

ABSTRACT

RecBCD helicase/nuclease supports replication fork progress via recombinational repair or linear DNA degradation, explaining recBC mutant synthetic lethality with replication elongation defects. Since replication initiation defects leave chromosomes without replication forks, these should be insensitive to the recBCD status. Surprisingly, we found that both Escherichia coli dnaA46(Ts) and dnaC2(Ts) initiation mutants at semi-permissive temperatures are also recBC-colethal. Interestingly, dnaA46 recBC lethality suppressors suggest underinitiation as the problem, while dnaC2 recBC suppressors signal overintiation. Using genetic and physical approaches, we studied the dnaA46 recBC synthetic lethality, for the possibility that RecBCD participates in replication initiation. Overproduced DnaA46 mutant protein interferes with growth of dnaA+ cells, while the residual viability of the dnaA46 recBC mutant depends on the auxiliary replicative helicase Rep, suggesting replication fork inhibition by the DnaA46 mutant protein. The dnaA46 mutant depends on linear DNA degradation by RecBCD, rather than on recombinational repair. At the same time, the dnaA46 defect also interacts with Holliday junction-moving defects, suggesting reversal of inhibited forks. However, in contrast to all known recBC-colethals, which fragment their chromosomes, the dnaA46 recBC mutant develops no chromosome fragmentation, indicating that its inhibited replication forks are stable. Physical measurements confirm replication inhibition in the dnaA46 mutant shifted to semi-permissive temperatures, both at the level of elongation and initiation, while RecBCD gradually restores elongation and then initiation. We propose that RecBCD-catalyzed resetting of inhibited replication forks allows replication to displace the "sticky" DnaA46(Ts) protein from the chromosomal DNA, mustering enough DnaA for new initiations.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , DNA Replication/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , DNA/metabolism , Mutant Proteins/genetics , DNA, Bacterial/genetics , Mutation , Bacterial Proteins/genetics , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism
6.
Viruses ; 13(7)2021 06 28.
Article in English | MEDLINE | ID: mdl-34203380

ABSTRACT

RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication and transcription. The closed "right hand" architecture of RdRPs encircles seven conserved structural motifs (A to G) that regulate the polymerization activity. The four palm motifs, arranged in the sequential order A to D, are common to all known template dependent polynucleotide polymerases, with motifs A and C containing the catalytic aspartic acid residues. Exceptions to this design have been reported in members of the Permutotetraviridae and Birnaviridae families of positive single stranded (+ss) and double-stranded (ds) RNA viruses, respectively. In these enzymes, motif C is located upstream of motif A, displaying a permuted C-A-B-D connectivity. Here we study the details of the replication elongation process in the non-canonical RdRP of the Thosea asigna virus (TaV), an insect virus from the Permutatetraviridae family. We report the X-ray structures of three replicative complexes of the TaV polymerase obtained with an RNA template-primer in the absence and in the presence of incoming rNTPs. The structures captured different replication events and allowed to define the critical interactions involved in: (i) the positioning of the acceptor base of the template strand, (ii) the positioning of the 3'-OH group of the primer nucleotide during RNA replication and (iii) the recognition and positioning of the incoming nucleotide. Structural comparisons unveiled a closure of the active site on the RNA template-primer binding, before rNTP entry. This conformational rearrangement that also includes the repositioning of the motif A aspartate for the catalytic reaction to take place is maintained on rNTP and metal ion binding and after nucleotide incorporation, before translocation.


Subject(s)
RNA Viruses/genetics , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Crystallization , Crystallography, X-Ray , Insect Viruses , Protein Conformation , RNA Viruses/classification , RNA Viruses/enzymology , RNA-Dependent RNA Polymerase/metabolism
7.
Genes (Basel) ; 8(2)2017 Feb 17.
Article in English | MEDLINE | ID: mdl-28218679

ABSTRACT

To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.

SELECTION OF CITATIONS
SEARCH DETAIL